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Abstract: Over the past few decades great efforts were made to solve uncertain hybrid 
optimization   problems. The n-Queen problem is one of such problems that many solutions have 
been proposed for. The traditional methods to solve this problem are exponential in terms of runtime 
and are not acceptable in terms of space and memory complexity. In this study, parallel genetic 
algorithms are proposed to solve the n-Queen problem. Parallelizing island genetic algorithm and 
Cellular genetic algorithm was implemented and run. The results show that these algorithms have 
the ability to find related solutions to this problem. The algorithms are not only faster but also they 
lead to better performance even without the use of parallel hardware and just running on one 
core processor. Good comparisons were made between the proposed method and serial genetic 
algorithms in order to measure the performance of the proposed method. The experimental results 
show that the algorithm has high efficiency for large-size problems in comparison with genetic 
algorithms, and in some cases it can achieve super linear speedup. The proposed method in the 
present study can be easily developed to solve other optimization problems.

Keywords: Parallel Genetic Algorithms, Island Genetic Algorithm, Cellular Genetic Algorithm, 
N-Queen Problem.

 
1. INTRODUCTION

The N-Queen problem is a well-known CSP  
problem. It includes putting n queens on a 

chessboard so that no two queens threaten each 
other. The number of possible combinations 
of n queens on a chessboard is plentiful. The 
traditional methods of solving this problem 
were all based on back-tracking [1]. The time 
for searching back-tracking is exponential and 
cannot support solving large-scale n-Queen 
problems. Although then-Queen problem has 
little practical applications, but it shows a large 

class of nondeterministic problems that cannot 
be solved using deterministic algorithms in a 
reasonable time [2, 3].

Many algorithms and methods have been 
used to resolve the n-Queen problem [4-
8]. Ahrabian et al. [9] used the DNA Sticker 
algorithm and Khan [10] has successfully used 
the ant colony algorithm to solve  the problem 
.Farhan et al.  used a genetic algorithm to 
solve  this problem  and found all 92 possible 
solutions to the 8-queen problem [11]. In 2003, 
Božikovic et al. Used global parallel genetic 
algorithm and a 3-way tournament method 
to solve this problem [12]. They conducted 
simulation on a single-processor computer 
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and came to the conclusion that global parallel 
genetic algorithm was not suitable for large-scale 
parallel processing; rather it was suitable for a 
small number of parallel processing units.

The parallel genetic algorithms or PGAs 
were successfully used in a wide range of 
optimization problems [13-16]. The good 
strength of these algorithms in high complexity 
problems has increased their applications in 
the fields of Artificial intelligence, numerical 
and combinatorial optimization, business, 
engineering, etc. Therefore they were used in this 
study [17]. In addition to reducing computation 
time, these algorithms lead to many better 
explorations and diversities compared to the 
sequential genetic algorithms [18].

Recent studies have made efforts to resolve 
the n-Queen problem with different methods. 
The main purpose of the present study is solving 
the n-Queen problem using parallel genetic 
algorithms and finding solutions, as well as 
reducing the runtime of the program with the 
parallel genetic algorithms compared to the 
sequential genetic algorithms. The efficiency 
of these two algorithms compared to the serial 
version will be presented later in this paper. 
Parallel is min this study was conducted using 
MATLAB Parallel Computing Toolbox on a 
personal computer  [19, 20].

This paper investigates the performance of 
parallel genetic algorithm for solving N-queens 
problem. There are lots of parallel genetic methods 
which are utilized to decrease the massive 
amount of computation time related to the 
serial genetic algorithms. Island parallel genetic 
model indicates migration between separately 
developing populations on parallel processes 
in order to increase the slowly developing 
subpopulations by adding chromosomes that 
are more beneficial compared to the locally best 
versions [22]. This paper exhibits a method that 
genetic algorithms may be used to solve N-queens 
problem. Customized chromosome illustration, 
assessment function and genetic operators are 
offered. Additionally, a universal parallel genetic 
algorithm is shown as a potential solution to 
improve GA speed. This paper are going to exhibit 
an application of universal parallel GA for solving 
N-queens problem. The paper is organized into 
the following sections: Section 2 is dedicated 
to the related works. Section 3 introduces how 

to display and code the n-Queen problem; 
Section 4 describes the proposed method and its 
configurations; Section 5 contains experimental 
design; and Section 6 presents experimental 
results. Conclusions are presented in Section 7.

