
 Journal of Advances in Computer Engineering and Technology, 3(2) 2017

P2P Network Trust Management Survey

Seyed Hossein Ahmadpanah1, Rozita Jamili Oskouei2, Abdullah Jafari Chashmi3

Received (2017-01-06)
Accepted (2017-04-10)

Abstract — Peer-to-peer applications (P2P) are
no longer limited to home users, and start being
accepted in academic and corporate environments.
While file sharing and instant messaging
applications are the most traditional examples,
they are no longer the only ones benefiting from
the potential advantages of P2P networks. For
example, network file storage, data transmission,
distributed computing, and collaboration systems
have also taken advantage of such networks. In
this paper, we will present a summary of the main
safety aspects to be considered in P2P networks,
highlighting its importance for the development of
P2P applications and systems on the Internet and
deployment of enterprise applications with more
critical needs in terms of security .

Index Terms — Peer to Peer Network, File
Sharing, Napster, Bit Torrent, Trust.

I. INTRODUCTION

Peer-to-peer applications (P2P) are no longer
limited to home users, and start being accepted

in academic and corporate environments. While
file sharing and instant messaging applications
are the most traditional examples, they are
no longer the only ones benefiting from the
potential advantages of P2P networks. For
example, network file storage, data transmission,
distributed computing, and collaboration systems
have also taken advantage of such networks.

The reasons why this model of computing is
attractive unfold in three. First, P2P networks
are scalable, i.e., deal well (efficiently) with
both small groups and with large groups of
participants. Second, you can depend more on the
functioning of these networks, since they have
no central point of failure and are more resistant
to intentional attacks such as denial of service
them. Third, P2P networks offer autonomy to
its participants, allowing entering and leaving
the network according to their interest and
availability, and make their decisions without
relying on external entities.

Although P2P networks can contribute to
resource sharing and large-scale collaboration
in geographically distributed environments with
decentralized control and weak coupling, their
diversification and dissemination are hampered
by the current lack of security. According to [2],
it is a challenge to make these networks secure.

By aiming for P2P networks to be widely
adopted, they need to be protected against the
action of malicious nodes. These can purposely
provide incorrect responses to requests at both
the application and the network level. In the

1- Department of Computer and Information Technology,
Mahdishahr Branch, Islamic Azad University, Mahdishahr,
IRAN. (djalicrt@gmail.com)
2- Department of Computer and Information Technology,
Mahdishahr Branch, Islamic Azad University, Mahdishahr,
IRAN.
2- Department of Electrical and Telecommunications
Engineering Technology, Mahdishahr Branch, Islamic Azad
University, Mahdishahr, IRAN.

90 Journal of Advances in Computer Engineering and Technology, 3(2) 2017

first case, returning non-truthful information
in response to a search, in an attempt to censor
access to certain objects. In the second, providing
false information about routes, aiming to partition
the network. In addition, attackers can perform
other malicious activities such as traffic analysis
(including on systems that seek to provide
anonymity) and censoring on those who wish to
provide high availability.

Another type of unwanted behavior,
manifested by many users, is trying to gain more
from the P2P network than it offers in return.
This disparity can be expressed, for example, in
the use of disk space, when the attacker wants
to store data in the nodes of the network in a
quantity much superior to that which he himself
makes available to the system. A similar situation
occurs when the malicious node refuses to use
its restricted bandwidth to transmit an object,
forcing the requester to retrieve it from some
other replica.

Problems such as newly listed make security
area one of the main fields of study in P2P
networks. In this context, the aspects to be
explored depend on the type of application and
the degree of security required. The main aspects
investigated (defined in a very general way) are
the following:

• Availability: ensures that an entity is
ready for use when needed;

• Authenticity: determines whether
someone (or something) is, in fact, who (or what)
claims to be;

• Confidentiality: protects data from
unauthorized observation;

• Integrity: protects data against corruption,
whether malicious or accidental;

• Authorization: restricts, based on rights,
access to resources;

• Reputation: determines degree of trust in
the other entities of a system;

• Anonymity: it keeps the identity of an
entity unknown;

• Negotiability: overshadows data to
protect the entity holding them from being held
accountable;

• Non-repudiation: prevents an entity from
denying responsibility for actions performed.

This paper covers P2P networks and security,
very current issues that have received significant
attention from both the scientific community and
industry. In research, this is due to the number of

challenges to be solved, while in industry, due to
the great popularization of this type of application,
the constant concern with information security
and the socio-economic impact of its use. The
paper presents an overview of search results and
security-related technologies in P2P networks,
supported by examples from the wide range of
systems currently available and operating.

The rest of the paper is organized as follows. In
Section 2, we review concepts of P2P networks,
including their key characteristics, types of
applications and architectures. In Section 3, a set
of proposals to solve the main security problems
identified in P2P networks is now described in
more detail. Finally, Section 4, presents the final
considerations and a sample of the research
challenges to be overcome.

II. P2P FUNDAMENTALS

The recent literature presents excellent reviews
on P2P, such as [1], [3] and [6], which define,
categorize and exemplify P2P systems. In this
section, we review only the main points of P2P
or that have a reflection on their security, making
the text self-contained and clear in relation to the
adopted terminology, without being repetitive in
relation to the recent literature in the area.

1. Key Features and Definition
There is no consensus in the literature about

exactly what P2P systems are or what are
the essential characteristics of such systems.
Originally, P2P refers to a distributed architecture
style that contrasts with the client / server: fully
decentralized distributed systems, where all
nodes are equivalent in terms of functionality
and tasks they perform. This definition is purist
and excludes several applications accepted today
as P2P. More recently, P2P has been associated
with a class of applications that take advantage
of resources such as disk and CPU present on the
edges of the Internet.

