
 J. ADV COMP ENG TECHNOL, 4(2) Spring 2018

 This work is licensed under the Creative Commons Attribution 4.0 International Licence.

To view a copy o this licence, visit https://creativecommons.org/licenses/by/4.0/

A New Approach to Solve N-Queen Problem with
Parallel Genetic Algorithm

Monire Taheri Sarvetamin1; Amid Khatibi2; Mohammad Hadi Zahedi3

1 Department of Computer Engineering, Kerman Branch, Islamic Azad University, Kerman, Iran.
(khatibi_amid@yahoo.com)
2 Department of Computer Engineering, Bardsir Branch, Islamic Azad University, Bardsir, Iran.
3 Faculty of Electrical and Computer Engineering, Khaje Nasir Toosi University of Technology, Tehran, Iran.

Received (2018-04-08) Accepted (2018-06-05)

Abstract: Over the past few decades great efforts were made to solve uncertain hybrid
optimization problems. The n-Queen problem is one of such problems that many solutions have
been proposed for. The traditional methods to solve this problem are exponential in terms of runtime
and are not acceptable in terms of space and memory complexity. In this study, parallel genetic
algorithms are proposed to solve the n-Queen problem. Parallelizing island genetic algorithm and
Cellular genetic algorithm was implemented and run. The results show that these algorithms have
the ability to find related solutions to this problem. The algorithms are not only faster but also they
lead to better performance even without the use of parallel hardware and just running on one
core processor. Good comparisons were made between the proposed method and serial genetic
algorithms in order to measure the performance of the proposed method. The experimental results
show that the algorithm has high efficiency for large-size problems in comparison with genetic
algorithms, and in some cases it can achieve super linear speedup. The proposed method in the
present study can be easily developed to solve other optimization problems.

Keywords: Parallel Genetic Algorithms, Island Genetic Algorithm, Cellular Genetic Algorithm,
N-Queen Problem.

1. INTRODUCTION

The N-Queen problem is a well-known CSP
problem. It includes putting n queens on a

chessboard so that no two queens threaten each
other. The number of possible combinations
of n queens on a chessboard is plentiful. The
traditional methods of solving this problem
were all based on back-tracking [1]. The time
for searching back-tracking is exponential and
cannot support solving large-scale n-Queen
problems. Although then-Queen problem has
little practical applications, but it shows a large

class of nondeterministic problems that cannot
be solved using deterministic algorithms in a
reasonable time [2, 3].

Many algorithms and methods have been
used to resolve the n-Queen problem [4-
8]. Ahrabian et al. [9] used the DNA Sticker
algorithm and Khan [10] has successfully used
the ant colony algorithm to solve the problem
.Farhan et al. used a genetic algorithm to
solve this problem and found all 92 possible
solutions to the 8-queen problem [11]. In 2003,
Božikovic et al. Used global parallel genetic
algorithm and a 3-way tournament method
to solve this problem [12]. They conducted
simulation on a single-processor computer

How to cite this article:
Taheri Sarvetamin M, Khatibi A, Zahedi MA. A New Approach to Solve N-Queen Problem with Parallel Genetic Algorithm.
 J. ADV COMP ENG TECHNOL, 4(2) Spring 2018 : 69-78

https://creativecommons.org/licenses/by/4.0/

 A Taheri Sarvetamin et al./ A New Approach to Solve N-Queen Problem with Parallel Genetic Algorithm

70 J. ADV COMP ENG TECHNOL, 4(2) Spring

and came to the conclusion that global parallel
genetic algorithm was not suitable for large-scale
parallel processing; rather it was suitable for a
small number of parallel processing units.

The parallel genetic algorithms or PGAs
were successfully used in a wide range of
optimization problems [13-16]. The good
strength of these algorithms in high complexity
problems has increased their applications in
the fields of Artificial intelligence, numerical
and combinatorial optimization, business,
engineering, etc. Therefore they were used in this
study [17]. In addition to reducing computation
time, these algorithms lead to many better
explorations and diversities compared to the
sequential genetic algorithms [18].

