
 Journal of Advances in Computer Engineering and Technology, 4(1) 2018

A New Optimized Hybrid Model Based on
COCOMO to Increase the Accuracy of Software

Cost Estimation
Ramin Saljoughinejad1; Vahid Khatibi2

Received (2017-07-29)
Accepted (2017-10-28)

Abstract — The literature review shows software
development projects often neither meet time
deadlines, nor run within the allocated budgets.
One common reason can be the inaccurate cost
estimation process, although several approaches
have been proposed in this field. Recent research
studies suggest that in order to increase the
accuracy of this process, estimation models have
to be revised. The Constructive Cost Model
(COCOMO) has often been referred as an efficient
model for software cost estimation. The popularity
of COCOMO is due to its flexibility; it can be used
in different environments and it covers a variety
of factors. In this paper, we aim to improve the
accuracy of cost estimation process by enhancing
COCOMO model. To this end, we analyze the
cost drivers using meta-heuristic algorithms. In
this method, the improvement of COCOMO is
distinctly done by effective selection of coefficients
and reconstruction of COCOMO. Three meta-
heuristic optimization algorithms are applied
synthetically to enhance the process of COCOMO
model. Eventually, results of the proposed method
are compared to COCOMO itself and other
existing models. This comparison explicitly reveals
the superiority of the proposed method.

Index Terms — Accuracy, COCOMO 81, effort
estimation, optimization, software project.

I. INTRODUCTION

With the evolution of computers, the role of
software applications has increased. However, a
study shows that 30% percent of projects were
canceled, 84% were late or over budget (91%
for larger companies), 52.7% cost an average of
189% over budget, the average system is delivered
without 58% of the proposed functionalities, 81
billion dollars in 1995 was spent on cancelled
projects, 51 billion dollars in 1995 was spent
for over budget projects and only 16.2% of the
software projects were completed on-time and
on-budget [1].

An effective estimation gives a great deal
of power to the project manager and helps to
make better allocation decisions during the life
cycle of the project. This includes telling other
stakeholders of the software project how much
effort is still needed to accomplish. With a
faulty estimation, a software project leads to an
inevitable defeat [1], [2].

Nowadays, there are many approaches to
estimate software development effort, and it is up
to the manager to choose one of the approaches
depending on the type of the project. One of the
most popular and known models is COCOMO.
This model was introduced using constant
parameters as well as applying statistical data
regression analysis based on 63 various software
projects. The Constructive Cost Model is an
algorithmic software cost estimation model
which is developed by Barry W. Boehm in
1981 and was first published in Boehm’s book
“Software Engineering Economics” as a model
for estimating cost, effort and schedule for
software projects [3]. Although this model gives

1- Student of ACRCE Khozestan (ar.habibi69@gmail.com)
2- Depatment of Computer, Central Tehran Branch, Islamic
Azad University, Tehran, Iran.

28				 Journal of Advances in Computer Engineering and Technology, 4(1) 2018

a good estimation, it is still away from the actual
effort and cost [3]-[6]. The objective of this paper
is to first review different types of COCOMO
model and then to improve it. This paper is
organized in 8 sections as follows: The literature
review is presented in Section 2 and COCOMO
is explained in Section 3. PSO, GA and IWO are
elaborated in Section 4, 5 and 6, respectively. The
proposed model is presented in Section 7 while
the results are evaluated in Section 8. Finally,
Conclusion and future work are explained in
Section 9.

II. LITERATURE REVIEW

Estimating required resources for developing
a software product plays a vital role in the
management of software projects including
resource allocation project programming and
project auction. Various research studies highlight
the importance of accurate estimation through
introducing software cost estimation approaches.
The following sub classes are categorized through
a cognitive study which includes: COCOMO,
lifelong, etc. [7].

F-COCOMO using fuzzy logic for software
effort estimation is introduced by Fi & Liu [8].
The estimation capability is not yet spotted as
no comparison has been made between fuzzy
COCOMO and other effort estimation models.
Rodger introduce a fuzzy COCOMO recognized
as adaptive model of effort drivers, though
its efficiency is not mentioned [8]. Audrey et
al. define a fuzzy set for linguistic values of
each effort driver by a trapezoidal membership
function for fuzzy COCOMO. In the original
model of COCOMO the fuzzy sets are the origin
of obtained effort estimation coefficients. The
fuzzy COCOMO is less sensitive toward software
effort drivers relative to COCOMO81 [9]. A
modeling approach of fuzzy linguistic effort
estimation for confronting linguistic effort divers
was presented by Zhu et al. which automatically
generates fuzzy membership function through
81 COCOMO data set. The proposed fuzzy
identifying model presents a more error free
effort estimation compared to the 3 main models
of COCOMO (basic, medium, accurate) [10].
Many models have received compliments for
making relationship between size and effort in
software cost estimation. Some of the applied
methods in this regard include genetic algorithm