According to [4], the two key characteristics
of P2P are:

• Direct sharing of resources between
nodes, without the intermediation of a centralized
server (although the use of servers is allowed in
tasks with less computational or communication
demand);

• Ability to self-organization, fault -
tolerant, assuming variable connectivity and

Journal of Advances in Computer Engineering and Technology, 3(2) 2017 91

transient population of nodes as standard,
automatically adapting to failures in both network
connections and computers.

Another key point in P2P is the notion that
the system is built on the (supposedly voluntary)
collaboration of the participants. Based on these
characteristics, P2P systems can be defined as
follows.

“Peer-to-Peer (P2P) networks are distributed
systems consisting of interconnected nodes
able to self-organize in topologies overlay
in order to share resources such as content
(music, videos, documents, etc.), CPU cycles,
Storage and bandwidth, capable of adapting to
transient populations of nodes while maintaining
acceptable connectivity and performance,
without requiring the intermediation or support
of a central entity.”

In a P2P system, nodes establish logical
connections and interact through them, forming
an “overlay network” or overlay application
level. In the rest of this text, the term “overlay” is
used to denote a set of interconnected nodes in a
P2P system, application, or network. In contrast,
the term “network”, unless otherwise stated, is
used to denote the underlying physical network.

2. P2P Applications
Considering the key characteristics and

definition of P2P presented, we have identified
the following categories of P2P systems and / or
applications:

• File Sharing (sharing files): One of the
simplest but most popular P2P applications, its
purpose is to allow users to “publish” files, whose
content remains unchanged and is disseminated
to any users, geographically spread around the
world and potentially in large numbers. Typically,
any user can publish a file on the system, and there
are no read restrictions. Examples are Napster
[10], Gnutella [5], KaZaa [8] and BitTorrent [9];

• Networked File storage system (network
storage): unlike the previous case, the contents of
the files can be modified by users (not immutable)
and changes should, in the case of replication,
are consistently propagated to all replicas. It is
typically necessary to control and restrict write
operations, and potentially read operations as
well. Examples are PAST [12], OceanStore [12],
Ivy [12] and JetFile [12];

• Data Transmission or multicast overlay:
in this case, the overlay forms a communication
infrastructure that supplies the absence of native
multicast support in the network, in order to allow
the same content to be transmitted by a node and
delivered to a potentially large number of nodes
(Users) geographically spread across the globe.
Such technology has been used to broadcast live
events. One of the main examples in this case
is the ESM - End System Multicast [6], which
has already been used to convey more than thirty
events, including popular symposia such as
SIGCOMM and INFOCOM;

• Distributed Computing: these applications
are aimed at intensive processing performance
through the idle capacity of exploitation (cyber-
foraging) on computers that are part of grid
systems. Examples are the OurGrid [3], Seti @
Home [13] and Genome @ Home [13]. Note that
Seti @ Home and Genome @ Home have been
categorized as P2P in the literature, but are based
on a master / slave model where a central (master)
server allocates work to personal computers
(slaves). In these systems, access control and
reputation management are two fundamental
mechanisms and, thus, have received great
attention from the research community;

• Collaboration and communication
between users: these are applications that allow
users to communicate through voice (VoIP),
text messages, graphic images and general files
in a direct way, without going through a server.
Examples are Skype [7] and Instant Messaging
applications such as ICQ, Jabber [7], MSN
Messenger [7] and Yahoo Messenger [7].

In addition to the above categories, there are
other applications that employ P2P concepts,
such as distributed database manager system,
but that are beyond the scope of this work. For
purposes of terminology and treatment of the
topic, we believe that a P2P overlay consists of
a set of nodes (peers) connected through links
dictated by protocols at the application level,
in turn based on transport protocols. Nodes
are identified solely on the overlay through an
identifier (occasionally abbreviated id), can store
and display objects (files, data blocks) to other
requisites nodes, as well as offering services to
other overlay nodes, including communication
services Instant Messaging (IM) and processing
for compute-intensive applications. In addition,

92 Journal of Advances in Computer Engineering and Technology, 3(2) 2017

nodes collaborate in executing search protocols
for objects and services originating from other
nodes. Searches are based on routing tables and
keys that uniquely identify an object or service in
the overlay.

3. Overlay Organization
P2P systems can be classified into two

main categories, as the overlay organization:
structured and unstructured. The organization
of an overlay has significant influence in several
aspects, including security, robustness and
performance.

Essentially, the organization determines the
rules, if any, for allocating objects (or their keys)
to nodes, and the search algorithms employed. In
unstructured systems, the topology is determined
ad hoc: the as nodes enter (and leave) the overlay,
establish links with other arbitrary nodes. The
positioning of objects or services is, in this case,
completely independent of the overlay topology.
One difficulty associated with this type of overlay
is the process of searching for objects or services.
Primitive methods such as flood overlay were
employed in the first P2P systems, such as the
original Gnutella. The inefficiency of this method
has fostered research and development with an
emphasis on scalability. As a result, there were
no structured systems that employ more efficient
strategies in terms of use of resources, such
as random walk [2] or routing indices [5], and
overlays scalable via Hash Tables distributed
(DHT, distributed hash tables).

In structured overlays, the overlay topology
is dictated by a key allocation scheme to node
ids, in order to associate a given object or
service to a specific node deterministically and
globally known in the overlay. DHT functions as
a distributed routing table, allowing an object to
be found in a small number of steps. However,
using DHTs requires a perfect match between the
fetched key and the key offered as a parameter in
the fetch; In other words, the requesting node must
know the key of the searched object perfectly,
and this is not always possible. In addition, some
authors argue that maintaining overlay in highly
transient populations is difficult. According to
[14], structured overlays can be further separated
into infrastructure and systems, depending on
whether the overlay is only a scalable routing
infrastructure at the application level (such as
Chord, CAN, Pastry) or is it a Complete system
(such as OceanStore, PAST and Kademlia). In the

rest of this text, we do not distinguish between
infrastructure and system, unless explicitly
mentioned.