Recent studies have made efforts to resolve
the n-Queen problem with different methods.
The main purpose of the present study is solving
the n-Queen problem using parallel genetic
algorithms and finding solutions, as well as
reducing the runtime of the program with the
parallel genetic algorithms compared to the
sequential genetic algorithms. The efficiency
of these two algorithms compared to the serial
version will be presented later in this paper.
Parallel is min this study was conducted using
MATLAB Parallel Computing Toolbox on a
personal computer [19, 20].

This paper investigates the performance of
parallel genetic algorithm for solving N-queens
problem. There are lots of parallel genetic methods
which are utilized to decrease the massive
amount of computation time related to the
serial genetic algorithms. Island parallel genetic
model indicates migration between separately
developing populations on parallel processes
in order to increase the slowly developing
subpopulations by adding chromosomes that
are more beneficial compared to the locally best
versions [22]. This paper exhibits a method that
genetic algorithms may be used to solve N-queens
problem. Customized chromosome illustration,
assessment function and genetic operators are
offered. Additionally, a universal parallel genetic
algorithm is shown as a potential solution to
improve GA speed. This paper are going to exhibit
an application of universal parallel GA for solving
N-queens problem. The paper is organized into
the following sections: Section 2 is dedicated
to the related works. Section 3 introduces how

to display and code the n-Queen problem;
Section 4 describes the proposed method and its
configurations; Section 5 contains experimental
design; and Section 6 presents experimental
results. Conclusions are presented in Section 7.

2. RELATED WORKS

Depending on the classification of
computational problems into polynomial and
exponential, we can divide these problems into
two types-tractable and intractable [15]. So, the
tractability of a problem depends on how difficult
the problem is. The amount of time it takes to
successfully solve the problem. It has very close
link with the time complexity of a problem. If a
problem has given solution in a small amount of
time, then it can be easily solved in polynomial
time and named as tractable problem. But, there
are some problems, which can only be solved by
special algorithms, whose execution time grows
very quickly in case of large input size and these
problems cannot be solved in polynomial time
by a conventional algorithm. These types of
problems are labeled as intractable. The n-Queens
problem is a traditional intractable problem
that is commonly used in case of talking about
numerous kinds of searching problems [7-9].
The simple types of technique for the n-Queens
constraint satisfaction problem are: systematic
search methods – place a single queen onto the
board each time making certain that not any
constraint is violated, until all queens are put, as
well as repair methods – locate all queens onto
the board at first at arbitrary and if any queen
threatens one other attempt to shift it to another
position [12]. A depth-first search backtracking
algorithm may resolve the n-Queens problem
in acceptable time but just for small values of n.
Numerous attempts have already been applied
for effective strategies to solving the n-Queens
problem applying different heuristics methods
like iterative local search, simulated annealing,
tabu-search [11], genetic algorithm [13, 20].
Genetic algorithms present search method in
engineering to discover approximate ways to
optimization and search problems or display a
specific type of evolutionary algorithms.

Mentioned problem was introduces at first by
stone in 1997 [23]. He designed TIG model to

 A Taheri Sarvetamin et al./ A New Approach to Solve N-Queen Problem with Parallel Genetic Algorithm

 J. ADV COMP ENG TECHNOL, 4(2) Spring 2018 71

present executive tasks. In other work Norman
categorized all of the previous models. For
example eleven scheduling algorithms were
introduced in 2008 by Braun et. al [22, 24]. They
Focused on makespan and flow time only and did
not investigate speed up parameter. A parameter
that is very important to us in this article. Also,
there are several resources that use parallel genetic
algorithm to solve classic problems but none of
them have not combined the two strategies [21].
Combination method is our idea and implement
for the first time.