[11], fuzzy models [12], synthetic and dynamic
models [13], neural networks [14], and basic
regression [15]. Two common methods of cost
estimation approaches include algorithm and
non-algorithm approaches [16]. The algorithm
method widely puts math skills in use from
simple calculations or statistics to regression and
differential equations [17]. On the other hand,
non-algorithm approaches are analysis-based
reasoning and learning, a study has recently been
devoted to optimize the decision parameters in
COCOMO through 81 NASA COCOMO data
set [18]. Optimizing data set values, machine
learning, analogy, data mining and neural
networks were helped by different approaches
[19]. In this regard, we have particle swarm
optimization which is another approach used
for optimizing [20], [21]. A multilayer neural
network with 23nodes in hidden layer for effort
estimation in software projects was presented by
Da Silva D. Regression approach is also run in
this approach for evaluating network and artificial
data collection. The results were presented
according to MMRE and PRED and compared
with 2 COCOMO. As a result of the comparison
shown, networks which were presented can
create higher exact result [19], [22]. Soda et al.
suggested two neurotic networks of RBF and
GR for endeavor estimation of software project.
81 data collection of COCOMO is used in this
project and the results of neural network are
compared with the result that was obtained from
COCOMO. The results show that both RBF and
GR that are relative to COCOMO can display
more exact results and RBF presented the best
outcome [23]. Rady and Raju presented a feed
forward neural network which consists of 22
neurons in the input layer, 2 hidden layers, and
one node in the output layer. The basis of this
architecture is on 17 COCOMO factor of effort
and scale factor. COCOMO equation changed
into linear equation, therefore, linear transfer
function is chosen for the network. 81 COCOMO
data collection was used for evaluating the
performance of the network according to MMRE.
15 projects were randomly selected as the order
set while others performed as test set. As shown
by the obtained result compared with COCOMO
results, the suggested network presented higher
exact results [24]. Neural networks are widely
used for estimating the objectives in different
kinds of science. Moreover, it was used in
software development effort estimation. Rao

Journal of Advances in Computer Engineering and Technology, 4(1) 2018					 29

used functional link artificial neural networks for
estimating efforts for software projects. Network
architecture is considerably simple. In network
architecture, we don’t have any hidden layers and
learn how this type of neural works so quickly.
According to COCOMO, this network cost 17
stimulations and 5 determined scale factors [25].
Reddy and Raju introduced feed forward neural
network which consists of 22 neurons in the
input layer, 2 hidden layer and one node in the
output layer. This architecture is considered as
(EMS15) according to COCOMO estimation and
(5SFS) because of the scale factors. Therefore,
COCOMO equation changed into linear equation
and linear transfer function which were selected
for network. According to MMRE, COCOMO
81 data collection was used to evaluate network
performance. Totally, 50 projects act randomly
as the trail set and the other projects act as the
test set. Results of this test compared with
COCOMO results show that estimating proposed
network is more accurate [26]. Idri et al. look for
an appropriate structure of radial basis function
neural network and in particular the number of
neurons in the hidden layer. This study focused
on the level of accuracy in software projects
under the influence of Gaussian function width
[20]. One of the most popular methods to estimate
software development effort is artificial neural
networks and due to its popularity, several studies
were carried out using neural networks in the past
few years. Artificial neural network based models
have shown that they can provide an appropriate
estimation at the beginning of a project due to
having access to the information from efforts of
completed projects while model-based methods
are not able to provide such an estimation due
to limited project knowledge [27]. A new model
based on using binary genetic algorithm was
later introduced by Mirsa to estimate software
effort for NASA supported projects. A modified
version came out later considering the effect of
methodology and using the COCOMO model
to estimate effort which was able to provide
appropriate estimation [28]. Particle swarm
optimization is an algorithm developed to
optimize a problem by trying to improve the
candidate solution. The main advantage of
this algorithm compared to many other global
optimization algorithms such as Firefly and
Genetic is its quick convergence. A later study
by Sheta et al. used PSO to regulate COCOMO
parameters by using soft calculation techniques in

order to estimate software effort better [19], [22].
A new model based on optimizing the COCOMO
model by using TLBO algorithm introduced by
S. K. Sehra, Y. S. Brar, N. Kaur, and G. Kaur. The
results show this model’s superiority compared
with four different models including SEL,
Haltsead, Bailey-Basili and BCO [29].

1. COCOMO 81
COCOMO 81 is a model that allows one to

estimate the effort, cost, and schedule when
planning a new software development activity. It
exists in three forms, each one offering greater
detail and accuracy the further along one is in the
project planning and design process. Listed by
increasing fidelity, these forms are called Basic,
Intermediate, and Detailed COCOMO [3]-[6].

1.1.	 Basic COCOMO
Basic COCOMO estimates effort (and cost)

as a function of program size. Program size is
expressed in terms of the number of the source
lines of code divided by 1000 (SLOC, KLOC).
Basic COCOMO applies to three kinds of
software projects known as 1-Organic, which
are “small” projects with “good” experience
working with “less than rigid” requirements.
2-Semi-detached, “medium” teams with mixed
experience working with a mix of rigid and less
than rigid requirements. 3-Embedded, which are
developed with a set of “tight” constraints. It is
also a combination of organic and semi-detached
projects. Basic COCOMO equations take the
form:

Effort Applied (E) = ab(KLOC)bb [person-months]
					 Eq.1

Development Time (D) = cb(Effort Applied)db [months]
					 Eq.2

People required (P) = Effort Applied / Development Time [count]

					 Eq.3

The coefficients ab, bb, cb and db are given
in table 1.

30				 Journal of Advances in Computer Engineering and Technology, 4(1) 2018

Table I: Basic model coefficients [3]
Software project ab bb cb db

Organic 2.4 1.05 2.5 0.3
Semi-detached 3.0 1.12 2.5 0.35

Embedded 3.6 1.20 2.5 0.32

Basic COCOMO is good for an early effort
and cost estimation but it does not account for
the differences in some cases such as personnel
quality, hardware constraints and experience, use
of modern tools and techniques.