A structured overlay can be modeled through
its key attributes. Combining the models of [12]
and [17], we have the definition that follows.
DHTs are typically consisting of a store API
disposed on a search protocol layer. The latter
has six properties: P1: a key area, with a key the
unique identifier of an object, typically generated
using a hash function such as MD5 or SHA1;
P2: a space of node identifiers and a mapping
scheme; for example, Chord uses circular space
ids as CAN use dimension coordinate space d. A
node ID could be the hash of its IP, for example;
P3: rules for dividing identifier space between
nodes: a DHT divides the complete space of node
identifiers between existing (active) nodes at a
given instant; P4: rules for associating keys with
particular nodes, since each node is responsible
for certain keys; P5: routing tables per node,
and a routing scheme that populates the routing
tables; P6: rules for updating tables in inputs and
outputs of overlay nodes; When a node enters, it
assumes responsibility for a portion of the id space
belonging to other nodes (and consequently, the
key space).

4. Top Unstructured Overlays
The main examples of P2P infrastructures that

have an unstructured organization are described
below.

Napster. Precursor in terms of file sharing,
Napster was the “killer application” for
dissemination of P2P culture. Despite this,
Napster goes against the principles of P2P, because
it depends on a central server for its operation.
Napster has been hugely successful in allowing
the sharing of music files. Predominantly, the
content published on Napster was protected by
copyright and may not be copied by other users;
Today, the content provided by Napster is legal,
but the same does not have as much appeal.
Users who join the Napster network offer content
by sending information about local files to the
central server; Search operations are resolved
on the server, which returns to the requesting
node a list of node addresses providing the
searched file. The download file then takes place
directly between the nodes involved, without
overloading the server. The Napster architecture
is exemplified in Figure 1 (a): user computers
search for information about files in the central

Journal of Advances in Computer Engineering and Technology, 3(2) 2017 93

directory and then communicate with other nodes
directly to obtain the desired files. According to
studies in [6], Napster has more than 26 million
users in 2001. Further information about Napster
can be obtained in [2006].

Gnutella. It is a sharing system of ad hoc
topology files. All nodes are functionally
identical, said client because they are servers
and clients simultaneously. File searches are
performed through a flood of limited scope
(called “horizon”). Nodes in which there is a
marriage between the specified file name and the
set of files published by the node send a positive
response, by the reverse path in the overlay. The
requisitor node then choose one of the nodes
returned response and downloads directly from
this node. There is no guarantee that a file will
be located, but search performance is good for
popular content. Figure 1 (b) shows an example
of Gnutella architecture, where a node is a
flood to find a file, and once found, download
directly from one of the nodes that responded
(positively). Improvements have been made
in recent versions, through a hierarchy of two
levels with super nodes responsible for index
information from other nodes, as illustrated in
Figure1 (c). In addition, the search scheme was
modified in order to reduce the degree of flooding
of the network. According to [16], in April 2016
there were approximately 2,219,539 users in the
Gnutella network. Further information on the
same can be found in [16].

FastTrack / KaZaa. It is a file - sharing
system that employs a two - tier architecture,
with normal and super nodes. Normal nodes
connect to a super node, and super nodes connect
to each other. A normal node maintains a list
with addresses up to 200 super nodes, while a
super node can maintain a list with thousands
of super node addresses. When Is connected to
the network, a node sends to its super node a list
with the description of the files that it is making
available.

 Figure 1 Examples of unstructured P2P[12]

A node sends a search to its super node, which
either responds directly (when it knows the
location of the desired file) or performs a search
by sending messages to other super nodes. There
is a certain degree of guarantee in the search of
files, as the searches are sent to the super nodes,
offering good performance for popular content
[15]. In case of failure of a super node, the orphan
nodes are passed to other super nodes. The
FastTrack architecture is exemplified in Figure 1
(c) and resembles the current version of Gnutella:
a normal node queries its super node for the
location of a file, and if it exists, then requests the
desired file directly to another node. According
to statistics available in [6], in April 2006 there
were approximately 3,144,691 concurrent users
on the FastTrack network. Further information on
FastTrack/KaZaa can be obtained from [12].

BitTorrent. File sharing system based on
“clusters” (swarms) of nodes, exchanging files
directly blocks but are coordinated by a central
node, the tracker. The list of files and their
properties (including a hash of each file), and the
address of the tracker responsible for the swarm,
are specified through a torrent file named. This
file is prepared by a user who wishes to publish
content, and made available on specialized
websites; a torrent to be located before by
interested users, which is looking on site with
torrents or via web search engines.

Once uploaded the torrent file, the user
provides the client software that connects to
the tracker. The node informs the tracker about
his interest in that torrent, and it answers with a
random list of present nodes in the cluster. The
node then contacts multiple nodes, requesting
blocks of 512 KB from the file. BitTorrent uses

Journal of Advances in Computer Engineering and Technology, 3(2) 2017 94

an incentive policy based on “eye-for-eye” (tit-
for-tat), as described in [3]: a node has a number
of neighbors in the cluster, and in principle all
are “suffocated “(choked); then a node chooses
a number (by default, 4) nodes among its
cluster partners, that will upload. In BitTorrent
terminology, it is said that these nodes will be
unchocked. The choice is based on the download
rate obtained from neighbors with whom the node
interfaces, plus an optimistic unchoking where a
node is chosen periodically and randomly. The
tracker monitors the availability of nodes and
pieces of the same object; Nodes are periodically
tested, and a node that does not respond is
successively changed. The architecture of a
BitTorrent swarm is illustrated in Figure 1 (a):
the central element is the tracker swarm, and
it connects to several hundred users nodes that
exchange data with each other. Note that there is
only one central point, but an arbitrary number
of trackers spread over the Internet and share
responsibility for thousands of torrents. More
information about BitTorrent can be found in [5].