3. PROBLEM DEFINITION

Then-Queen is displayed as an n-tuple. Each
queen must be on a different row and column. It
can be assumed that the queen i is placed in the
ith column. N-tuple solutions are displayed as (q1,
q2… qn) which are the permutations of an n-tuple
(1, 2, 3... n). The place of a number on a tuple
defines the column of a queen, while its value
shows its row (counting from the bottom). Fig. 1
shows the 4-tuple display of the problem.

Fig. 1. Example of registering a 4-tuple

Fitness function for this problem should
count the number conflicts of queens and should
calculate the number of rows, columns, and
diagonal conflicts. In the correct solution to this
problem, this number should be zero. Two fitness
functions can be written for this problem, one
with O(n2) time complexity and the other with
O(n) time complexity. Writing a fitness function
with O(n2) time complexity is very simple and
common. However, the method of calculating the
fitness function with O(n) time complexity is as
follows:

In this model, the number of diagonal conflicts
is obtained to calculate the number of conflicts of
the queens. The method is explained in this way:
because the n-tuple display removes conflicts in
rows and columns, so there are only diagonal
threats between the queens; therefore the fitness
function only calculates the diagonal conflicts. As
shown in Fig. 2. There are 2n-1 left (top-bottom,
left-to-right) and 2n-1 right (bottom-up, right-
to-left) diameters.

Fig. 2 The third left diameter and the second right
diameter for 4-queens.

The diagonal conflicts are calculated as: the ith

and jth queen are part of a diameter if:

|qi– qj|=|i–j| (1)

Eq.(1) results in the O(n) complexity for the fitness
function.

4. SUGGESTED METHODS

Substantially, the parallel genetic algorithm
consists of several genetic algorithms, each of
which processes a separate section of a population
or populations with or without communication
between them. Hence the parallel genetic
algorithms can increase population diversity and
decrease computational time. These algorithms
present a new type of meta heuristics that have
a higher efficiency and impact on the population
structure and parallel implementation[17]. As
mentioned, these algorithms can be divided into
two main types, coarse-grained or island genetic
algorithms and fine-grained or cellular genetic
algorithms. The island genetic algorithm runs
several subpopulations in the parallel mode. The
subpopulations make up the total population of

 A Taheri Sarvetamin et al./ A New Approach to Solve N-Queen Problem with Parallel Genetic Algorithm

 J. ADV COMP ENG TECHNOL, 4(2) Spring 2018 72

the island together. Most of the time, the islands
work independently in the run model. However,
the solutions are periodically exchanged between
the islands. This is called the migration process.
Using migration, the island model is able to extract
the differences in the various sub-populations.
The change shows a source of genetic diversity.

The other model is the cellular genetic
algorithm, the most prominent feature of which is
that each island contains only one person. In this
sense of islands, most of the cells are read, and
each person is only allowed to be combined with
neighboring people. The difference between this
model and the island model is that no evolutions
happen in the very cells; in fact there are no
evolutions within the islands. Improvements can
only be achieved by cells that interact with each
other[18].

4.1. Selection guidelines
The main part of the selection process is

the random selection of a generation to lay the
foundation for the next generation. The most
appropriate people are more likely than the poor
people. Here the roulette wheel selection method
is used to select the chromosomes.

4.2. Crossover operator
Crossover operator is determined with a

probability rate (Pc). Here a technique is used
that is a combination of single-point crossover,
double-point crossover, and uniform crossover
methods. The crossover method was placed with
various probabilities. The probability for single-
point crossover, double-point crossover, and
uniform crossover were assumed as PsinglePoint=0.1,
PdoublePoint=0.2, and Puniform=1-PsinglePoint-PdoublePoint,
respectively. Each time the crossover function
is invoked, one of the above-mentioned three
methods is selected using roulette wheel for
conducting crossover action.

4.3. Mutation operator
Like crossover operator, a mutation operator

with a Pm rate is assumed to determine
whether the mutation operator is applied in the
chromosome or not. Here the swap mechanism,
or changing the places of the elements, is used.

Fig. 3. shows how it works.