1.2.	 Intermediate COCOMO
Intermediate COCOMO computes software

development effort as a function of program size
and a set of “cost drivers” that include hardware,
personnel, subjective assessment of the product
and project attributes. This extension considers a
set of four “cost drivers”, each with a number of
subsidiary attributes which are 15 in total.

Each of the 15 attributes receives a rating on
a six-point scale that ranges from “very low” to
“extra high” (in importance or value). An effort
multiplier from the table below applies to the
rating. The product of all effort multipliers results
in an effort adjustment factor (EAF). Typical
values for EAF range from 0.9 to 1.4.

The Intermediate COCOMO formula now
takes the form:

E=ai(KLoC)(bi)(EAF) Eq. 4

Where E is the effort applied in person-months,
KLoC is the estimated number of thousands of
delivered lines of code for the project, and EAF is
the factor calculated above. The coefficient ai and
the exponent bi are given in the following table.

Table 3: Intermediate model coefficients [3]
Software project ai bi

Organic 3.2 1.05
Semi-detached 3.0 1.12

Embedded 2.8 1.20

1.3.	 Detailed COCOMO
Detailed COCOMO incorporates all

characteristics of the intermediate version with
an assessment of the cost driver’s impact on
each step (analysis, design, etc.) of the software
engineering process.

The detailed model uses different effort

Table 2: Intermediate model cost drivers [3]
Rating

Cost Drivers Extra
High

Very
High High Nominal Low Very

Low
 Product attributes

 1.40 1.15 1 0.88 0.75 Required software reliability
 1.60 1.08 1 0.94 Size of application database

1.65 1.30 1.15 1 0.85 0.70 Complexity of the product
 Hardware attributes

1.66 1.30 1.11 1 Run-time performance constraints
1.56 1.21 1.06 1 Memory constraints

 1.30 1.15 1 0.87 Volatility of the virtual machine environment
 1.15 1.07 1 0.87 Required turnabout time

 Personnel attributes
 0.71 0.86 1 1.19 1.46 Analyst capability
 0.82 0.91 1 1.13 1.29 Applications experience
 0.70 0.86 1 1.17 1.42 Software engineer capability
 0.90 1 1.10 1.21 Virtual machine experience
 0.95 1 1.07 1.14 Programming language experience

 Project attributes
 0.82 0.91 1 1.10 1.24 Application of software engineering methods
 0.83 0.91 1 1.10 1.24 Use of software tools
 1.10 1.04 1 1.08 1.23 Required development schedule

Journal of Advances in Computer Engineering and Technology, 4(1) 2018					 31

multipliers for each cost driver attribute. These
Phase Sensitive effort multipliers are each to
determine the amount of effort required to
complete each phase. In detailed COCOMO, the
whole software is divided into different modules
and then we apply COCOMO in different modules
to estimate and then sum the effort.

In detailed COCOMO, the effort is calculated
as a function of program size and a set of cost
drivers given according to each phase of the
software life cycle.

A Detailed project schedule is never static.

The five phases of detailed COCOMO are:
•	 Plan and requirement
•	 System design
•	 Detailed design
•	 Module code and test
•	 Integration and test
•	 Cost Constructive Model

III. PSO ALGORITHM

Particle swarm optimization (PSO) is a
computational method that optimizes a problem
by iteratively trying to improve a candidate
solution with regard to a given measure of quality.
PSO optimizes a problem by having a population
of candidate solutions, here dubbed particles, and
moving these particles around in the search-space
according to simple mathematical formulae
over the particle’s position and velocity. Each
particle’s movement is influenced by its local
best-known position but is also guided towards
the best-known positions in the search-space,
which are updated as better positions are found
by other particles. This is expected to move the
swarm towards the best solutions [4].

PSO is originally attributed to Kennedy,
Eberhart and Shi and was first intended for
simulating social behavior, as a stylized
representation of the movement of organisms
in a bird flock or fish school. The algorithm was
simplified and it was observed to be performing
optimization. The book by Kennedy and Eberhart
describes many philosophical aspects of PSO and
swarm intelligence [4], [30]. Table (4) shows the
setting used for PSO algorithm in this paper.

Table 4: Setting for the PSO algorithm.
Parameter Value

Npop 50
Itermax 500
Varmax 5
Varmin 0
Velmax (Varmax – Varmin) / 10
Velmin - Velmax

IV. GENETIC ALGORITHM

Genetic algorithm (GA) is a meta-heuristic
algorithm inspired by the process of natural
selection that belongs to the larger class of
evolutionary algorithms (EA). Genetic algorithms
are commonly used to generate high-quality
solutions to optimization and search problems
by relying on bio-inspired operators such as
mutation, crossover and selection [31].

The evolution usually starts from a population
of randomly generated individuals, and is an
iterative process, with the population in each
iteration called a generation. In each generation,
the fitness of every individual in the population
is evaluated; the fitness is usually the value
of the objective function in the optimization
problem being solved. The fitter individuals
are stochastically selected from the current
population, and each individual’s genome is
modified (recombined and possibly randomly
mutated) to form a new generation. The new
generation of candidate solutions is then used in
the next iteration of the algorithm. Commonly,
the algorithm terminates when either a maximum
number of generations has been produced or a
satisfactory fitness level has been reached for the
population [30], [31].

A typical genetic algorithm requires:
1-	 a genetic representation of the solution

domain,
2-	 a fitness function to evaluate the solution

domain.
Once the genetic representation and the fitness

function are defined, a GA proceeds to initialize
a population of solutions and then to improve it
through repetitive application of the mutation,
crossover, inversion and selection operators [31],
[33]. The following table (table 5) shows the

Journal of Advances in Computer Engineering and Technology, 4(1) 2018					 32

setting used for this algorithm in this paper.

