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Abstract — The literature review shows software 
development projects often neither meet time 
deadlines, nor run within the allocated budgets. 
One common reason can be the inaccurate cost 
estimation process, although several approaches 
have been proposed in this field. Recent research 
studies suggest that in order to increase the 
accuracy of this process, estimation models have 
to be revised. The Constructive Cost Model 
(COCOMO) has often been referred as an efficient 
model for software cost estimation. The popularity 
of COCOMO is due to its flexibility; it can be used 
in different environments and it covers a variety 
of factors. In this paper, we aim to improve the 
accuracy of cost estimation process by enhancing 
COCOMO model. To this end, we analyze the 
cost drivers using meta-heuristic algorithms. In 
this method, the improvement of COCOMO is 
distinctly done by effective selection of coefficients 
and reconstruction of COCOMO. Three meta-
heuristic optimization algorithms are applied 
synthetically to enhance the process of COCOMO 
model. Eventually, results of the proposed method 
are compared to COCOMO itself and other 
existing models. This comparison explicitly reveals 
the superiority of the proposed method.

Index Terms — Accuracy, COCOMO 81, effort 
estimation, optimization, software project.

I. INTRODUCTION

With the evolution of computers, the role of 
software applications has increased. However, a 
study shows that 30% percent of projects were 
canceled, 84% were late or over budget (91% 
for larger companies), 52.7% cost an average of 
189% over budget, the average system is delivered 
without 58% of the proposed functionalities, 81 
billion dollars in 1995 was spent on cancelled 
projects, 51 billion dollars in 1995 was spent 
for over budget projects and only 16.2% of the 
software projects were completed on-time and 
on-budget  [1].

An effective estimation gives a great deal 
of power to the project manager and helps to 
make better allocation decisions during the life 
cycle of the project. This includes telling other 
stakeholders of the software project how much 
effort is still needed to accomplish. With a 
faulty estimation, a software project leads to an 
inevitable defeat [1], [2].

Nowadays, there are many approaches to 
estimate software development effort, and it is up 
to the manager to choose one of the approaches 
depending on the type of the project. One of the 
most popular and known models is COCOMO. 
This model was introduced using constant 
parameters as well as applying statistical data 
regression analysis based on 63 various software 
projects. The Constructive Cost Model is an 
algorithmic software cost estimation model 
which is developed by Barry W. Boehm in 
1981 and was first published in Boehm’s book 
“Software Engineering Economics” as a model 
for estimating cost, effort and schedule for 
software projects [3]. Although this model gives 
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a good estimation, it is still away from the actual 
effort and cost [3]-[6]. The objective of this paper 
is to first review different types of COCOMO 
model and then to improve it. This paper is 
organized in 8 sections as follows: The literature 
review is presented in Section 2 and COCOMO 
is explained in Section 3. PSO, GA and IWO are 
elaborated in Section 4, 5 and 6, respectively. The 
proposed model is presented in Section 7 while 
the results are evaluated in Section 8. Finally, 
Conclusion and future work are explained in 
Section 9.

II. LITERATURE REVIEW

Estimating required resources for developing 
a software product plays a vital role in the 
management of software projects including 
resource allocation project programming and 
project auction. Various research studies highlight 
the importance of accurate estimation through 
introducing software cost estimation approaches. 
The following sub classes are categorized through 
a cognitive study which includes: COCOMO, 
lifelong, etc. [7]. 

F-COCOMO using fuzzy logic for software 
effort estimation is introduced by Fi & Liu [8]. 
The estimation capability is not yet spotted as 
no comparison has been made between fuzzy 
COCOMO and other effort estimation models. 
Rodger introduce a fuzzy COCOMO recognized 
as adaptive model of effort drivers, though 
its efficiency is not mentioned [8]. Audrey et 
al. define a fuzzy set for linguistic values of 
each effort driver by a trapezoidal membership 
function for fuzzy COCOMO. In the original 
model of COCOMO the fuzzy sets are the origin 
of obtained effort estimation coefficients. The 
fuzzy COCOMO is less sensitive toward software 
effort drivers relative to COCOMO81 [9]. A 
modeling approach of fuzzy linguistic effort 
estimation for confronting linguistic effort divers 
was presented by Zhu et al. which automatically 
generates fuzzy membership function through 
81 COCOMO data set. The proposed fuzzy 
identifying model presents a more error free 
effort estimation compared to the 3 main models 
of COCOMO (basic, medium, accurate) [10]. 
Many models have received compliments for 
making relationship between size and effort in 
software cost estimation. Some of the applied 
methods in this regard include genetic algorithm 