Fig. 3. Mutation operator

4.4. Stop criteria
Stop criteria are considered as reaching a

certain number of generation iterations. This
number will vary for a different number of queens
but it is selected in such a way to be sure that the
algorithm converges, and the algorithm can find
the answers to this problem.

5. Experimental Design

5.1. Strategies related to island genetic
algorithms

The island genetic algorithm runs several
subpopulations (islands) in the parallel
mode. Exchange of information between
these subpopulations happens in specified
intervals (epoch) in the iteration loops. With
the exchange of outstanding chromosomes
between subpopulations, the search space of
subpopulations subset diversifies to prevent
the premature convergence more effectively. n
and Pn, are the amounts of subpopulations and
scales, respectively. Hence the total population is
Psize=nxPn.

Here the ring topology is used for migration
and it has a single direction. With a single
migration frequency, a certain number of the
best people in subpopulations are selected for
migration and a copy of these people is sent to
the neighbors. The immigrants arrived at the
destination islands replace the worst individuals.

5.2. Measuring efficiency
As Alba has pointed out, comparing the

efficiency of parallel and serial evolutionary
algorithms only makes sense when they reach a
common accuracy[19]. In a classification by Alba
there are two general types of strong speedup and

 A Taheri Sarvetamin et al./ A New Approach to Solve N-Queen Problem with Parallel Genetic Algorithm

 J. ADV COMP ENG TECHNOL, 4(2) Spring 2018 73

weak speedup to compare the parallel and serial
genetic algorithms[19]. Strong speedup is not
commonly used. In the weak speedup, the parallel
and serial runtime of an algorithm are compared
including the following:

• Single machine/panmixia: The parallel
algorithm is compared with a standard
version of its which runs on a single
machine. For example, we may compare
an island with m islands with a genetic
algorithm that runs one island. Where by
the algorithm that runs on all islands in
both cases is the same.

• Orthodox: The parallel algorithm that
runs on m machines is compared with the
same algorithm that runs on one machine.

5.3. Paralleling with MATLAB parallel
computing toolbox

For the purpose of paralleling, Parallel
Computing Toolbox (PCT) of MATLAB is
selected. The Parallel Computing Toolbox provides
the possibility to run massive computational
problems using multi core processors, GPUs
and computer clusters. The toolbox allows the
use of whole processing power of a multi core
desktop computer. Full use of a desktop computer
multi core processors' power is possible through
workers that run locally [20].

The Toolbox provides a local cluster of workers
for the local machine and runs applications on
local workers (MATLAB computational engines).
The same application can run without changing
the code on a cluster of computers or a grid
computing service using MATLAB distributed
computing server. The number of workers in
the toolbox depends on the hardware and their
connections. In any case, to use the processor of
a multi core system, the number of workers is
usually considered equal to the number of cores.
In the 2012 edition of MATLAB, the toolbox
allows users to have 12 workers work on a single
machine.

6. EXPERIMENTAL RESULT

Parallel genetic algorithms were successfully
applied on the n-Queen problem. Both

algorithms were able to find several solutions
for the given number of queens. The results were
run on a PC with Intel Pentium(R) Dual-Core
CPU E5700@3.00GHz, 2.00GB of RAM, and
Windows7. The size of the issue was set between
10 and 500 queens. Running parallel genetic
algorithms on a dual-core processor reduced the
runtime. In order to compare the results, both
orthodox and a single–machine method were
used for comparing the efficiency of algorithms.

6.1. Orthodox comparing method
In this comparison method the parallel

genetic algorithms for the n-Queen problem were
once run in parallel on a dual-core processor
and again in series on a single-core processor,
and the runtime was measured. The speedup
and efficiency values of these algorithms were
compared to their serial version .Tables 1 and 2
show runtime, speedup and efficiency of cellular
and island genetic algorithms compared to their
serial version for various numbers of queens.