Table 5: Setting for the genetic algorithm.
Parameter Value

Ga_Pop_Size 50
Ga_Pop_evals 500

Ga_Elitism 1
Ga_Crossover_Rate 0.8
Ga_Mutation_Rate 0.02

V. INVASIVE WEED OPTIMIZATION ALGORITHM

Weeds are one of the most robust and
troublous plants in agriculture. When you were
young, you may have heard that ‘‘the weeds
always win’’. This is due to the fact that the weeds
have some strong properties, such as adaptation,
robustness, vigorousness, and invasion. Based
on those properties, a novel numerical stochastic
optimization algorithm called invasive weed
optimization (IWO) was proposed by Mehrabian
and Lucas (2006) which is based on the natural
selection (survival of the fittest) in the biological
world [34].

To implement the IWO algorithm, there are
many steps which are needed to be performed
but the most important part of this algorithm is
the “Spatial distribution” step. In this part, the
generated seeds are being randomly distributed
over the d-dimensional search space by normally
distributed random numbers with a mean equal to
zero; but varying variance parameters decreasing
over the number of iteration. The reason for that
is to guarantee that the produced seeds will be
generated in a distant area but around the parent
weed and decrease non-linearly, which results
in grouping the fitter plants together and the
inappropriate plants are eliminated over times.

Here, the standard deviation (s) of the random
function is made to decrease over the iterations
from a previously defined initial value (s initial),
to a final value (s final), which is calculated in
every time step via Equation (5).

𝜎𝜎���� � �������� � �������
���������� �𝜎𝜎������� � �𝜎𝜎������ ��𝜎𝜎�����

					 Eq. 5
	

Where iter max is the maximum number
of iterations, siter is the standard deviation at
the present time step and n is the nonlinear
modulation index usually set as 2.

Taking into account the key phases described
above, the steps of implementing the IWO
algorithm can be summarized as follows [34]:

•	 Step 1: Initialize randomly generated
weeds in the entire search space.

•	 Step 2: Evaluate fitness of the whole
population members.

•	 Step 3: Allow each population member to
produce a number of seeds with better population
members which in turn produce more seeds.

•	 Step 4: The generated seeds are
distributed over the search space by normally
distributed random numbers with a mean equal
to zero but varying variance.

•	 Step 5: When the weed population
exceeds the upper limit, perform competitive
exclusion.

•	 Step 6: Check the termination criteria.

The following table (table 6) shows the setting
used for this algorithm in this paper.

Table 6: Setting for the IWO algorithm.
Parameter Value

No 30
Itermax 500
Pmax 50
Smax 50
Smin 30
N 3

Ϭinitial 5
ϬFinal 0.5

VI. THE PURPOSED METHOD

The information related to the proposed method
is presented in this section. The present synthetic
approach tries to obtain the best estimation as
much as possible through improving the attributes
and COCOMO coefficient optimization. The
procedure of synthesizing different sections of
the proposed model is carried out in a way that
the estimation error decreases. The proposed
method consists of three main sections each of
which includes a model training section and a

Journal of Advances in Computer Engineering and Technology, 4(1) 2018					 33

model testing section elaborated in the following
sections:

1. Section1: An effective selection of
coefficients using meta-heuristic algorithms

1.1. Section 1 Model training
A part of the proposed method is generated

and configured in this section. The parameters
of the proposed method, a and b parameters in
COCOMO are indeed set in this section and
the goal is to produce optimized coefficients.
In the beginning, all the projects are randomly
divided into two groups of training and testing.
And then, each of these groups are divided into
three other groups which are Organized, Semi-
detached and Embedded according to COCOMO
formula, this dividing is due to the heterogeneity
of COCOMO projects. After dividing the training
data into three groups, meta-heuristic algorithms
are used to optimize the coefficients to minimize
the estimation effort of each project. Through
optimization of coefficients (6) formula is used
as the fitness function for all the meta-heuristic
algorithms.

Effort = | Real Cost – Estimation Cost | Eq. 6

In this formula, it has been tried to minimize
the estimated effort to increase the accuracy of
the COCOMO. The reason for using the same
fitness function for all meta-heuristic algorithms
is to test them all under equal conditions.

It also needs to be mentioned that apart from
using these algorithms separately, the two IWO
and PSO algorithms are also used in combination.
It means that the result of PSO algorithm has
been used as a part of the IWO population. The
reason for this is to increase the accuracy of IWO
algorithm and test these two algorithms together.

Performance parameters in all the sections are
MMRE and PRED. For estimating MMRE and
PRED, first MRE should be estimated through
the following formula.

��� � � ��𝐴𝐴��𝐴𝐴𝐴𝐴�� � 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 �
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 Eq. 7

After MRE’s estimation for all projects,
MMRE and PRED values are estimated through
(8) and (9) formula.

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 � ∑ 𝑀𝑀𝑀𝑀𝑀𝑀����
N Eq. 8

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�𝑥𝑥� � 𝐴𝐴
𝑁𝑁 Eq. 9

The value of MMRE equals to the average of
MREs in a single group (organic, semi-detached
or embedded). The value of PRED equals to the
percentage of the projects the MRE value of which
is less than or equal to X, and N is the number of
estimated projects. The acceptable value of X is
0.25 according to which the proposed methods
are compared. MMRE as the total value of error
in projects should be minimized whereas PRED
(0.25) should be maximized.