Overnet/eDonkey2000. It is a hybrid
architecture of two layers, composed of “client”
nodes and “server” nodes, these responsible for
indexing information about files and participating
in search operations. Both client and server
are run by any users. Figure 1 (c) presents an
example of Overnet architecture. Recent versions
of eDonkey implement the Kamdelia protocol
[12], typical of structured overlays. According
to [14], there were 3,736,358 concurrent users
in this network in April 2006, but the eDonkey
site [13] reported on the same occasion only
920,387 users. More information about Overnet
/ eDonkey2000 can be found in [13].

Freenet. It is a file sharing system with
guaranteed anonymity. Weakly based on DHT,
it uses keywords and descriptive text to identify
objects. Searches are performed from node to
node via keys or strings containing descriptive
text. The routing ensures locate objects using a
key until requests exceed the limits of hops-to-
live. There is no hierarchy or central point of
failure.

5. Top Structured Overlays
The main examples of P2P infrastructures

that have a structured organization are described
below.

Chord. Routing infrastructure that uses
consistent hashing SHA-1 to associate object
node keys in a circular space node ids m bits,
i.e. 2 m identifiers. Identifiers nodes are obtained
by making an IP address hash as key objects are
obtained by making a hash of the description of
the object. A key k is associated with the node
identifier equal to k, or if it does not exist, the
next node in the ring (said “successor node”).
Consistent Hashing allows nodes enter and
leave the network causing little stress to the P2P
overlay; when a node joins the network after the
node n, it assumes responsibility for a portion
of the keys that were with n. Each node keeps a
pointer to the node N immediately successors and
a finger table with up to m pointers to other nodes
(logarithmically around the ring). The routing
search is unidirectional along the ring and may
be recursive or iterative. In recursive mode, the
message is forwarded from node to node and
approaching the predecessor of the object; When
it arrives at the node with the object, the search
returns recursively to the origin. In the iterative,
the requesting node is asking nodes that are
getting closer to the node with the object; When
the node with the object is asked, it responds with
the data. Failure of nodes does not cause global
failure, and replication of objects may occur in
consecutive nodes. Figure 2 (a) illustrates an
example of a Chord topology and a successful
ring search operation. One of the examples
of Chord use is the Cooperative File System,
CFS [11]. Further information on Chord can be
obtained from [12].

 Figure 2Examples of Structured P2P[11]

Journal of Advances in Computer Engineering and Technology, 3(2) 2017 95

CAN. Content-Addressable Network is a
decentralized infrastructure whose basic principle
is the use of a virtual Cartesian coordinate space
of n dimensions.

In a multi-torus. The coordinate space is
entirely logical and serves to implement node
identification and its location via distributed
routing tables. Each node is responsible for a
space zone, which is dynamically determined,
and maintains a routing table with the IP address
and coordinates of each of its neighbors in
space. The search protocol employs pairs <key,
object> to map a point P in the coordinate space
using a uniform hash function, and places these
coordinates in the message. A message is routed
to the destination using a simple route to the node
that is closest to the coordinates. Node failure
does not cause a global failure; Multiple nodes
are responsible for an object, and when there is
a failure, the application does a retentive. Figure
2 (b) illustrates the coordinate space of a CAN
network and the routing of a message towards
the destination node, which is responsible for the
searched key. Further information on CAN can
be obtained from [7].

Tapestry. Tapestry is a P2P infrastructure that
allows message routing to objects (or the copy
closest to them, if more than one copy exists) in a
distributed, self-administered, fault-tolerant way.
Routing and location information is distributed
between network nodes. The consistency of the
topology is checked dynamically and can be
rebuilt in case of loss. Tapestry is based on mesh
localization and routing mechanisms proposed
in [15]. This distributed structure allows nodes
to locate objects on an arbitrary size network
using small, constant-length routing maps. In
the original Plaxton mesh, nodes can assume
the role of servers (which store objects), routers
(which forward messages), and clients (which
originate requests). Each node maintains a map
of neighbors; each map has multiple levels, each
level n containing pointers to nodes whose id
must match in n digits. Each entry in the neighbor
map corresponds to a pointer to the nearest node
in the network whose id matches the number
on the map, to a digit position. Messages are
incrementally routed through the digit-by-digit
nodes, from right to left. For example, a node
message from 67493 to 34567 node might pass
the following nodes: xxxx 7 -> xxx 67 -> 567 xx
- x> 4567 -> 34567. The Plaxton mesh uses a root

node for each object that serves as A guarantee
from which an object can be located. When an
object is inserted in the network node in us a
root node nr is associated with the object using
a global deterministic algorithm. A message is
then routed nr ns for storing data in the form of
a mapping <o, ns> in all nodes along the way.
During a search operation, messages to the are
initially routed to nr destination until a node is
found containing the mapping <o, s>. Figure 2
(c) demonstrating a message routing example,
extracted from [11]. More information about
Tapestry can be found at [16].

Pastry. As the Tapestry is a routing
infrastructure based on Plaxton mesh style. The
main difference lies in the approach to obtain
network location and replication objects. Pastry
is used by persistent storage system large-scale
PAST [1] and Scribe [3], a group communication
system and communication events Large scale.
More information about the Pastry can be found
at [5].

Kademlia. Routing infrastructure that uses
an innovative mechanism for routing messages
and search for objects according to a metric
distance between nodes identifiers (non-network
proximity) based xor . The topology has the
property that every message exchanged loads or
reinforces contact useful information. The system
exploits this information to send asynchronous
and parallel search messages that tolerate node
failures without imposing delays and timeouts
to users. Several P2P applications are using the
Kademlia algorithm: Overnet, eDonkey and
eMule, and BitTorrent, which employs Kademlia
to allow the use of torrents without a tracker.
More information about Kademlia can be found
at [7].