2. RELATED WORKS

Depending on the classification of 
computational problems into polynomial and 
exponential, we can divide these problems into 
two types-tractable and intractable [15]. So, the 
tractability of a problem depends on how difficult 
the problem is. The amount of time it takes to 
successfully solve the problem. It has very close 
link with the time complexity of a problem. If a 
problem has given solution in a small amount of 
time, then it can be easily solved in polynomial 
time and named as tractable problem. But, there 
are some problems, which can only be solved by 
special algorithms, whose execution time grows 
very quickly in case of large input size and these 
problems cannot be solved in polynomial time 
by a conventional algorithm. These types of 
problems are labeled as intractable. The n-Queens 
problem is a traditional intractable problem 
that is commonly used in case of talking about 
numerous kinds of searching problems [7-9]. 
The simple types of technique for the n-Queens 
constraint satisfaction problem are: systematic 
search methods – place a single queen onto the 
board each time making certain that not any 
constraint is violated, until all queens are put, as 
well as repair methods – locate all queens onto 
the board at first at arbitrary and if any queen 
threatens one other attempt to shift it to another 
position [12]. A depth-first search backtracking 
algorithm may resolve the n-Queens problem 
in acceptable time but just for small values of n. 
Numerous attempts have already been applied 
for effective strategies to solving the n-Queens 
problem applying different heuristics methods 
like iterative local search, simulated annealing, 
tabu-search [11], genetic algorithm [13, 20]. 
Genetic algorithms present search method in 
engineering to discover approximate ways to 
optimization and search problems or display a 
specific type of evolutionary algorithms. 

Mentioned problem was introduces at first by 
stone in 1997 [23]. He designed TIG model to 
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present executive tasks. In other work Norman 
categorized all of the previous models. For 
example eleven scheduling algorithms were 
introduced in 2008 by Braun et. al [22, 24]. They 
Focused on makespan and flow time only and did 
not investigate speed up parameter. A parameter 
that is very important to us in this article. Also, 
there are several resources that use parallel genetic 
algorithm to solve classic problems but none of 
them have not combined the two strategies [21]. 
Combination method is our idea and implement 
for the first time.

3. PROBLEM DEFINITION

Then-Queen is displayed as an n-tuple. Each 
queen must be on a different row and column. It 
can be assumed that the queen i is placed in the 
ith column. N-tuple solutions are displayed as (q1, 
q2… qn) which are the permutations of an n-tuple 
(1, 2, 3... n). The place of a number on a tuple 
defines the column of a queen, while its value 
shows its row (counting from the bottom). Fig. 1 
shows the 4-tuple display of the problem.

 

 
Fig. 1. Example of registering a 4-tuple

Fitness function for this problem should 
count the number conflicts of queens and should 
calculate the number of rows, columns, and 
diagonal conflicts. In the correct solution to this 
problem, this number should be zero. Two fitness 
functions can be written for this problem, one 
with O(n2) time complexity and the other with 
O(n) time complexity. Writing a fitness function 
with O(n2) time complexity is very simple and 
common. However, the method of calculating the 
fitness function with O(n) time complexity is as 
follows:

In this model, the number of diagonal conflicts 
is obtained to calculate the number of conflicts of 
the queens. The method is explained in this way: 
because the n-tuple display removes conflicts in 
rows and columns, so there are only diagonal 
threats between the queens; therefore the fitness 
function only calculates the diagonal conflicts. As 
shown in Fig. 2. There are 2n-1 left (top-bottom, 
left-to-right) and 2n-1 right (bottom-up, right-
to-left) diameters.