Table 1. Runtime, efficiency and speed up of the cellular
genetic algorithm compared to the serial version

Queens	 TS	 TP	 Speedup	 Efficiency	

 10 5.08 3.15 1.61 0.80
50 10.83 6.268 1.72 0.86
100 29.17 16.39 1.77 0.88
500 188.41 104.88 1.79 0.89

 Table notes:
TS=serial runtime of cellular genetic algorithm
TP=parallel runtime of cellular genetic algorithm

Table 2. Runtime, efficiency and speed up of the island
genetic algorithm compared to the serial version

Queens	 TS	 TP	 Speedup	 Efficiency	

10 1.48 1.34 1.11 0.55
50 3.24 2.12 1.53 0.76
100 14.01 8.00 1.75 0.87
500 126.33 72.08 1.75 0.87

 TS=serial runtime of island genetic algorithm
TP=parallel runtime of island genetic algorithm

 A Taheri Sarvetamin et al./ A New Approach to Solve N-Queen Problem with Parallel Genetic Algorithm

74 J. ADV COMP ENG TECHNOL, 4(2) Spring

0.75

0.8

0.85

0.9

0.95

nQueen=10 nQueen=50 nQueen=100nQueen=500

(A)	Efficiency	of	the	cellular	genetic	
algorithm			

Efficiency of
Cellular GA

0
0.2
0.4
0.6
0.8

1

nQueen=10 nQueen=50 nQueen=100nQueen=500

(B)	Efficiency	of	the	island	genetic	
algorithm				

Efficiency of
Islands GA

Fig. 4. (A) Efficiency of cellular genetic algorithms. (B) Efficiency of island genetic algorithms.

0
0.2
0.4
0.6
0.8

1

2 4 6 8 9 10

ef
fic
ie
nc
y

The	number	of	workers	

(A)	Efficiency	of	the	island	model			

Efficiency

0
0.2
0.4
0.6
0.8

1

2 3 5 9 10

ef
fic
ie
nc
y

The	number	of	workers	

(B)	Efficiency	of	the	cellular	
model		

Efficiency

Fig. 5. (A) Efficiency of the island genetic algorithm increasing the number of workers; (B) Efficiency of cellular genetic
algorithm by increasing the number of workers

0
0.2
0.4
0.6
0.8

1
1.2
1.4

10 50 100 500

ef
fic
ie
nc
y

The	number	of	queens	

Efficiency	of	the	cellular	model		

Efficiency

0
0.5

1
1.5

2

10 50 100 500

ef
fic
ie
nc
y

The	number	of	queens	

Efficiency	of	the	island	model			

Efficiency

Fig. 6. Efficiency of island and cellular genetic algorithm compared to the standard genetic algorithm

 A Taheri Sarvetamin et al./ A New Approach to Solve N-Queen Problem with Parallel Genetic Algorithm

75 J. ADV COMP ENG TECHNOL, 4(2) Spring

As specified in Tables 1 and 2, both island
and cellular genetic algorithms are able to run
the n-Queen problem in far less time than the
serial versions. In addition, the table values show
that the efficiency of these algorithms increases
with an increase in the number of queens. It can
be concluded that parallel genetic algorithms
show a better performance for massive and time
consuming problems. Fig. 4. shows the efficiency
of a parallel genetic algorithm for different
numbers of queens.

Several factors are involved in the incomplete
speedup (about 1.7 for the dual-core processor),
and thus the lack of efficiency including code and
data transfer between the client and the workers,
and resource competition between the working
processes and operating system processes. Also,
as Fig. 4. shows, the more the number of queens
the higher the efficiency of these algorithms.
However, there as on for low efficiency in low
numbers of queens refers to the fact that opening
and closing paralleling tools are time consuming.
Hence using this algorithm for a low number of
queens is not recommended. Rather, as Fig. 4.
shows, by increasing the number of queens and
the complexity of the issue, efficiency of these
algorithms increases and makes them affordable.