III. REPUTATION AND TRUST

The efficient and correct operation of a P2P
system depends on the voluntary participation of
its members. When the nodes of a P2P system
do not cooperate, the consequences are serious
and can cause damage to individual users or
even cause the system to collapse. Traditional
systems assume that users are “obedient” to
adhere to a specified protocol without question
the usefulness of it for you. This obedience is
not a realistic assumption in P2P systems [6]. It

Journal of Advances in Computer Engineering and Technology, 3(2) 2017 96

is therefore necessary that the control system in
a way the nodes, blaming them for their actions
when they refuse to cooperate, and rewarding
them when they collaborate properly. Popularly,
nodes that use more resources than offer (on offer)
are known as free-riders or “ride nodes.” Studies
[10] show that free-riders are common in many
P2P applications file sharing, and the explanation
for this phenomenon is related to the “Tragedy of
the Commons” [9], which argues that people tend
to abuse the use of certain resources if they do not
have to pay for them somehow.

According to [11] nodes of a P2P overlay that
do not cooperate can be divided into selfish and
malicious. The goal is get the most selfish P2P
system contributing minimal resources for the
same. In contrast, the purpose of malicious harm
is one of the nodes or the system as a whole, as
explored in the other subsections of this paper.
Malicious nodes are willing to employ resources
in the attack, such as injecting corrupted files,
which does not occur with selfish nodes.

There are different approaches to encourage
nodes to collaborate. [4] identifies two general
classes of incentive mechanisms: based on trust
(trust) and reputation, and based on trade (trade),
including micro-payment mechanisms (in which
a node overlay P2P offering one service to
another is explicitly renumbered) and resource
exchange schemes. A third category is mentioned
in [15]: inherent generosity, where users decide
to contribute to the system or not based on the
overall level of contributions from other users.

A trade-based layout example is MojoNation
[5], where users offering resources such as
processing time and disk space can accumulate
unit’s mojo, and later, spend them. Another is the
“network favors” [4] proposed to the grid system
P2P OurGrid where the decision to accept or not
a remote node task is taken under the previous
history between the nodes involved.

Trust schemes and reputation are protected
in reciprocity [11]: each node has an associated
reputation, which starts from an initial state and
is built over the life of a node, based on their
interactions with other nodes. This reputation
information can influence the decision of a node
on the partners of their close interaction, seeking
reciprocity. For example, a node may prefer to
request a service to a node that has you running
correctly and efficiently the latest requests or fail
to consider certain nodes have returned files with
corrupted content. Reciprocation is achieved in

a P2P system through a system (management)
reputation.

The terms reputation and trust (trust) are
closely linked. There is considerable variation
in the trust settings in the literature, there is no
consensus on its meaning. According to [1], trust
can be defined as a “firm belief in the competence
of an entity to act reliably and securely on which
to rely, within a specified context.” According [1],
trust is usually specified in terms of a relationship
between an entity that trust, the guarantor, and
one that is entrusted the depositary. Trust is the
basis to allow a depositary use or manipulate
features of a guarantor, or may affect the decision
of a guarantor to use a service of a depositary.
The degree of confidence in an operation is
inversely proportional relation to its risk. On the
relationship between the terms of a reputation
management system determines the reputation of
nodes based on the history of actions the same
and allows opinions on the degree of confidence
are formed around other nodes.

Trusts can be from one to another (trust a
node to perform a service), from one to several
(relying on a set of nodes with whom information
can be securely exchanged), many - to - one (such
as trust a leader), and several to several (when
a group trust each other). One of the important
properties of trust is transitive: if A Trusts B and
B Trusts C, then it is possible that the trust (at
least limitedly) in C. This confidence level can
be expressed in discrete or continuous scale.
In the first case, the figures would be as “low”,
“medium” and “high,” while the second could be
values in the continuous interval [0, 1] . But in the
latter case as representing ignorance, considering
that lack of knowledge and lack of confidence are
very different things. One way expressed in the
Model View of Josang [8], is to employ a triple
values, c , d and i , which correspond to “belief”,
“disbelief” and “ignorance” with c + d + i = 1 (1
> = c , d , i > = 0).

One of the main challenges in P2P area is
a reputable system design that can determine,
accurately and efficiently, reliable Suitable
values for nodes of a decentralized system of
a large scale, and in that nodes enter and leave
independently and at any time of the system,
potentially under different identities, and can
forge messages and identities. The confidence of
a node to another is based, of course, the node’s
view of the reputation of another. Nodes acquire
good reputation through successful interactions,

Journal of Advances in Computer Engineering and Technology, 3(2) 2017 97

receiving a positive assessment by the involved
nodes; for this reason, these systems are said
based on feedback.

Many reputation management systems have
been proposed seeking to solve this challenge.
The literature is particularly rich in proposals;
to illustrate, there are more than fifty articles on
trust and reputation in P2P since 2001, many
with similar or partially overlapping proposals.
According to [16] reputation systems have in
common three main parts: information collection,
determination score and ranking, and response
actions.

The collection of information is related
to the identification scheme used, sources of
information, information aggregation and the
policy adopted for nodes that enter the no
associated historical system (such nodes are
said to strangers). In extreme caution, a node
trusts as an information source only in their
local information. A cautious user can increase
the sources of information asking the opinion of
others you trust based on a prior external relation,
or a node can ask other nodes (nodes or neighbors
who have interacted with success) on a particular
node. If insufficient, a node A can request a node
B (you trust), to ask the nodes where B relies
on a C node, recursively and transitive way.
Here there is a trade-off between security and
performance: increase the number of asked nodes
(seeking qualified information about other nodes)
can adversely affect system performance.

The survey on trust in [16] discusses sources of
information that a node can get on another node,
as well as the strategies that a node can use. The
following sources are listed: trust a priori with
another node; external sources that are reliable;
nodes that are reliable and that are a node away;
nodes that are reliable and that are several nodes
away; and a global reputation system.