  

 

 
 

Fig. 2 The third left diameter and the second right 
diameter for 4-queens.

The diagonal conflicts are calculated as: the ith 

and jth queen are part of a diameter if:

|qi– qj|=|i–j|                   (1)

Eq.(1) results in the O(n) complexity for the fitness 
function.

4. SUGGESTED METHODS

Substantially, the parallel genetic algorithm 
consists of several genetic algorithms, each of 
which processes a separate section of a population 
or populations with or without communication 
between them. Hence the parallel genetic 
algorithms can increase population diversity and 
decrease computational time. These algorithms 
present a new type of meta heuristics that have 
a higher efficiency and impact on the population 
structure and parallel implementation[17]. As 
mentioned, these algorithms can be divided into 
two main types, coarse-grained or island genetic 
algorithms and fine-grained or cellular genetic 
algorithms. The island genetic algorithm runs 
several subpopulations in the parallel mode. The 
subpopulations make up the total population of 



 A Taheri Sarvetamin et al./ A New Approach to Solve N-Queen Problem with Parallel Genetic Algorithm

 

   J. ADV COMP ENG TECHNOL, 4(2) Spring 2018                    72

the island together. Most of the time, the islands 
work independently in the run model. However, 
the solutions are periodically exchanged between 
the islands. This is called the migration process. 
Using migration, the island model is able to extract 
the differences in the various sub-populations. 
The change shows a source of genetic diversity.

The other model is the cellular genetic 
algorithm, the most prominent feature of which is 
that each island contains only one person. In this 
sense of islands, most of the cells are read, and 
each person is only allowed to be combined with 
neighboring people. The difference between this 
model and the island model is that no evolutions 
happen in the very cells; in fact there are no 
evolutions within the islands. Improvements can 
only be achieved by cells that interact with each 
other[18].

4.1. Selection guidelines
The main part of the selection process is 

the random selection of a generation to lay the 
foundation for the next generation. The most 
appropriate people are more likely than the poor 
people. Here the roulette wheel selection method 
is used to select the chromosomes.

4.2. Crossover operator
Crossover operator is determined with a 

probability rate (Pc). Here a technique is used 
that is a combination of single-point crossover, 
double-point crossover, and uniform crossover 
methods. The crossover method was placed with 
various probabilities. The probability for single-
point crossover, double-point crossover, and 
uniform crossover were assumed as PsinglePoint=0.1, 
PdoublePoint=0.2, and Puniform=1-PsinglePoint-PdoublePoint, 
respectively. Each time the crossover function 
is invoked, one of the above-mentioned three 
methods is selected using roulette wheel for 
conducting crossover action.

4.3. Mutation operator
Like crossover operator, a mutation operator 

with a Pm rate is assumed to determine 
whether the mutation operator is applied in the 
chromosome or not. Here the swap mechanism, 
or changing the places of the elements, is used. 

Fig. 3. shows how it works.

 

 
Fig. 3. Mutation operator

4.4. Stop criteria
Stop criteria are considered as reaching a 

certain number of generation iterations. This 
number will vary for a different number of queens 
but it is selected in such a way to be sure that the 
algorithm converges, and the algorithm can find 
the answers to this problem.

5. Experimental Design

5.1. Strategies related to island genetic 
algorithms 

The island genetic algorithm runs several 
subpopulations (islands) in the parallel 
mode. Exchange of information between 
these subpopulations happens in specified 
intervals (epoch) in the iteration loops. With 
the exchange of outstanding chromosomes 
between subpopulations, the search space of 
subpopulations subset diversifies to prevent 
the premature convergence more effectively. n 
and Pn, are the amounts of subpopulations and 
scales, respectively. Hence the total population is 
Psize=nxPn.