When MATLAB parallel computing toolbox
runs a program locally on a computer, sets the
number of workers to the number of CPU cores
by default, however this toolkit allows the number
of workers to be set more than the number of
CPU cores. In another experiment, the number of
workers was increased and the run time and the
speedup of parallel algorithms were measured for
100 queens. Fig. 5. Shows the efficiency of parallel
genetic algorithms compared to the serial version
for a different number of workers.

According to Fig. 5. The number of workers in
MATLAB without increasing the number of CPUs
or CPU cores will have no effect on the runtime
and will make no improvement in the speed,
which is due to the overhead associated with
concurrence. As long as the number of workers
is considered equal to or less than the CPU cores,
the program virtually runs in parallel mode, but
when the number of workers is considered to be
more than CPU cores, then it will be concurrent.
The remarkable thing when working with parallel

MATLAB toolbox is, for example, when the
program is set to run on four cores, the achieved
speed is close to 1-3 cores, because the last core
has to run system processes.

Running the program on a cluster of computers
appears to have better results and shall lead to
super linear speedup. The physical resources
will be considered as a possible reason to realize
this. When running on a cluster, more resources
in terms of memory or cache might be available
for the program, and when moving codes from
a single machine to a cluster of computers,
algorithms - possibly – use these additional
resources. Also, each machine may work only
with a small packet of data, while smaller data
may fit in the cache. Whereas that is not the case
in a single machine and will create a significant
difference in efficiency.

6.2. Single-machine comparing method
In this method, island and cellular genetic

algorithms with parallel computing toolbox
were run in parallel on a dual-core processor
for comparison of the n-Queen problem. The
results were compared with standard genetic
algorithm - having a single population and
doing evolutionary operations until a particular
condition arises – to measure its efficiency
compared to the standard genetic algorithm. In
general, the standard genetic algorithm needs
more iterations than parallel genetic algorithm
to reach the answer which increases its runtime.
Table 3 shows runtime, speedup and efficiency of
parallel genetic algorithms compared to standard
genetic algorithm.

Table 3. Runtime, speed up and efficiency of the island
and cellular genetic algorithm compared to the standard

genetic algorithm
Queens	 TGA	 TIGA	 TCGA	 SIGA	 SCGA	 EIGA	 ECGA	

10 1.55 1.48 1.34 1.15 0.49 0.57 0.24
50 5.01 3.24 2.11 2.36 0.79 1.18 0.39
100 27.43 14.00 8.00 3.42 1.68 1.71 0.84
500 264.13 126.33 72.08 3.66 2.51 1.83 1.25

 TGA: The standard genetic algorithm runtime (single
population)

TGA: The standard genetic algorithm runtime (single
population)

SCGA: Speedup of the cellular genetic algorithm

 A Taheri Sarvetamin et al./ A New Approach to Solve N-Queen Problem with Parallel Genetic Algorithm

76 J. ADV COMP ENG TECHNOL, 4(2) Spring

compared to the standard genetic algorithm
EIGA: Efficiency of island genetic algorithm compared

to the standard genetic algorithm
ECGA: Efficiency of cellular genetic algorithm compared

to the standard genetic algorithm
TIGA: Runtime of the island genetic algorithm
TCGA: Runtime of the cellular genetic algorithm
SIGA: Speedup of the island genetic algorithm compared

to the standard genetic algorithm

As shown in Table 3, by increasing the
number of queens, the speedup and efficiency of
the algorithms increase. Based on experimental
results both algorithms reached super linear
speedup for the highest number of queens
examined, i.e. 500. Fig. 6. shows the efficiency
of the island and cellular genetic algorithm
compared to the standard genetic algorithm.

 Additional tests were conducted, too. For this
problem, cellular and island genetic algorithms
were run without a parallel hardware and in series
on a single core processor. They were compared
with standard genetic algorithms to measure their
performance compared to the standard genetic
algorithm. The experimental results showed that
the standard genetic algorithm usually needs
more iteration to reach the answer than the
parallel genetic algorithm, which increases its
runtime.