[11], fuzzy models [12], synthetic and dynamic 
models [13], neural networks [14], and basic 
regression [15]. Two common methods of cost 
estimation approaches include algorithm and 
non-algorithm approaches [16]. The algorithm 
method widely puts math skills in use from 
simple calculations or statistics to regression and 
differential equations [17]. On the other hand, 
non-algorithm approaches are analysis-based 
reasoning and learning, a study has recently been 
devoted to optimize the decision parameters in 
COCOMO through 81 NASA COCOMO data 
set [18]. Optimizing data set values, machine 
learning, analogy, data mining and neural 
networks were helped by different approaches 
[19]. In this regard, we have particle swarm 
optimization which is another approach used 
for optimizing [20], [21]. A multilayer neural 
network with 23nodes in hidden layer for effort 
estimation in software projects was presented by 
Da Silva D. Regression approach is also run in 
this approach for evaluating network and artificial 
data collection. The results were presented 
according to MMRE and PRED and compared 
with 2 COCOMO. As a result of the comparison 
shown, networks which were presented can 
create higher exact result [19], [22].  Soda et al. 
suggested two neurotic networks of RBF and 
GR for endeavor estimation of software project. 
81 data collection of COCOMO is used in this 
project and the results of neural network are 
compared with the result that was obtained from 
COCOMO. The results show that both RBF and 
GR that are relative to COCOMO can display 
more exact results and RBF presented the best 
outcome [23]. Rady and Raju presented a feed 
forward neural network which consists of 22 
neurons in the input layer, 2 hidden layers, and 
one node in the output layer. The basis of this 
architecture is on 17 COCOMO factor of effort 
and scale factor. COCOMO equation changed 
into linear equation, therefore, linear transfer 
function is chosen for the network. 81 COCOMO 
data collection was used for evaluating the 
performance of the network according to MMRE.  
15 projects were randomly selected as the order 
set while others performed as test set. As shown 
by the obtained result compared with COCOMO 
results, the suggested network presented higher 
exact results [24]. Neural networks are widely 
used for estimating the objectives in different 
kinds of science. Moreover, it was used in 
software development effort estimation.  Rao 
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used functional link artificial neural networks for 
estimating efforts for software projects. Network 
architecture is considerably simple. In network 
architecture, we don’t have any hidden layers and 
learn how this type of neural works so quickly. 
According to COCOMO, this network cost 17 
stimulations and 5 determined scale factors [25]. 
Reddy and Raju introduced feed forward neural 
network which consists of 22 neurons in the 
input layer, 2 hidden layer and one node in the 
output layer. This architecture is considered as 
(EMS15) according to COCOMO estimation and 
(5SFS) because of the scale factors. Therefore, 
COCOMO equation changed into linear equation 
and linear transfer function which were selected 
for network. According to MMRE, COCOMO 
81 data collection was used to evaluate network 
performance. Totally, 50 projects act randomly 
as the trail set and the other projects act as the 
test set.  Results of this test compared with 
COCOMO results show that estimating proposed 
network is more accurate [26]. Idri et al. look for 
an appropriate structure of radial basis function 
neural network and in particular the number of 
neurons in the hidden layer. This study focused 
on the level of accuracy in software projects 
under the influence of Gaussian function width 
[20]. One of the most popular methods to estimate 
software development effort is artificial neural 
networks and due to its popularity, several studies 
were carried out using neural networks in the past 
few years. Artificial neural network based models 
have shown that they can provide an appropriate 
estimation at the beginning of a project due to 
having access to the information from efforts of 
completed projects while model-based methods 
are not able to provide such an estimation due 
to limited project knowledge [27]. A new model 
based on using binary genetic algorithm was 
later introduced by Mirsa to estimate software 
effort for NASA supported projects. A modified 
version came out later considering the effect of 
methodology and using the COCOMO model 
to estimate effort which was able to provide 
appropriate estimation [28]. Particle swarm 
optimization is an algorithm developed to 
optimize a problem by trying to improve the 
candidate solution. The main advantage of 
this algorithm compared to many other global 
optimization algorithms such as Firefly and 
Genetic is its quick convergence. A later study 
by Sheta et al. used PSO to regulate COCOMO 
parameters by using soft calculation techniques in 

order to estimate software effort better [19], [22]. 
A new model based on optimizing the COCOMO 
model by using TLBO algorithm introduced by 
S. K. Sehra, Y. S. Brar, N. Kaur, and G. Kaur. The 
results show this model’s superiority compared 
with four different models including SEL, 
Haltsead, Bailey-Basili and BCO [29].

1. COCOMO 81
COCOMO 81 is a model that allows one to 

estimate the effort, cost, and schedule when 
planning a new software development activity. It 
exists in three forms, each one offering greater 
detail and accuracy the further along one is in the 
project planning and design process. Listed by 
increasing fidelity, these forms are called Basic, 
Intermediate, and Detailed COCOMO [3]-[6].