Here the ring topology is used for migration 
and it has a single direction. With a single 
migration frequency, a certain number of the 
best people in subpopulations are selected for 
migration and a copy of these people is sent to 
the neighbors. The immigrants arrived at the 
destination islands replace the worst individuals.

5.2. Measuring efficiency
As Alba has pointed out, comparing the 

efficiency of parallel and serial evolutionary 
algorithms only makes sense when they reach a 
common accuracy[19]. In a classification by Alba 
there are two general types of strong speedup and 
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weak speedup to compare the parallel and serial 
genetic algorithms[19]. Strong speedup is not 
commonly used. In the weak speedup, the parallel 
and serial runtime of an algorithm are compared 
including the following:

• Single machine/panmixia: The parallel 
algorithm is compared with a standard 
version of its which runs on a single 
machine. For example, we may compare 
an island with m islands with a genetic 
algorithm that runs one island. Where by 
the algorithm that runs on all islands in 
both cases is the same.

• Orthodox: The parallel algorithm that 
runs on m machines is compared with the 
same algorithm that runs on one machine.

5.3. Paralleling with MATLAB parallel 
computing toolbox  

For the purpose of paralleling, Parallel 
Computing Toolbox (PCT) of MATLAB is 
selected. The Parallel Computing Toolbox provides 
the possibility to run massive computational 
problems using multi core processors, GPUs 
and computer clusters. The toolbox allows the 
use of whole processing power of a multi core 
desktop computer. Full use of a desktop computer 
multi core processors' power is possible through 
workers that run locally [20].

The Toolbox provides a local cluster of workers 
for the local machine and runs applications on 
local workers (MATLAB computational engines). 
The same application can run without changing 
the code on a cluster of computers or a grid 
computing service using MATLAB distributed 
computing server. The number of workers in 
the toolbox depends on the hardware and their 
connections. In any case, to use the processor of 
a multi core system, the number of workers is 
usually considered equal to the number of cores. 
In the 2012 edition of MATLAB, the toolbox 
allows users to have 12 workers work on a single 
machine.

6. EXPERIMENTAL RESULT 

Parallel genetic algorithms were successfully 
applied on the n-Queen problem. Both 

algorithms were able to find several solutions 
for the given number of queens. The results were 
run on a PC with Intel Pentium(R) Dual-Core 
CPU E5700@3.00GHz, 2.00GB of RAM, and 
Windows7. The size of the issue was set between 
10 and 500 queens. Running parallel genetic 
algorithms on a dual-core processor reduced the 
runtime. In order to compare the results, both 
orthodox and a single–machine method were 
used for comparing the efficiency of algorithms.

6.1. Orthodox comparing method 
In this comparison method the parallel 

genetic algorithms for the n-Queen problem were 
once run in parallel on a dual-core processor 
and again in series on a single-core processor, 
and the runtime was measured. The speedup 
and efficiency values of these algorithms were 
compared to their serial version .Tables 1 and 2 
show runtime, speedup and efficiency of cellular 
and island genetic algorithms compared to their 
serial version for various numbers of queens.

Table 1. Runtime, efficiency and speed up of the cellular 
genetic algorithm compared to the serial version

Queens	 TS	 TP	 Speedup	 Efficiency	

  10 5.08 3.15 1.61 0.80 
50 10.83 6.268 1.72 0.86 
100 29.17 16.39 1.77 0.88 
500 188.41 104.88 1.79 0.89 

 Table notes:
TS=serial runtime of cellular genetic algorithm
TP=parallel runtime of cellular genetic algorithm

Table 2. Runtime, efficiency and speed up of the island 
genetic algorithm compared to the serial version

Queens	 TS	 TP	 Speedup	 Efficiency	

10 1.48 1.34 1.11 0.55 
50 3.24 2.12 1.53 0.76 
100 14.01 8.00 1.75 0.87 
500 126.33 72.08 1.75 0.87 