Both the parallel genetic algorithms that were
run without hardware paralleling and in series
mode reached the answer in fewer iterations
and thus needed less time. However the island
genetic algorithm reached the answer in far less
time due to its specific better performance. This
performance can be due to migration between
subpopulations because migration allows the
subpopulations to share genetic materials and
increases diversity in subpopulations.

The experiments carried out indicated that
the use of parallel genetic algorithms, not only
leads to faster algorithms, but also yields better
numerical performance, even when the algorithm
runs on a processor with one core. Interestingly,
using structured population in the form of islands
or in the form of a network is responsible for such
numerical benefits.

Table 4. Speed up and efficiency in different methods
compared to the standard genetic algorithm for

500-queen problem
Algorithm Queens Iterations	 Population	 Time	 Speedup	

Standard GA 8000 500 100 264.13 s 1
Island GA* 4000 500 100 126.06 s 2.09
Cellular GA** 2000 500 100 188.55 s 1.4

GA: Genetic Algorithm
*Without hardware paralleling (two islands)
**Without hardware paralleling

 A Taheri Sarvetamin et al./ A New Approach to Solve N-Queen Problem with Parallel Genetic Algorithm

77 J. ADV COMP ENG TECHNOL, 4(2) Spring

7. CONCLUSION
N-Queen problem is well-known CSP

problem. Although n-Queen problem has little
practical application, but it shows a large class
of nondeterministic issues that cannot be solved
using deterministic algorithms in a reasonable
time. The present study showed that the n-Queen
problem can be successfully run with parallel
genetic algorithms. The experimental results
showed that these algorithms are able to find
different solutions for a specified number of
queens. Parallel genetic algorithms have a better
performance than the serial version of genetic
algorithms and run in less time to answer even
when implemented on a single-core processor.
These algorithms lead to calculations speedup and
they find better solutions compared to the serial
version. In addition to reducing computation
time, these algorithms lead to increased
exploration and better diversity compared to the
serial genetic algorithms. Also results indicated
that these algorithms are more efficient with
large numbers of queens than parallel genetic
algorithms, and in a type of comparison they can
achieve super linear speedup. As a result, using
these algorithms is suitable for massive parallel
processing. Running parallel genetic algorithms
on a cluster of computers is suggested for future
work.

 A Taheri Sarvetamin et al./ A New Approach to Solve N-Queen Problem with Parallel Genetic Algorithm

78 J. ADV COMP ENG TECHNOL, 4(2) Spring

REFERENCES

1. Bashir, L.Z. and N. Mahdi, Use Genetic Algorithm in
Optimization Function For Solving Queens Problem. World
Scientific News, 2015. 11: p. 138-150.

2. Ohta, M., Chaotic neural networks with reinforced
self-feedbacks and its application to N-Queen problem.
Mathematics and computers in simulation, 2002. 59(4): p.
305-317.

3. Hu, X., R.C. Eberhart, and Y. Shi. Swarm intelligence
for permutation optimization: a case study of n-queens
problem. in Swarm intelligence symposium, 2003. SIS'03.
Proceedings of the 2003 IEEE. 2003. IEEE.

4. Agarwal, K., A. Sinha, and M.H. Bindu, A novel hybrid
approach to N-queen problem, in Advances in Computer
Science, Engineering & Applications. 2012, Springer. p. 519-
527.

5. El-Qawasmeh, E. and K. Al-Noubani. A Polynomial
Time Algorithm for the N-Queens Problem. in IASTED
International Conference on Neural Networks and
Computational Intelligence. 2004.

6. Hu, N., An Integer Coding Based Optimization Model
for Queen Problems. American Journal of Computational
Mathematics, 2016. 6(01): p. 32.

7. Mandziuk, J., Solving the n-queens problem
with a binary Hopfield-type network. Synchronous and
asynchronous model. Biological Cybernetics, 1995. 72(5): p.
439-446.