The information obtained can be applied
by a node with the following trust strategies:
optimistically assume that all strangers are
trustworthy until proven otherwise; ignore
all strangers until they are proven reliable;
investigate a strange asking trusted nodes;
transitively propagate research through friends
of friends; or use a centralized reputation system.

One of the fundamental problems of
reputation systems is to ensure the validity of the
information provided by other nodes. Therefore,
it is natural that in determining the reputation
score of a stranger, previous experiences of the

node itself are valued in relation to the opinion
of other nodes. A common approach in this
regard is the use of weights: the reputation of an
information given by a node is proportional to
the reputation of this node. Information collected
through transitive trust can be weighed according
to the reputation of the less reputable node in the
chain of trust; Alternatively, if the confidence
values lie in [0, 1], then the value resulting from
the multiplication of reputation scores each of the
nodes.

About management of reputation scores,
[3] presents two possible approaches to map
actions of nodes in a non-negative score of
reputation: one is based on credit and debit (for
nodes that provide or consume content/service,
respectively), and the other only on credit, but
where credits expire naturally over time.

In terms of response share, a reputation
management system provides service as a value
of reputation on other nodes, which can then be
used in different contexts in a P2P system. For
example, when searching a node to perform
reliably a particular service, it can use the
reputation information to infer how likely the
service is running properly. Another example is
the search for an object (such as a file) and find
multiple nodes as candidates for source, use
the reputation value (plus the performance) in
selecting the node or nodes to contact.

According to [5], there are two main issues
that have been addressed in several studies in the
literature:

As new nodes, said strangers should be treated
reciprocity schemes (i.e. reputation schemes)?

Strategies that are based on indirect reciprocity
are vulnerable to collusive behavior?

These issues are important in terms of
reputation management system vulnerabilities.
There are different ways to attack a reputation
system; the three main attacks are discussed
below.

The first attack is known as whitewashing
and only occurs when nodes can exchange your
identity easily (which is the case for many P2P
systems). A node can leave the system and then
return with a new identity in an attempt to get rid
of any bad reputation that it has accumulated. If
the nodes policy towards strangers is permissive,
nodes can “use” the initial reputation, leaving the
system and re-enter with new initial reputation. If
a node cannot distinguish a correct new node of
an old, then whitewashers can cause the collapse

Journal of Advances in Computer Engineering and Technology, 3(2) 2017 98

of the system if no countermeasure is taken [4].
The second type of attack is to plot against

reputation systems. This type of attack is often
effective because in typical reputation systems a
node should consult other nodes on the reputation
of a third party. If many nodes are compromised,
then nodes may provide false testimony, to
increase the reputation of a malicious node, or to
strike a correct node diminishing its reputation.
In principle, the attacker should have massive
resources, making much of the overlay nodes
were his; however, in many P2P systems there
is not a secure authentication scheme, enabling
nodes acquire multiple false identities (Sybil
creating nodes) with a single physical node, as
explored in [5].

The third type of attack is the node traitor [6].
In such an attack, a node behaves appropriately
for a while in order to build a good reputation,
and then operates the system making use of it.
This attack is especially effective when the
nodes earn privileges as they gain reputation. An
example of the traitorous attack is when a user
on eBay [7] builds a reputation with many small
value transactions, and then injures someone
in a large value transaction. In systemic terms,
a traitor node can arise not from a behavioral
change of a user, but a change in the environment:
for example, a perfectly correct client machine
can be infected with a virus style Trojan horse,
then I could randomly abuse good reputation of
the node. Resistance to this type of attack can
be increased by using the analysis of the recent
history of a node [4].

Finally, as previously mentioned, the
reputation of a node is typically used in the
selection policy of a node to interact with. In [5]
is characterized impact selection policies adopted
by between responses P2P nodes that originate
searches. Various policies are identified, among
which include choosing the node advertising
the best ability, that is, with the lowest delay,
which is calculated for each node depending
on the capacity upload and the current number
of uploads simultaneous; random, where the
customer selects a node at random; and file
chunking: the client breaks the file into multiple
blocks, and makes download simultaneously a
piece of each node that announced the file.

In view of attacks, the worst of political
choice of a node is one that selects the node that
advertises itself as the best node. For example, if
a performance information is easily falsifiable, a

search will only be successful when no response is
a malicious node as a malicious node will always
be chosen. According to [15], reputation systems
cannot solve this problem even when the errors
of reputation system are minimal. Techniques
based on randomness are effective to increase the
resistance of a P2P system to attack. However,
randomness negative impact on performance
when attackers are not present.

IV. REPUTATION MANAGEMENT
SYSTEMS

This subsection briefly describes representative
examples of reputation management systems,
building on the concepts presented in this paper.

1.XREP
In [17] authors proposes a scheme for

reputation management for Gnutella. Unlike other
approaches, the reputation of nodes is combined
with the reputation of objects, increasing the
resistance of the kind Sybil attacks. Reputations
are cooperatively managed through a distributed
polling algorithm to reflect the community’s view
of the risk of downloading and use of an object.

The protocol proposed by the authors extend
the Gnutella search protocol with steps and
additional messages, facilitating the assignment,
sharing and combining reputations of nodes and
resources.

The schema is the core XREP protocol,
an extension to the Gnutella search protocol.
Gnutella, a node initiates a search by sending
messages (QUERY) to its neighbors; all nodes
that meet the requested object return response
messages via the same path by which they came.
After receiving multiple hits (messages QUERY
HIT), he asks other nodes opinions on these
nodes that offered the sought object.