 TS=serial runtime of island genetic algorithm
TP=parallel runtime of island genetic algorithm
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Fig. 4. (A) Efficiency of cellular genetic algorithms. (B) Efficiency of island genetic algorithms.
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As specified in Tables 1 and 2, both island 
and cellular genetic algorithms are able to run 
the n-Queen problem in far less time than the 
serial versions. In addition, the table values show 
that the efficiency of these algorithms increases 
with an increase in the number of queens. It can 
be concluded that parallel genetic algorithms 
show a better performance for massive and time 
consuming problems. Fig. 4. shows the efficiency 
of a parallel genetic algorithm for different 
numbers of queens.

Several factors are involved in the incomplete 
speedup (about 1.7 for the dual-core processor), 
and thus the lack of efficiency including code and 
data transfer between the client and the workers, 
and resource competition between the working 
processes and operating system processes. Also, 
as Fig. 4. shows, the more the number of queens 
the higher the efficiency of these algorithms. 
However, there as on for low efficiency in low 
numbers of queens refers to the fact that opening 
and closing paralleling tools are time consuming. 
Hence using this algorithm for a low number of 
queens is not recommended. Rather, as Fig. 4. 
shows, by increasing the number of queens and 
the complexity of the issue, efficiency of these 
algorithms increases and makes them affordable.

When MATLAB parallel computing toolbox 
runs a program locally on a computer, sets the 
number of workers to the number of CPU cores 
by default, however this toolkit allows the number 
of workers to be set more than the number of 
CPU cores. In another experiment, the number of 
workers was increased and the run time and the 
speedup of parallel algorithms were measured for 
100 queens. Fig. 5. Shows the efficiency of parallel 
genetic algorithms compared to the serial version 
for a different number of workers.

According to Fig. 5. The number of workers in 
MATLAB without increasing the number of CPUs 
or CPU cores will have no effect on the runtime 
and will make no improvement in the speed, 
which is due to the overhead associated with 
concurrence. As long as the number of workers 
is considered equal to or less than the CPU cores, 
the program virtually runs in parallel mode, but 
when the number of workers is considered to be 
more than CPU cores, then it will be concurrent. 
The remarkable thing when working with parallel 

MATLAB toolbox is, for example, when the 
program is set to run on four cores, the achieved 
speed is close to 1-3 cores, because the last core 
has to run system processes.

Running the program on a cluster of computers 
appears to have better results and shall lead to 
super linear speedup. The physical resources 
will be considered as a possible reason to realize 
this. When running on a cluster, more resources 
in terms of memory or cache might be available 
for the program, and when moving codes from 
a single machine to a cluster of computers, 
algorithms - possibly – use these additional 
resources. Also, each machine may work only 
with a small packet of data, while smaller data 
may fit in the cache. Whereas that is not the case 
in a single machine and will create a significant 
difference in efficiency.

6.2. Single-machine comparing method 
In this method, island and cellular genetic 

algorithms with parallel computing toolbox 
were run in parallel on a dual-core processor 
for comparison of the n-Queen problem. The 
results were compared with standard genetic 
algorithm - having a single population and 
doing evolutionary operations until a particular 
condition arises – to measure its efficiency 
compared to the standard genetic algorithm. In 
general, the standard genetic algorithm needs 
more iterations than parallel genetic algorithm 
to reach the answer which increases its runtime. 
Table 3 shows runtime, speedup and efficiency of 
parallel genetic algorithms compared to standard 
genetic algorithm.