1.1.	 Basic COCOMO
Basic COCOMO estimates effort (and cost) 

as a function of program size. Program size is 
expressed in terms of the number of the source 
lines of code divided by 1000 (SLOC, KLOC). 
Basic COCOMO applies to three kinds of 
software projects known as 1-Organic, which 
are “small” projects with “good” experience 
working with “less than rigid” requirements. 
2-Semi-detached, “medium” teams with mixed 
experience working with a mix of rigid and less 
than rigid requirements. 3-Embedded, which are 
developed with a set of “tight” constraints. It is 
also a combination of organic and semi-detached 
projects. Basic COCOMO equations take the 
form:

Effort Applied (E) = ab(KLOC)bb [ person-months] 
					     Eq.1                            

Development Time (D) = cb(Effort Applied)db [months] 
					        Eq.2                                                   

People required (P) = Effort Applied / Development Time [count] 

					         Eq.3

The coefficients ab, bb, cb and db are given 
in table 1.
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Table I: Basic model coefficients [3]
Software project ab bb cb db 

Organic 2.4 1.05 2.5 0.3 
Semi-detached 3.0 1.12 2.5 0.35 

Embedded 3.6 1.20 2.5 0.32 
 

Basic COCOMO is good for an early effort 
and cost estimation but it does not account for 
the differences in some cases such as personnel 
quality, hardware constraints and experience, use 
of modern tools and techniques.

1.2.	 Intermediate COCOMO
Intermediate COCOMO computes software 

development effort as a function of program size 
and a set of “cost drivers” that include hardware, 
personnel, subjective assessment of the product 
and project attributes. This extension considers a 
set of four “cost drivers”, each with a number of 
subsidiary attributes which are 15 in total.

Each of the 15 attributes receives a rating on 
a six-point scale that ranges from “very low” to 
“extra high” (in importance or value). An effort 
multiplier from the table below applies to the 
rating. The product of all effort multipliers results 
in an effort adjustment factor (EAF). Typical 
values for EAF range from 0.9 to 1.4.

The Intermediate COCOMO formula now 
takes the form: 

E=ai(KLoC)(bi)(EAF)                        Eq. 4

Where E is the effort applied in person-months, 
KLoC is the estimated number of thousands of 
delivered lines of code for the project, and EAF is 
the factor calculated above. The coefficient ai and 
the exponent bi are given in the following table. 

Table 3: Intermediate model coefficients [3]
Software project ai bi 

Organic 3.2 1.05 
Semi-detached 3.0 1.12 

Embedded 2.8 1.20 
 

1.3.	 Detailed COCOMO
Detailed COCOMO incorporates all 

characteristics of the intermediate version with 
an assessment of the cost driver’s impact on 
each step (analysis, design, etc.) of the software 
engineering process.

The detailed model uses different effort 

Table 2: Intermediate model cost drivers [3]
Rating  

Cost Drivers Extra 
High 

Very 
High High Nominal Low Very 

Low 
 Product attributes 

 1.40 1.15 1 0.88 0.75 Required software reliability 
 1.60 1.08 1 0.94  Size of application database 

1.65 1.30 1.15 1 0.85 0.70 Complexity of the product 
 Hardware attributes 

1.66 1.30 1.11 1   Run-time performance constraints 
1.56 1.21 1.06 1   Memory constraints 

 1.30 1.15 1 0.87  Volatility of the virtual machine environment 
 1.15 1.07 1 0.87  Required turnabout time 

 Personnel attributes 
 0.71 0.86 1 1.19 1.46 Analyst capability 
 0.82 0.91 1 1.13 1.29 Applications experience 
 0.70 0.86 1 1.17 1.42 Software engineer capability 
  0.90 1 1.10 1.21 Virtual machine experience 
  0.95 1 1.07 1.14 Programming language experience 

 Project attributes 
 0.82 0.91 1 1.10 1.24 Application of software engineering methods 
 0.83 0.91 1 1.10 1.24 Use of software tools 
 1.10 1.04 1 1.08 1.23 Required development schedule 
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multipliers for each cost driver attribute. These 
Phase Sensitive effort multipliers are each to 
determine the amount of effort required to 
complete each phase. In detailed COCOMO, the 
whole software is divided into different modules 
and then we apply COCOMO in different modules 
to estimate and then sum the effort.

In detailed COCOMO, the effort is calculated 
as a function of program size and a set of cost 
drivers given according to each phase of the 
software life cycle.

A Detailed project schedule is never static.