Fig.1. Training stage in proposed model (Section 1)

1.2. Section 1 Model Testing
In this section, the results of training section (a,

b coefficients) are used to evaluate the proposed
method. Data used in this section are the testing

Journal of Advances in Computer Engineering and Technology, 4(1) 2018					 34

data. First, all the testing projects are divided
into three classes of Organic, semi-detached and
embedded according to the COCOMO project
types. After class identification of the projects,
the related coefficients of the project are extracted
and then used to estimate the effort of each
project. After the calculation of the effort for all
the testing projects, The MRE related to testing
projects is estimated and then in evaluation part
MMRE and PRED are estimated. All These
processes are shown in Fig (2).

Fig. 2. Testing stage in proposed model (Section 1)

2. Section 2: Cost Drivers Optimization using
meta-heuristic algorithms

2.1. Section 2 Model Training
At this step, we try to optimize cost drivers

using meta-heuristic algorithms in order to
reach better factors for optimizing the answer
of suggested model by reapplying the first step
on these drivers. As the number of drivers is 15
and each is different, first project categories are

formed at this phase. The projects have the same
amount in one feature are categorized in one
group. For example, all the projects that have
“very little” amount in reliability feature needed
for the software in one category. The projects that
have little amount in another, and the projects that
have average amount are categorized in another
groups. The categorization is done for all features
and amounts. Then according to the result of the
previous step using the IWO, PSO algorithms,
we optimize the drivers at the category. As it is
always tried to reduce the amount of MMRE and
increase the PRED in each category. Through
optimization of cost drivers (6) formula is used
as the fitness function for our two meta-heuristic
algorithms. And all these processes are shown in
Fig (3).

Fitness = | MMRE – PRED | Eq. 10

Fig.3. Training stage in proposed model (Section 2)

Journal of Advances in Computer Engineering and Technology, 4(1) 2018					 35

2.2. Section 2 Model Testing
In this section, the result of training section

which is a table of new Cost Drivers is used to
evaluate the proposed method. Data used in this
section are the testing data. After dividing all the
projects into the three groups of Organic, Semi-
detached and Embedded the cost drivers of each
project are replaced with their corresponding
cost drive from the results of training section
to estimate the effort of each project. After the
calculation of the effort for all the testing projects,
The MRE related to testing projects is estimated
and then in evaluation part MMRE and PRED are
estimated. All These processes are shown in Fig
(4).

 Fig.4. Testing stage in proposed model (Section 2)

3. Section3: An effective selection of
coefficients using the new cost drivers from
section 2, and meta-heuristic algorithms

3.1. Section 3 Model Training
All the steps in this section are the same as

those which are in section 1 and the goal again

is to produce optimized coefficients; the only
difference in this section is that the cost drivers
which are used here are the results of section 2.
First, all the projects are divided into three groups
of Organic, Semi-detached, Embedded, then the
cost drivers of each project are replaced with
their corresponding cost drive from the results of
section 2. After replacing the cost drivers the three
meta-heuristic algorithms are used to optimize
the coefficients to minimize the estimation effort
of each project. All These processes are shown
in Fig (5).

Fig.5. Training stage in proposed model (Section 3)

3.2. Model Testing
This part is exactly the same as the model

testing part in section 1. All These processes are
shown in Fig (6).

Journal of Advances in Computer Engineering and Technology, 4(1) 2018					 36

 Fig. 6. Testing stage in proposed model (Section 3)

VII. RESULTS EVALUATION

In this section, the performance of the proposed
method is evaluated applying the data related to
the real projects. The evaluation stage consists
of three main sections each of which includes
3 different parts as the COCOMO method has
3 different types for projects. The results of all
these three sections are shown and then compared
to the COCOMO results themselves.

1. Section 1 Evaluation

Table7: Obtained results from organic projects (Section1)
 A B MMRE PRED MMRE-

PRED
PSO 1.834 1.472 1.408 0.125 1.283

GENETIC 1.966 1.452 1.417 0 1.417
IWO 2.018 1.353 0.868 0.25 0.618

PSO + IWO 2.743 1.002 0.209 0.75 -0.541
COCOMO 3.2 1.05 0.299 0.625 -0.326

Table (7) shows the results related to organic
projects. In this table, a and b coefficients,
MMRE and PRED performance criteria, and the
subtraction of MMRE and PRED performance
criteria for all algorithms are presented. As
indicated by the results, a’s coefficients range is
from 1.834 to 3.2 and b’s coefficients range is
from 1.002 to 1.472.

The MMRE range for these projects is from
0.209 to 1.417. The best MMRE for these projects
is 0.209, which is the result of the combination of
two IWO and PSO algorithms. The PRED range
for these projects is from 0 to 0.75, and again the
best PRED is the result of combining the two
IWO and PSO algorithms which is 0.75.

Table 8: Obtained results from semi-detached projects
(Section1)

 A B MMRE PRED MMRE
-PRED

PSO 1.732 1.215 0.395 0.571 -0.176
GENETIC 2.471 1.352 2.270 0 2.270

IWO 2.020 1.337 1.467 0.286 1.181
PSO + IWO 2.412 1.121 0.26 0.286 -0.025
COCOMO 3.0 1.12 0.326 0.571 -0.245

Table (8) shows the results related to semi-
detached projects. As indicated by the results,
a’s coefficients range is from 1.732 to 3.0 and b’s
coefficients range is from 1.12 to 1.352.