The reputations are binary, with (+) or (-), but
the values can be both discrete and continuous.
The protocol polling consists of five phases:

• Search features: at this stage, the
messages QUERY HIT that are returned by
the nodes that holds one or more objects that
satisfy the search, adds a digest for each object
referenced in the message;

• Selection feature and voting by poll: the
requisitor node chooses the best node among those
who seem to meet your search (i.e. respondents).
To this end, the node sends a message to their peers

Journal of Advances in Computer Engineering and Technology, 3(2) 2017 99

containing a polling request on the reputation of
the offered objects and nodes that offer. These
messages are implemented using conventional
messages QUERY, and contains a public key
to be used in response encryption to protect the
integrity and confidentiality of responses. Nodes
receiving the question check their repositories
and respond;

• Assessment of the vote: the node discards
garbled messages (the authors indicate that a node
also makes a grouping and combination of votes
that come from the same node to prevent Sybil
attacks, but do not show how this could be done
except with IP address) selects a set of voters and
sends another message poll (TRUE VOTE) direct
to each, to respond confirming their votes (this
step requires nodes attackers to use real IPs);

• Check node better: the most trusted node
is contacted to verify that it actually exports that
object;

• Download object: node contact each
other and requests the download of the object,
after which it checks the integrity of the object
through the digest and updates your experiences
repository.

2. EigenTrust
EigenTrust [3] is an algorithm for reputation

management for file sharing systems. Each node
has associated with a global reputation, which
is based on the file upload history. The global
reputation of a node i is based on the reputation
indexes locally assigned to i for each node j ,
k , l , etc. and weighted according to their own
reputation of those nodes. In the study, the
approach helped reduce the number of published
spurious files.

The confidence values assigned by a node are
normalized. This is necessary to prevent a node
subvert the system by assigning arbitrarily high
reputations to other malicious nodes, influencing
global reputation for value in a collusion attack.
In a node i.e., the reputation of the node j is
normalized by dividing the reputation value j
in i the sum of all reputation values that i holds.
That is, all reputation values assigned by a node
are between 0 and 1. The disadvantages of this
are two standardizations. First, no distinction
between ignorance and bad reputation. Second,
the values are relative, and therefore cannot be
interpreted in an absolute manner; for example,
in i two nodes j and k have the same value
reputation r, then it is known that the eyes of i , j

and k are equally reputable but it is not known if
both good and bad reputations.

To aggregate the normalized values computed
for each node, a node i question its nodes
“friends” j on the reputation of values that
they assigned to a node k, and uses a weighted
average to the reputations them to calculate the
confidence i in k. To increase knowledge, a node
can ask the opinion of friends of friends, and so
on, recursively, until the entire network.

You cannot allow, of course, each node is
responsible for calculating and reporting their
own reputation. Therefore, the reputation of a
node is computed by more than one node in the
network, and stored in another node. Multiple
nodes compute the score of a node, and a DHT is
used to find such nodes. The proposed algorithm
prevents a node to know the identity of the node
to which it is calculating confidence, so that a
malicious node cannot artificially increase the
reputation of another malicious node. Nodes
entering the system cannot choose which position
you enter the ids space, preventing a re-enter the
exact node in the node position responsible for
calculating its reputation.

Global reputation values can then be used
for isolation of malicious nodes. A node uses
the reputation of the candidates and who will
download a file selection policy. However, a
choice of this kind concentrates requests to the
nodes with higher reputation and does not allow
other nodes to acquire correct reputation. The
proposal is to use a scheme where the node is
selected from semi-random, with influence of
reputation.

According to [6] EigenTrust offers a purely
decentralized solution, but uses a weak identity,
making it susceptible to attacks whitewashing.
Furthermore, [5] indicates that EigenTrust is
susceptible to Sybil attack, since a malicious
node can create an entire graph.

3. PeerTrust
PeerTrust [11] is a reputable framework that

includes an adaptive trust model to quantify and
compare the trust of nodes based on a system of
transactions with feedback, and decentralized
implementation of such a model in a P2P
network. The two main features of PeerTrust are
three basic parameters defining reliable and two
adaptive factors in computing the confidence level
of a node and the definition of general confidence
metric to combine these parameters. Factors that

Journal of Advances in Computer Engineering and Technology, 3(2) 2017 100

a node takes into account the confidence level
calculation in PeerTrust are:

Feedback received from other nodes as a
value; scope of feedback, such as the number of
transactions that a node has with another;

Credibility factor for the node that provided
the feedback differentiating quality feedback
received from other nodes in accordance with the
confidence in;

Transaction context factor to differentiate
the most significant of the least significant
associating weights to transactions such as taking
into account the value of the transaction;

Community context factor to treat
characteristics related to the community and
particular vulnerabilities, such as creating an
incentive for submitting feedback on other nodes.

For implementation of this trust model, each
node has a trust manager and a data locator.
The first is responsible for submitting feedback
and trust assessment through a database with a
segment of the global basis. But the data locator
is for allocation and reliable location data in
the overlay. The manager performs two main
functions:

• Submit feedback to the overlay through
the localizer, which routes the information to
other nodes;

• Measures the confidence level of a
particular node, which is performed in two steps:
first, it collects reliable information about the
node in question through the browser, and then
computes the value of trust.

Two methods are proposed for confidence
level calculation: Dynamic reliable calculation
(DTM, dynamic trust computation), which uses
“fresh” information obtained on demand from all
other network nodes; and reliable approximate
computation (ATC, approximate computation
trust), which is more efficient but less accurate
when calculating the confidence to present
information in a cache. Each node maintains a
cache containing the confidence values provided
by other nodes that it recently announced; it only
needs communication when not find a node in the
cache.

The trust model uses recent transactions to
calculate the confidence to avoid the traitor of the
problem. When the reputation of a node is based
on the cumulative average of their transactions
of their lifetime, and a node has acquired a solid

reputation, this time transaction has little impact
on the reputation, and therefore a node has less
incentive to behave honestly. A node can still
oscillate between honest and dishonest behavior
in order to maintain a reasonable reputation
while acting incorrectly in certain transactions.
The authors propose a simple al of sliding time
window. The confidence values are computed
globally and recently and compared. The idea is
that a good reputation is hard to win, take time
to build but can be destroyed quickly after a few
incorrect transactions.