The five phases of detailed COCOMO are:
•	 Plan and requirement
•	 System design
•	 Detailed design
•	 Module code and test
•	 Integration and test
•	 Cost Constructive Model

III. PSO ALGORITHM 

Particle swarm optimization (PSO) is a 
computational method that optimizes a problem 
by iteratively trying to improve a candidate 
solution with regard to a given measure of quality. 
PSO optimizes a problem by having a population 
of candidate solutions, here dubbed particles, and 
moving these particles around in the search-space 
according to simple mathematical formulae 
over the particle’s position and velocity. Each 
particle’s movement is influenced by its local 
best-known position but is also guided towards 
the best-known positions in the search-space, 
which are updated as better positions are found 
by other particles. This is expected to move the 
swarm towards the best solutions [4]. 

PSO is originally attributed to Kennedy, 
Eberhart and Shi and was first intended for 
simulating social behavior, as a stylized 
representation of the movement of organisms 
in a bird flock or fish school. The algorithm was 
simplified and it was observed to be performing 
optimization. The book by Kennedy and Eberhart 
describes many philosophical aspects of PSO and 
swarm intelligence [4], [30]. Table (4) shows the 
setting used for PSO algorithm in this paper.

Table 4: Setting for the PSO algorithm.
Parameter Value 

Npop 50 
Itermax 500 
Varmax 5 
Varmin 0 
Velmax (Varmax – Varmin) / 10 
Velmin - Velmax 

 

IV. GENETIC ALGORITHM

Genetic algorithm (GA) is a meta-heuristic 
algorithm inspired by the process of natural 
selection that belongs to the larger class of 
evolutionary algorithms (EA). Genetic algorithms 
are commonly used to generate high-quality 
solutions to optimization and search problems 
by relying on bio-inspired operators such as 
mutation, crossover and selection [31].

The evolution usually starts from a population 
of randomly generated individuals, and is an 
iterative process, with the population in each 
iteration called a generation. In each generation, 
the fitness of every individual in the population 
is evaluated; the fitness is usually the value 
of the objective function in the optimization 
problem being solved. The fitter individuals 
are stochastically selected from the current 
population, and each individual’s genome is 
modified (recombined and possibly randomly 
mutated) to form a new generation. The new 
generation of candidate solutions is then used in 
the next iteration of the algorithm. Commonly, 
the algorithm terminates when either a maximum 
number of generations has been produced or a 
satisfactory fitness level has been reached for the 
population [30], [31].

A typical genetic algorithm requires:
1-	 a genetic representation of the solution 

domain,
2-	 a fitness function to evaluate the solution 

domain.
Once the genetic representation and the fitness 

function are defined, a GA proceeds to initialize 
a population of solutions and then to improve it 
through repetitive application of the mutation, 
crossover, inversion and selection operators [31], 
[33]. The following table (table 5) shows the 
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setting used for this algorithm in this paper.

Table 5:  Setting for the genetic algorithm.
Parameter Value 

Ga_Pop_Size 50 
Ga_Pop_evals 500 

Ga_Elitism 1 
Ga_Crossover_Rate 0.8 
Ga_Mutation_Rate 0.02 

 

V. INVASIVE WEED OPTIMIZATION ALGORITHM

Weeds are one of the most robust and 
troublous plants in agriculture. When you were 
young, you may have heard that ‘‘the weeds 
always win’’. This is due to the fact that the weeds 
have some strong properties, such as adaptation, 
robustness, vigorousness, and invasion. Based 
on those properties, a novel numerical stochastic 
optimization algorithm called invasive weed 
optimization (IWO) was proposed by Mehrabian 
and Lucas (2006) which is based on the natural 
selection (survival of the fittest) in the biological 
world [34].

To implement the IWO algorithm, there are 
many steps which are needed to be performed 
but the most important part of this algorithm is 
the “Spatial distribution” step. In this part, the 
generated seeds are being randomly distributed 
over the d-dimensional search space by normally 
distributed random numbers with a mean equal to 
zero; but varying variance parameters decreasing 
over the number of iteration. The reason for that 
is to guarantee that the produced seeds will be 
generated in a distant area but around the parent 
weed and decrease non-linearly, which results 
in grouping the fitter plants together and the 
inappropriate plants are eliminated over times.

Here, the standard deviation (s) of the random 
function is made to decrease over the iterations 
from a previously defined initial value (s initial), 
to a final value (s final), which is calculated in 
every time step via Equation (5).

𝜎𝜎���� � �������� � �������
���������� �𝜎𝜎������� � �𝜎𝜎������ ��𝜎𝜎����� 

					        Eq. 5
	

Where iter max is the maximum number 
of iterations, siter is the standard deviation at 
the present time step and n is the nonlinear 
modulation index usually set as 2.

Taking into account the key phases described 
above, the steps of implementing the IWO 
algorithm can be summarized as follows [34]:

•	 Step 1: Initialize randomly generated 
weeds in the entire search space.