The MMRE range for these projects is from
0.26 to 2.27. The best MMRE for these projects
is 0.26, which is the result of the combination of
two IWO and PSO algorithms. The PRED range
for these projects is from 0 to 0.571. The best
PRED is the result of PSO algorithms, which is
0.571.

Table 9: Obtained results from embedded projects

(Section 1)
 A B MMRE PRED MMRE

-PRED
PSO 1.142 1.531 0.295 0.4 -0.105

GENETIC 1. 102 1.52 0.550 0.2 0.350
IWO 1.971 1.372 0.327 0.3 0.026

PSO + IWO 2.873 1.181 0.266 0.5 -0.234
COCOMO 2.8 1.20 0.258 0.6 -0.341

Table (9) shows the results related to
embedded projects. As indicated by the results,
a’s coefficients range is from 1.102 to 2.873 and
b’s coefficients range is from 1.181 to 1.531. The
MMRE range for these projects is from 0.258
to 0.550. The best MMRE for these projects

Journal of Advances in Computer Engineering and Technology, 4(1) 2018					 37

is 0.258, which is the result of the COCOMO
model. The PRED range for these projects is
from 0 to 0.6, and again the best PRED is the
result of COCOMO model which is 0.6.

Results related to the proposed method
(Section 1) are presented in tables 4, 5, and 6.
The best PRED value has obtained for organic
projects indicating the influence of coefficients
optimization on increasing the percentage of
estimation in these projects. The best value of
MMRE has obtained again for organic projects
and it is probably because of the large number
of these projects. The important point is the
notable difference of the proposed coefficients
for all three kinds of projects caused by projects
variation.

2. Section 2 Evaluation

Table10: Obtained results from all groups of projects
(Section 2)

Organic
 MMRE PRED MMRE-PRED

New Model 0.274 0.5 -0.225

COCOMO 0.342 0.541 -0.199

Semi-detached
 MMRE PRED MMRE-PRED

New Model 0.242 0.428 -0.186

COCOMO 0.295 0.636 -0.341

Embedded
 MMRE PRED MMRE-PRED

New Model 0.267 0.6 -0.332

COCOMO 0.316 0.535 -0.218-

Table (10) shows the result related to all the
three project types. As indicated by the results, the
proposed method has achieved a better estimation
both in organic and embedded projects than
COCOMO model itself, this represents better
cost drivers in the proposed method compared to
the COCOMO model. All these new cost drivers
are presented in table (11).

3. Section 3 Evaluation

Table12: Obtained results from organic projects
(Section3)

 A B MMRE PRED MMRE-
PRED

PSO 4.99 0.88 0.29 0.5 -0.21
IWO 4.27 0.93 0.30 0.549 -0.24

PSO + IWO 4.99 0.88 0.29 0.5 -0.21
COCOMO 3.2 1.05 0.34 0.54 -0.19

Table (12) shows the results related to
organic projects. As indicated by the results, a’s
coefficients range is from 3.2 to 4.99 and b’s
coefficients range is from 0.88 to 1.05.

The MMRE range for these projects is from
0.29 to 0.34. The best MMRE for these projects
is 0.29, which is the result of the combination of
two IWO and PSO algorithms. The PRED range
for these projects is from 0.5 to 0.549 and it is the
result of IWO algorithm, which is 0.549.

Table11: New cost drivers table for Intermediate projects in proposed model
Rating

Cost Drivers Extra
High

Very
High High Nominal Low Very

Low
 Product attributes

 1.43 1.12 0.98 0.90 0.73 Required software reliability
 1.15 1.09 0.96 0.94 Size of application database

1.67 1.28 1.13 1.01 0.82 0.68 Complexity of the product
 Hardware attributes

1.65 1.28 1.09 1.02 Run-time performance constraints
1.55 1.22 1.03 0.98 Memory constraints

 1.31 1.316 0.99 0.89 Volatility of the virtual machine environment
 1.17 1.05 0.98 0.87 Required turnabout time

 Personnel attributes
 0.73 0.84 1 1.21 1.47 Analyst capability
 0.83 0.90 0.99 1.11 1.25 Applications experience
 0.68 0.87 0.97 1.15 1.39 Software engineer capability
 0.87 0.97 0.99 1.19 Virtual machine experience
 0.97 0.98 1.05 1.16 Programming language experience

 Project attributes
 0.80 0.89 0.99 0.98 1.25 Application of software engineering methods
 0.81 0.88 1 0.98 1.25 Use of software tools
 1.12 0.99 0.98 1.03 1.25 Required development schedule

Journal of Advances in Computer Engineering and Technology, 4(1) 2018					 38

Table 13: Obtained results from semi-detached projects
 (Section 3)

 A B MMRE PRED MMRE
-PRED

PSO 4.83 1 0.19 0.73 -0.53
IWO 3.46 1.12 0.27 0.73 -0.46

PSO + IWO 4.83 1 0.19 0.73 -0.53
COCOMO 3.0 1.12 0.29 0.64 -0.34

Table (13) shows the results related to semi-
detached projects. As indicated by the results,
a’s coefficients range is from 3.0 to 4.83 and b’s
coefficients range is from 1.00 to 1.12.

The MMRE range for these projects is from
0.19 to 0.29 and the best MMRE for these projects
is 0.19, which is achieved by both PSO algorithm
and the combination of two IWO and PSO
algorithms. The PRED range for these projects
is from 0.64 to 0.73 and as the table shows all
the meta-heuristic algorithm achieved the same
result.