8. Mohabbati-Kalejahi, N., H. Akbaripour, and E.
Masehian, Basic and Hybrid Imperialist Competitive
Algorithms for Solving the Non-attacking and Non-
dominating n-Queens Problems, in Computational
Intelligence. 2015, Springer. p. 79-96.

9. Ahrabian, H., A. Mirzaei, and A. Nowzari-Dalini,
A DNA Sticker Algorithm for Solving N-Queen Problem.
IJCSA, 2008. 5(2): p. 12-22.

10. Khan, S., et al. Solution of n-queen problem using
aco. in Multitopic Conference, 2009. INMIC 2009. IEEE
13th International. 2009. IEEE.

11. Farhan, A.S., W.Z. Tareq, and F.H. Awad, Solving
N Queen Problem using Genetic Algorithm. International
Journal of Computer Applications, 2015. 122(12).

12. Božikovic, M., M. Golub, and L. Budin. Solving
n-Queen problem using global parallel genetic algorithm. in
International Conference on Computer as a tool EUROCON
2003. 2003.

13. Dash, S.R., S. Dehuri, and S. Rayaguru. Discovering
interesting rules from biological data using parallel genetic
algorithm. in Advance Computing Conference (IACC), 2013
IEEE 3rd International. 2013. IEEE.

14. Mihaylova, P. and K. Brandisky. Parallel
genetic algorithm optimization of die press. in Proc.
of 3rd International PhD Seminar “Computational
Electromagnetics And Technical Applications. 2006.

15. Yu, B., et al., Parallel genetic algorithm in bus route

headway optimization. Applied Soft Computing, 2011.
11(8): p. 5081-5091.

16. Soufan, O., et al., DWFS: a wrapper feature selection
tool based on a parallel genetic algorithm. PloS one, 2015.
10(2): p. e0117988.

17. Alba, E. and J.M. Troya, A survey of parallel
distributed genetic algorithms. Complexity, 1999. 4(4): p.
31-52.

18. Kacprzyk, J. and W. Pedrycz, Springer handbook of
computational intelligence. 2015: Springer.

19. Alba, E., Parallel evolutionary algorithms can
achieve super-linear performance. Information Processing
Letters, 2002. 82(1): p. 7-13.

20. Sharma, G. and J. Martin, MATLAB®: a language
for parallel computing. International Journal of Parallel
Programming, 2009. 37(1): p. 3-36.

21. Shonkwiler, Ron. "Parallel Genetic Algorithms." In
ICGA, pp. 199-205. 1993.

22. Martinjak, Ivica, and Marin Golub. "Comparison
of heuristic algorithms for the n-queen problem." In
Information Technology Interfaces, 2007. ITI 2007. 29th
International Conference on, pp. 759-764. IEEE, 2007.

23. Heris, Jalal Eddin Aghazadeh, and Mohammadreza
Asgari Oskoei. "Modified genetic algorithm for solving
n-queens problem." In Intelligent Systems (ICIS), 2014
Iranian Conference on, pp. 1-5. IEEE, 2014.

24. Liu, Jing, Weicai Zhong, and Licheng Jiao. "A
multiagent evolutionary algorithm for constraint satisfaction
problems." IEEE Transactions on Systems,

	A New Approach to Solve N-Queen Problem with Parallel Genetic Algorithm
	Abstract:
	1. INTRODUCTION
	2. RELATED WORKS
	3. PROBLEM DEFINITION
	4. SUGGESTED METHODS
	4.1. Selection guidelines
	4.2. Crossover operator
	4.3. Mutation operator
	4.4. Stop criteria

	5. Experimental Design
	5.1. Strategies related to island genetic algorithms
	5.2. Measuring efficiency
	5.3. Paralleling with MATLAB parallel computing toolbox

	6. EXPERIMENTAL RESULT
	6.1. Orthodox comparing method
	6.2. Single-machine comparing method

	7. CONCLUSION
	REFERENCES