•	 Step 2: Evaluate fitness of the whole 
population members.

•	 Step 3: Allow each population member to 
produce a number of seeds with better population 
members which in turn produce more seeds.

•	 Step 4: The generated seeds are 
distributed over the search space by normally 
distributed random numbers with a mean equal 
to zero but varying variance.

•	 Step 5: When the weed population 
exceeds the upper limit, perform competitive 
exclusion.

•	 Step 6: Check the termination criteria.

The following table (table 6) shows the setting 
used for this algorithm in this paper.

Table 6:  Setting for the IWO algorithm.
Parameter  Value 

No 30 
Itermax 500 
Pmax 50 
Smax 50 
Smin 30 
N 3 

Ϭinitial 5 
ϬFinal 0.5 

 

VI. THE PURPOSED METHOD

The information related to the proposed method 
is presented in this section. The present synthetic 
approach tries to obtain the best estimation as 
much as possible through improving the attributes 
and COCOMO coefficient optimization. The 
procedure of synthesizing different sections of 
the proposed model is carried out in a way that 
the estimation error decreases. The proposed 
method consists of three main sections each of 
which includes a model training section and a 
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model testing section elaborated in the following 
sections:

1. Section1: An effective selection of 
coefficients using meta-heuristic algorithms 

1.1.  Section 1 Model training
A part of the proposed method is generated 

and configured in this section. The parameters 
of the proposed method, a and b parameters in 
COCOMO are indeed set in this section and 
the goal is to produce optimized coefficients. 
In the beginning, all the projects are randomly 
divided into two groups of training and testing. 
And then, each of these groups are divided into 
three other groups which are Organized, Semi-
detached and Embedded according to COCOMO 
formula, this dividing is due to the heterogeneity 
of COCOMO projects. After dividing the training 
data into three groups, meta-heuristic algorithms 
are used to optimize the coefficients to minimize 
the estimation effort of each project. Through 
optimization of coefficients (6) formula is used 
as the fitness function for all the meta-heuristic 
algorithms.

Effort = | Real Cost – Estimation Cost |           Eq. 6

In this formula, it has been tried to minimize 
the estimated effort to increase the accuracy of 
the COCOMO. The reason for using the same 
fitness function for all meta-heuristic algorithms 
is to test them all under equal conditions.

It also needs to be mentioned that apart from 
using these algorithms separately, the two IWO 
and PSO algorithms are also used in combination. 
It means that the result of PSO algorithm has 
been used as a part of the IWO population. The 
reason for this is to increase the accuracy of IWO 
algorithm and test these two algorithms together.

Performance parameters in all the sections are 
MMRE and PRED. For estimating MMRE and 
PRED, first MRE should be estimated through 
the following formula.

��� � � ��𝐴𝐴��𝐴𝐴𝐴𝐴�� � 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 �
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴                Eq. 7

After MRE’s estimation for all projects, 
MMRE and PRED values are estimated through 
(8) and (9) formula.

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 � ∑ 𝑀𝑀𝑀𝑀𝑀𝑀����
N                         Eq. 8

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�𝑥𝑥� � 𝐴𝐴
𝑁𝑁                             Eq. 9

The value of MMRE equals to the average of 
MREs in a single group (organic, semi-detached 
or embedded). The value of PRED equals to the 
percentage of the projects the MRE value of which 
is less than or equal to X, and N is the number of 
estimated projects. The acceptable value of X is 
0.25 according to which the proposed methods 
are compared. MMRE as the total value of error 
in projects should be minimized whereas PRED 
(0.25) should be maximized.

 

Fig.1. Training stage in proposed model (Section 1)

1.2. Section 1 Model Testing
In this section, the results of training section (a, 

b coefficients) are used to evaluate the proposed 
method. Data used in this section are the testing 
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data. First, all the testing projects are divided 
into three classes of Organic, semi-detached and 
embedded according to the COCOMO project 
types. After class identification of the projects, 
the related coefficients of the project are extracted 
and then used to estimate the effort of each 
project. After the calculation of the effort for all 
the testing projects, The MRE related to testing 
projects is estimated and then in evaluation part 
MMRE and PRED are estimated. All These 
processes are shown in Fig (2).