Table14: Obtained results from embedded projects
(Section 3)

 A B MMRE PRED MMRE
-PRED

PSO 1.56 1.31 0.41 0.32 0.09
IWO 1.24 1.45 0.49 0.46 0.03

PSO + IWO 1.56 1.31 0.41 0.32 0.09
COCOMO 2.8 1.20 0.32 0.53 -0.22

Table (14) shows the results related to
embedded projects. As indicated by the results,
a’s coefficients range is from 1.24 to 2.8 and b’s
coefficients range is from 1.20 to 1.45.

The MMRE range for these projects is from
0.32 to 0.49. The best MMRE for these projects is
0.32, which is the result of the COCOMO model.
The PRED range for these projects is from 0.32
to 0.53 and again the best result is achieved by
COCOMO model itself.

4. Final proposed method
By comparing the results of all three sections it

can be concluded that the best results for organic
projects are those made in the first section. In
other words we can achieve a better estimation
for organic projects just by using the coefficients
made in section one.

From the results of section three and

comparing them with the other two sections it
can be concluded that the best results for semi-
detached projects are those made in the third
section. It means that by using the new cost
drivers from section 2 and coefficients from
section 3 we can achieve a better estimation for
this type of projects.

By comparing the results of section three with
the other two sections it can be concluded that the
best results for embedded projects are those made
in the second section, and we can achieve a better
estimation just by using the new cost drivers
from section two and COCOMO coefficients
themselves.

We can generally deduce that the proposed
model which is a combination of obtained results
from all the three sections has the best cost
estimation among all categories. It is, therefore,
better to estimate the project utilizing following
offered methods after the specification of the
project type.

Proposed Method for Organic Projects
• Using the new coefficients from section 1

(table 7)
• Using the COCOMO’s model cost drivers

(table 2)

Proposed Method for Semi-detached
Projects

• Using the new cost drivers from section 2
(table 11)

• Using the new coefficients from section 3
(table 13)

Proposed Method for Embedded Projects
• Using the new cost drivers from section 2

(table 11)
• Using the COCOMO’s model coefficients

(table 3)

5. Model Evaluation
The results of a valid article published in

2016 have been applied in order to evaluate the
proposed method. At this stage, the performance
measures (MMRE and PRED) have been used as
well to make this evaluation [19].

Journal of Advances in Computer Engineering and Technology, 4(1) 2018					 39

Table 15: Comparing the proposed model with Bee
Colony algorithm

Organic
 MMRE PRED MMRE-PRED

Proposed
Model 0.21 0.75 -0.54

Bee Colony
Model 0.22 0.6 -0.37

Semi-detached
 MMRE PRED MMRE-PRED

Proposed
Model 0.19 0.73 -0.53

Bee Colony
Model 0.25 0.7 -0.36

Embedded
 MMRE PRED MMRE-PRED

Proposed
Model 0.26 0.6 -0.33

Bee Colony
Model 0.31 0.6 -0.28

Table (15) shows the superiority of the
proposed model in all the three categories. And
it also proves that the proposed model has the
potential to be used in real life projects cost
estimation.

VIII. CONCLUSION

Software development effort estimation is
one of the key activities in software projects.
This activity can seriously affect the success of
projects. This is why numerous research studies
have recently been conducted to find novel and
efficient effort estimation models in software
projects. This paper focused on improving
COCOMO as a widely used effort estimation
model. This improvement includes coefficients
and cost drivers optimization using three
optimization algorithms: PSO, GA and IWO. In
order to improve the performance of optimization
algorithms, the initial population of IWO was
merged with final results of PSO algorithm.
The performance metrics of MMRE and PRED
(0.25) were utilized to evaluate the performance
of the proposed model. The experimental
results obtained from real software projects
showed that the hybrid model of IWO-PSO is
capable of producing most accurate results. The
improvement of COCOMO was also approved
through the experimental results. As the future
work, we are going to try other optimization
algorithms to reorganize the COCOMO model.

IX. REFERENCES

[1] P. Naur and B. Randell, “Report on a conference
sponsored by the nato science committee garmisch
germany,” 7th to 11th October 1968. Scientific Affairs
Division, NAto, 1969.

[2] O. Hazzan and Y. Dubinsky, Agile software
engineering: Springer Science & Business Media, 2009.

[3] B. W. Boehm, Software engineering economics vol.
197: Prentice-hall Englewood Cliffs (NJ), 1981.

[4] I. Attarzadeh and S. H. Ow, “Soft computing
approach for software cost estimation,” Int. J. of Software
Engineering, IJSE, vol. 3, pp. 1-10, 2010.

[5] R. D. Stutzke, Software estimating technology: A
survey: Los. Alamitos, CA: IEEE Computer Society Press,
1997.

[6] B. W. Boehm, R. Madachy, and B. Steece, Software
cost estimation with Cocomo II with Cdrom: Prentice Hall
PTR, 2000.

[7] Y.-F. Li, M. Xie, and T. N. Goh, “A study of project
selection and feature weighting for analogy based software
cost estimation,” Journal of Systems and Software, vol. 82,
pp. 241-252, 2009.

[8] Z. Fei and X. Liu, “f-COCOMO: fuzzy constructive
cost model in software engineering,” in Fuzzy Systems,
1992., IEEE International Conference on, 1992, pp. 331-
337.

[9] A. Idri, A. Abran, and T. M. Khoshgoftaar,
“Estimating software project effort by analogy based on
linguistic values,” in Software Metrics, 2002. Proceedings.
Eighth IEEE Symposium on, 2002, pp. 21-30.