Table 3. Runtime, speed up and efficiency of the island 
and cellular genetic algorithm compared to the standard 

genetic algorithm
Queens	 TGA	 TIGA	 TCGA	 SIGA	 SCGA	 EIGA	 ECGA	

10 1.55 1.48 1.34 1.15 0.49 0.57 0.24 
50 5.01 3.24 2.11 2.36 0.79 1.18 0.39 
100 27.43 14.00 8.00 3.42 1.68 1.71 0.84 
500 264.13 126.33 72.08 3.66 2.51 1.83 1.25 

 TGA: The standard genetic algorithm runtime (single 
population)

TGA: The standard genetic algorithm runtime (single 
population)

SCGA: Speedup of the cellular genetic algorithm 



 A Taheri Sarvetamin et al./ A New Approach to Solve N-Queen Problem with Parallel Genetic Algorithm

76              J. ADV COMP ENG TECHNOL, 4(2) Spring

compared to the standard genetic algorithm
EIGA: Efficiency of island genetic algorithm compared 

to the standard genetic algorithm
ECGA: Efficiency of cellular genetic algorithm compared 

to the standard genetic algorithm
TIGA: Runtime of the island genetic algorithm
TCGA: Runtime of the cellular genetic algorithm
SIGA: Speedup of the island genetic algorithm compared 

to the standard genetic algorithm

As shown in Table 3, by increasing the 
number of queens, the speedup and efficiency of 
the algorithms increase. Based on experimental 
results both algorithms reached super linear 
speedup for the highest number of queens 
examined, i.e. 500. Fig. 6. shows the efficiency 
of the island and cellular genetic algorithm 
compared to the standard genetic algorithm.

  Additional tests were conducted, too. For this 
problem, cellular and island genetic algorithms 
were run without a parallel hardware and in series 
on a single core processor. They were compared 
with standard genetic algorithms to measure their 
performance compared to the standard genetic 
algorithm. The experimental results showed that 
the standard genetic algorithm usually needs 
more iteration to reach the answer than the 
parallel genetic algorithm, which increases its 
runtime.

Both the parallel genetic algorithms that were 
run without hardware paralleling and in series 
mode reached the answer in fewer iterations 
and thus needed less time. However the island 
genetic algorithm reached the answer in far less 
time due to its specific better performance. This 
performance can be due to migration between 
subpopulations because migration allows the 
subpopulations to share genetic materials and 
increases diversity in subpopulations. 

The experiments carried out indicated that 
the use of parallel genetic algorithms, not only 
leads to faster algorithms, but also yields better 
numerical performance, even when the algorithm 
runs on a processor with one core. Interestingly, 
using structured population in the form of islands 
or in the form of a network is responsible for such 
numerical benefits.

Table 4. Speed up and efficiency in different methods 
compared to the standard genetic algorithm for 

500-queen problem
Algorithm  Queens  Iterations	 Population	 Time	 Speedup	

Standard GA 8000 500 100 264.13 s 1 
Island GA* 4000 500 100 126.06 s 2.09 
Cellular GA** 2000 500 100 188.55 s 1.4 

 
GA: Genetic Algorithm
*Without hardware paralleling (two islands)
**Without hardware paralleling
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7. CONCLUSION
N-Queen problem is well-known CSP 

problem. Although n-Queen problem has little 
practical application, but it shows a large class 
of nondeterministic issues that cannot be solved 
using deterministic algorithms in a reasonable 
time. The present study showed that the n-Queen 
problem can be successfully run with parallel 
genetic algorithms. The experimental results 
showed that these algorithms are able to find 
different solutions for a specified number of 
queens. Parallel genetic algorithms have a better 
performance than the serial version of genetic 
algorithms and run in less time to answer even 
when implemented on a single-core processor. 
These algorithms lead to calculations speedup and 
they find better solutions compared to the serial 
version. In addition to reducing computation 
time, these algorithms lead to increased 
exploration and better diversity compared to the 
serial genetic algorithms. Also results indicated 
that these algorithms are more efficient with 
large numbers of queens than parallel genetic 
algorithms, and in a type of comparison they can 
achieve super linear speedup. As a result, using 
these algorithms is suitable for massive parallel 
processing. Running parallel genetic algorithms 
on a cluster of computers is suggested for future 
work.
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