  
Fig.  2.   Testing stage in proposed model (Section 1)

2. Section 2: Cost Drivers Optimization using 
meta-heuristic algorithms

2.1. Section 2 Model Training
At this step, we try to optimize cost drivers 

using meta-heuristic algorithms in order to 
reach better factors for optimizing the answer 
of suggested model by reapplying the first step 
on these drivers. As the number of drivers is 15 
and each is different, first project categories are 

formed at this phase. The projects have the same 
amount in one feature are categorized in one 
group. For example, all the projects that have 
“very little” amount in reliability feature needed 
for the software in one category. The projects that 
have little amount in another, and the projects that 
have average amount are categorized in another 
groups. The categorization is done for all features 
and amounts. Then according to the result of the 
previous step using the IWO, PSO algorithms, 
we optimize the drivers at the category. As it is 
always tried to reduce the amount of MMRE and 
increase the PRED in each category. Through 
optimization of cost drivers (6) formula is used 
as the fitness function for our two meta-heuristic 
algorithms. And all these processes are shown in 
Fig (3).

 
Fitness = | MMRE – PRED |               Eq. 10

 

Fig.3. Training stage in proposed model (Section 2)
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2.2. Section 2 Model Testing
In this section, the result of training section 

which is a table of new Cost Drivers is used to 
evaluate the proposed method. Data used in this 
section are the testing data. After dividing all the 
projects into the three groups of Organic, Semi-
detached and Embedded the cost drivers of each 
project are replaced with their corresponding 
cost drive from the results of training section 
to estimate the effort of each project. After the 
calculation of the effort for all the testing projects, 
The MRE related to testing projects is estimated 
and then in evaluation part MMRE and PRED are 
estimated. All These processes are shown in Fig 
(4).

 

 Fig.4. Testing stage in proposed model (Section 2)

3. Section3: An effective selection of 
coefficients using the new cost drivers from 
section 2, and meta-heuristic algorithms

3.1. Section 3 Model Training
All the steps in this section are the same as 

those which are in section 1 and the goal again 

is to produce optimized coefficients; the only 
difference in this section is that the cost drivers 
which are used here are the results of section 2. 
First, all the projects are divided into three groups 
of Organic, Semi-detached, Embedded, then the 
cost drivers of each project are replaced with 
their corresponding cost drive from the results of 
section 2. After replacing the cost drivers the three 
meta-heuristic algorithms are used to optimize 
the coefficients to minimize the estimation effort 
of each project. All These processes are shown 
in Fig (5).

 

Fig.5. Training stage in proposed model (Section 3)

3.2. Model Testing
This part is exactly the same as the model 

testing part in section 1. All These processes are 
shown in Fig (6).
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 Fig.  6.  Testing stage in proposed model (Section 3)

VII. RESULTS EVALUATION

In this section, the performance of the proposed 
method is evaluated applying the data related to 
the real projects. The evaluation stage consists 
of three main sections each of which includes 
3 different parts as the COCOMO method has 
3 different types for projects. The results of all 
these three sections are shown and then compared 
to the COCOMO results themselves.

1. Section 1 Evaluation

Table7: Obtained results from organic projects (Section1)
 A B MMRE PRED MMRE-

PRED 
PSO 1.834 1.472 1.408 0.125 1.283 

GENETIC 1.966 1.452 1.417 0 1.417 
IWO 2.018 1.353 0.868 0.25 0.618 

PSO + IWO 2.743 1.002 0.209 0.75 -0.541 
COCOMO 3.2 1.05 0.299 0.625 -0.326 

 

Table (7) shows the results related to organic 
projects. In this table, a and b coefficients, 
MMRE and PRED performance criteria, and the 
subtraction of MMRE and PRED performance 
criteria for all algorithms are presented. As 
indicated by the results, a’s coefficients range is 
from 1.834 to 3.2 and b’s coefficients range is 
from 1.002 to 1.472.

The MMRE range for these projects is from 
0.209 to 1.417. The best MMRE for these projects 
is 0.209, which is the result of the combination of 
two IWO and PSO algorithms. The PRED range 
for these projects is from 0 to 0.75, and again the 
best PRED is the result of combining the two 
IWO and PSO algorithms which is 0.75. 

Table 8: Obtained results from semi-detached projects 
(Section1)

 A B MMRE PRED MMRE
-PRED 

PSO 1.732 1.215 0.395 0.571 -0.176 
GENETIC 2.471 1.352 2.270 0 2.270 

IWO 2.020 1.337 1.467 0.286 1.181 
PSO + IWO 2.412 1.121 0.26 0.286 -0.025 
COCOMO 3.0 1.12 0.326 0.571 -0.245 

 

Table (8) shows the results related to semi-
detached projects. As indicated by the results, 
a’s coefficients range is from 1.732 to 3.0 and b’s 
coefficients range is from 1.12 to 1.352.

The MMRE range for these projects is from 
0.26 to 2.27. The best MMRE for these projects 
is 0.26, which is the result of the combination of 
two IWO and PSO algorithms. The PRED range 
for these projects is from 0 to 0.571. The best 
PRED is the result of PSO algorithms, which is 
0.571.