[10] Z. Xu and T. M. Khoshgoftaar, “Identification of
fuzzy models of software cost estimation,” Fuzzy Sets and
Systems, vol. 145, pp. 141-163, 2004.

[11] A. F. Sheta and S. Aljahdali, “Software effort
estimation inspired by COCOMO and FP models: A
fuzzy logic approach,” International Journal of Advanced
Computer Science and Applications, vol. 4, 2013.

[12] L. V. Patil, N. M. Shivale, S. Joshi, and V. Khanna,
“Improving the accuracy of CBSD effort estimation using
fuzzy logic,” in Advance Computing Conference (IACC),
2014 IEEE International, 2014, pp. 1385-1391.

[13] K. Moløkken and M. Jørgensen, “Expert estimation
of web-development projects: are software professionals in
technical roles more optimistic than those in non-technical
roles?,” Empirical Software Engineering, vol. 10, pp. 7-30,
2005.

[14] B. W. Boehm and R. Valerdi, “Achievements and
challenges in cocomo-based software resource estimation,”
IEEE software, vol. 25, 2008.

[15] V. Khatibi and D. N. Jawawi, “Software cost
estimation methods: A review 1,” 2011.

[16] J. W. Keung, B. A. Kitchenham, and D. R. Jeffery,
“Analogy-X: Providing statistical inference to analogy-
based software cost estimation,” IEEE Transactions on
Software Engineering, vol. 34, pp. 471-484, 2008.

Journal of Advances in Computer Engineering and Technology, 4(1) 2018					 40

[17] C.-c. Lai and W.-l. Lee, “A WICE approach to
real-time construction cost estimation,” Automation in
Construction, vol. 15, pp. 12-19, 2006.

[18] G.-H. Kim, S.-H. An, and K.-I. Kang, “Comparison
of construction cost estimating models based on regression
analysis, neural networks, and case-based reasoning,”
Building and environment, vol. 39, pp. 1235-1242, 2004.

[19] V. Khatibi Bardsiri and M. Dorosti, “An Improved
COCOMO based Model to Estimate the Effort of Software
Projects,” Journal of Advances in Computer Engineering
and Technology, vol. 2, pp. 11-22, 2016.

[20] E. Khatibi, “Investigating the effect of software
project type on accuracy of software development effort
estimation in COCOMO model,” in Fourth International
Conference on Machine Vision (ICMV 11), 2011, pp.
83500G-83500G-7.

[21] A. Idri, A. Zakrani, and A. Zahi, “Design of
radial basis function neural networks for software effort
estimation,” IJCSI International Journal of Computer
Science Issues, vol. 7, 2010.

[22] G. S. Sandhu and D. S. Salaria, “A Bayesian
Network Model of the Particle Swarm Optimization for
Software Effort Estimation,” International Journal of
Computer Applications, vol. 96, 2014.

[23] A. Dhiman and C. Diwaker, “Optimization of
COCOMO II effort estimation using genetic algorithm,”
American International Journal of Research in Science,
Technology, Engineering & Mathematics, vol. 3, 2013.

[24] D. Karaboga, “An idea based on honey bee swarm
for numerical optimization,” Technical report-tr06, Erciyes
university, engineering faculty, computer engineering
department2005.

[25] B. T. Rao, B. Sameet, G. K. Swathi, K. V. Gupta,
C. RaviTeja, and S. Sumana, “A novel neural network
approach for software cost estimation using Functional Link
Artificial Neural Network (FLANN),” International Journal
of Computer Science and Network Security, vol. 9, pp. 126-
131, 2009.

[26] C. S. Reddy and K. Raju, “A concise neural network
model for estimating software effort,” International Journal
of Recent Trends in Engineering, vol. 1, pp. 188-193, 2009.

[27] B. K. Singh and A. Misra, “Software effort
estimation by genetic algorithm tuned parameters of
modified constructive cost model for nasa software
projects,” International Journal of Computer Applications,
vol. 59, 2012.

[28] V. K. Bardsiri, D. N. A. Jawawi, S. Z. M. Hashim,
and E. Khatibi, “A PSO-based model to increase the
accuracy of software development effort estimation,”
Software Quality Journal, vol. 21, pp. 501-526, 2013.

[29] S. K. Sehra, Y. S. Brar, N. Kaur, and G. Kaur,
“Optimization of COCOMO Parameters using TLBO
Algorithm,” International Journal of Computational
Intelligence Research, vol. 13, pp. 525-535, 2017.

[30] R. Eberhart and J. Kennedy, “A new optimizer
using particle swarm theory,” in Micro Machine and
Human Science, 1995. MHS’95., Proceedings of the Sixth
International Symposium on, 1995, pp. 39-43.

[31] Y. Shi and R. Eberhart, “A modified particle swarm
optimizer,” in Evolutionary Computation Proceedings, 1998.
IEEE World Congress on Computational Intelligence., The
1998 IEEE International Conference on, 1998, pp. 69-73.

[32] J. Kennedy, “The particle swarm: social adaptation
of knowledge,” in Evolutionary Computation, 1997., IEEE
International Conference on, 1997, pp. 303-308.

[33] D. Goldberg, “Genetic algorithms in optimization,
search and machine learning,” Reading: Addison-Wesley,
1989.

[34] L. M. Schmitt, “Theory of genetic algorithms,”
Theoretical Computer Science, vol. 259, pp. 1-61, 2001.