 
Table 9: Obtained results from embedded projects 

(Section 1)
 A B MMRE PRED MMRE

-PRED 
PSO 1.142 1.531 0.295 0.4 -0.105 

GENETIC 1. 102 1.52 0.550 0.2 0.350 
IWO 1.971 1.372 0.327 0.3 0.026 

PSO + IWO 2.873 1.181 0.266 0.5 -0.234 
COCOMO 2.8 1.20 0.258 0.6 -0.341 

 

Table (9) shows the results related to 
embedded projects. As indicated by the results, 
a’s coefficients range is from 1.102 to 2.873 and 
b’s coefficients range is from 1.181 to 1.531. The 
MMRE range for these projects is from 0.258 
to 0.550. The best MMRE for these projects 
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is 0.258, which is the result of the COCOMO 
model. The PRED range for these projects is 
from 0 to 0.6, and again the best PRED is the 
result of COCOMO model which is 0.6.

Results related to the proposed method 
(Section 1) are presented in tables 4, 5, and 6. 
The best PRED value has obtained for organic 
projects indicating the influence of coefficients 
optimization on increasing the percentage of 
estimation in these projects. The best value of 
MMRE has obtained again for organic projects 
and it is probably because of the large number 
of these projects. The important point is the 
notable difference of the proposed coefficients 
for all three kinds of projects caused by projects 
variation.

2. Section 2 Evaluation

Table10: Obtained results from all groups of projects 
(Section 2)

Organic 
 MMRE PRED MMRE-PRED 

New Model 0.274 0.5 -0.225 

COCOMO 0.342 0.541 -0.199 

Semi-detached 
 MMRE PRED MMRE-PRED 

New Model 0.242 0.428 -0.186 

COCOMO 0.295 0.636 -0.341 

Embedded 
 MMRE PRED MMRE-PRED 

New Model 0.267 0.6 -0.332 

COCOMO 0.316 0.535 -0.218- 

 

Table (10) shows the result related to all the 
three project types. As indicated by the results, the 
proposed method has achieved a better estimation 
both in organic and embedded projects than 
COCOMO model itself, this represents better 
cost drivers in the proposed method compared to 
the COCOMO model. All these new cost drivers 
are presented in table (11).

3. Section 3 Evaluation

Table12: Obtained results from organic projects 
(Section3)

 A B MMRE PRED MMRE-
PRED 

PSO 4.99 0.88 0.29 0.5 -0.21 
IWO 4.27 0.93 0.30 0.549 -0.24 

PSO + IWO 4.99 0.88 0.29 0.5 -0.21 
COCOMO 3.2 1.05 0.34 0.54 -0.19 

 

Table (12) shows the results related to 
organic projects. As indicated by the results, a’s 
coefficients range is from 3.2 to 4.99 and b’s 
coefficients range is from 0.88 to 1.05.

The MMRE range for these projects is from 
0.29 to 0.34. The best MMRE for these projects 
is 0.29, which is the result of the combination of 
two IWO and PSO algorithms. The PRED range 
for these projects is from 0.5 to 0.549 and it is the 
result of IWO algorithm, which is 0.549. 

Table11: New cost drivers table for Intermediate projects in proposed model
Rating  

Cost Drivers Extra 
High 

Very 
High High Nominal Low Very 

Low 
 Product attributes 

 1.43 1.12 0.98 0.90 0.73 Required software reliability 
 1.15 1.09 0.96 0.94  Size of application database 

1.67 1.28 1.13 1.01 0.82 0.68 Complexity of the product 
 Hardware attributes 

1.65 1.28 1.09 1.02   Run-time performance constraints 
1.55 1.22 1.03 0.98   Memory constraints 

 1.31 1.316 0.99 0.89  Volatility of the virtual machine environment 
 1.17 1.05 0.98 0.87  Required turnabout time 

 Personnel attributes 
 0.73 0.84 1 1.21 1.47 Analyst capability 
 0.83 0.90 0.99 1.11 1.25 Applications experience 
 0.68 0.87 0.97 1.15 1.39 Software engineer capability 
  0.87 0.97 0.99 1.19 Virtual machine experience 
  0.97 0.98 1.05 1.16 Programming language experience 

 Project attributes 
 0.80 0.89 0.99 0.98 1.25 Application of software engineering methods 
 0.81 0.88 1 0.98 1.25 Use of software tools 
 1.12 0.99 0.98 1.03 1.25 Required development schedule 
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Table 13: Obtained results from semi-detached projects
 (Section 3)

 A B MMRE PRED MMRE
-PRED 

PSO 4.83 1 0.19 0.73 -0.53 
IWO 3.46 1.12 0.27 0.73 -0.46 

PSO + IWO 4.83 1 0.19 0.73 -0.53 
COCOMO 3.0 1.12 0.29 0.64 -0.34 

 

Table (13) shows the results related to semi-
detached projects. As indicated by the results, 
a’s coefficients range is from 3.0 to 4.83 and b’s 
coefficients range is from 1.00 to 1.12.

The MMRE range for these projects is from 
0.19 to 0.29 and the best MMRE for these projects 
is 0.19, which is achieved by both PSO algorithm 
and the combination of two IWO and PSO 
algorithms. The PRED range for these projects 
is from 0.64 to 0.73 and as the table shows all 
the meta-heuristic algorithm achieved the same 
result.

Table14: Obtained results from embedded projects 
(Section 3)

 A B MMRE PRED MMRE
-PRED 

PSO 1.56 1.31 0.41 0.32 0.09 
IWO 1.24 1.45 0.49 0.46 0.03 

PSO + IWO 1.56 1.31 0.41 0.32 0.09 
COCOMO 2.8 1.20 0.32 0.53 -0.22 

 

Table (14) shows the results related to 
embedded projects. As indicated by the results, 
a’s coefficients range is from 1.24 to 2.8 and b’s 
coefficients range is from 1.20 to 1.45.

The MMRE range for these projects is from 
0.32 to 0.49. The best MMRE for these projects is 
0.32, which is the result of the COCOMO model. 
The PRED range for these projects is from 0.32 
to 0.53 and again the best result is achieved by 
COCOMO model itself.

4. Final proposed method
By comparing the results of all three sections it 

can be concluded that the best results for organic 
projects are those made in the first section. In 
other words we can achieve a better estimation 
for organic projects just by using the coefficients 
made in section one.

From the results of section three and 

comparing them with the other two sections it 
can be concluded that the best results for semi-
detached projects are those made in the third 
section. It means that by using the new cost 
drivers from section 2 and coefficients from 
section 3 we can achieve a better estimation for 
this type of projects.

By comparing the results of section three with 
the other two sections it can be concluded that the 
best results for embedded projects are those made 
in the second section, and we can achieve a better 
estimation just by using the new cost drivers 
from section two and COCOMO coefficients 
themselves.

We can generally deduce that the proposed 
model which is a combination of obtained results 
from all the three sections has the best cost 
estimation among all categories. It is, therefore, 
better to estimate the project utilizing following 
offered methods after the specification of the 
project type.

Proposed Method for Organic Projects
• Using the new coefficients from section 1 

(table 7)
• Using the COCOMO’s model cost drivers 

(table 2)

Proposed Method for Semi-detached 
Projects

• Using the new cost drivers from section 2 
(table 11)

• Using the new coefficients from section 3 
(table 13)

Proposed Method for Embedded Projects
• Using the new cost drivers from section 2 

(table 11)
• Using the COCOMO’s model coefficients 

(table 3)

5. Model Evaluation
The results of a valid article published in 

2016 have been applied in order to evaluate the 
proposed method. At this stage, the performance 
measures (MMRE and PRED) have been used as 
well to make this evaluation [19].
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Table 15: Comparing the proposed model with Bee 
Colony algorithm

Organic 
 MMRE PRED MMRE-PRED 

Proposed 
Model 0.21 0.75 -0.54 

Bee Colony 
Model 0.22 0.6 -0.37 

Semi-detached 
 MMRE PRED MMRE-PRED 

Proposed 
Model 0.19 0.73 -0.53 

Bee Colony 
Model 0.25 0.7 -0.36 

Embedded 
 MMRE PRED MMRE-PRED 

Proposed 
Model 0.26 0.6 -0.33 

Bee Colony 
Model 0.31 0.6 -0.28 

 

Table (15) shows the superiority of the 
proposed model in all the three categories. And 
it also proves that the proposed model has the 
potential to be used in real life projects cost 
estimation.

VIII. CONCLUSION

Software development effort estimation is 
one of the key activities in software projects. 
This activity can seriously affect the success of 
projects. This is why numerous research studies 
have recently been conducted to find novel and 
efficient effort estimation models in software 
projects. This paper focused on improving 
COCOMO as a widely used effort estimation 
model. This improvement includes coefficients 
and cost drivers optimization using three 
optimization algorithms: PSO, GA and IWO. In 
order to improve the performance of optimization 
algorithms, the initial population of IWO was 
merged with final results of PSO algorithm. 
The performance metrics of MMRE and PRED 
(0.25) were utilized to evaluate the performance 
of the proposed model. The experimental 
results obtained from real software projects 
showed that the hybrid model of IWO-PSO is 
capable of producing most accurate results. The 
improvement of COCOMO was also approved 
through the experimental results. As the future 
work, we are going to try other optimization 
algorithms to reorganize the COCOMO model.
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