To avoid security problems related to the
storage and transmission of reliable information,
PeerTrust employs encryption with public /
private keys. Each node is required to have a
key pair and sign your messages feedback with
your private key, and provide the public key,
guaranteeing the integrity and authenticity. The
id of each node is a digest of your public key,
or your public key. To handle routing attacks [4]
suggests the use of replication, but their detailed
proposal.

5.4.3.4. TrustGuard
The authors in [5] discuss three attacks

the reputation systems and how they can be
counteracted with TrustGuard. The first is the
traitor attack, in which a node accumulates
good reputation and then change their behavior.
Another attack is the shilling, where nodes
provide feedback false and collude to increase
their own reputation. The third is to flood the
system with multiple feedback false about
nonexistent transactions. In this sense, TrustGuard
contributions are: introduce a trust model that
deals effectively with strategic oscillations in the
behavior of malicious nodes;

proposal for an admission control based on
feedback to ensure that only transactions with
secure evidence is recorded in terms of reputation;

Proposed credibility algorithms feedback to
effectively filter feedback dishonest.

The architecture of the TrustGuard in each node,
consists of three main components: A Reliability
Assessment Machine (Trust Evaluation Engine),
the Transaction Manager (Transaction Manager)
and Reliability Information Store service (Trust
Data Storage Service).

Before a node i establish a transaction with a
node j , he asks the Confidence Rating machine to
evaluate j. The machine uses an underlying DHT
overlay to contact other nodes, collect feedback

Journal of Advances in Computer Engineering and Technology, 3(2) 2017 101

and aggregate it into a reliable value.
The second component, Transaction Manager,

takes as input values produced by the machine
and makes trust decisions. Before executing a
transaction, the Manager generates and exchange
evidence of the transaction; Once the transaction
is completed, the feedback is received by the
two nodes involved. Messages with feedback are
routed through the overlay DHT to designated
nodes responsible for storing these values.

The designated nodes then invoke the third
component, the storage service, which admit one
feedback only if it passes through an admission
control test for false transactions.

The problems and solutions addressed by
TrustGuard are:

• Strategic or oscillation problem of
traitors: the proposed solution is to incorporate in
determining the confidence in a node fluctuation
in its behavior, and the reputation history. If a
node oscillates its reputation, then it negatively
affects your reputation;

• Detection of counterfeit transactions: to
prevent a node submit feedback transactions that
never occurred, or positive themselves or other
malicious node, or incorrectly negative about
another node to be attacked, it is proposed that
the nodes exchange transaction evidence the so
that a node can demonstrate that really made a
transaction with another. This prevents a node
invent feedback on nodes that did not interact,
but does not prevent a node submit feedback
incorrect on a node who conducted a transaction.

• Feedback dishonest: to deal with the
problem mentioned in the previous item, which is
more serious in collusive situations, TrustGuard
apply weights on the amounts reported in
accordance with the reliability of the node that
reports as EigenTrust and others.

4. FuzzyTrust
The authors in [5] paper describes a reputation

management system for e-commerce P2P
systems. FuzzyTrust uses fuzzy logic (fuzzy) to
compute local scores confidence and make the
aggregation of global scores. The system uses a
DHT to exchange information on reputation (as
in the case of TrustGuard).

The FuzzyTrust was designed based on an
extensive analysis performed on transactions

made on eBay [8]. The pattern follows a Power
Law: there are few high-value transactions,
though many transactions with small value.
The study on the eBay gave rise to three design
principles:

The bandwidth consumption can be quite
high for exchanging reputation for hotspots
(nodes that are involved in most transactions)
and therefore should consider the transaction
imbalance between nodes;

To deal with the least impact of certain users,
the system should not apply the same evaluation
cycle to all users, so that the most frequent users
should be assessed more frequently; because
some transactions are concentrated most of
the value, it makes sense to assess the larger
transactions more frequently than small ones.

FuzzyTrust performs reputation calculation
locally and globally. Locally, nodes employ the
inference engine fuzzy to capture uncertainties
and if AutoFit the variation of local parameters.
The aggregation of collected reputation scores of
all nodes is made to generate an overall score for
each node. Three aggregation weights are used
as parameters: the reputation of a node, the date
of the transaction, and the transaction amount.
As a base, five rules fuzzy are used in the work
described (the authors explain that a greater
number could be used in a larger system):

If the transaction value is quite high and the
transaction time is recent, then the weight in the
aggregation is quite high;

If the transaction amount is quite low or the
transaction time is quite old, so the weight in the
aggregation is quite low;

The reputation of a node is good and the
transaction value is high, then the weight in the
aggregation is quite high;

The reputation of a node is good and the
transaction value is low, then the weight of
aggregation is average;

The reputation of a node is bad, then the
weight in the aggregation is quite small.

Results are shown a comparison by simulation
between the FuzzyTrust and EigenTrust using
three metrics: convergence time required to
establish the global reputation of each node;
the detection rate of malicious nodes; and the
overhead of messages involved in the global
reputation of aggregation, presented individually
for each node and globally. FuzzyTrust and
EigenTrust have similar times for the global
reputation of convergence. On average, with

Journal of Advances in Computer Engineering and Technology, 3(2) 2017 102

FuzzyTrust fewer messages per node, and also
global. FuzzyTrust has a good detection rate of
malicious nodes, between 80% and 98%.

5. Trust Groups
In [4] proposes a framework for reputation

management in large-scale P2P systems where
it is assumed that all nodes are selfish, using a
“virtual currency” for reputation measurement.
The reputation of the nodes is decremented
with the passage of time, so that nodes need to
continue collaborating and providing services.
The main contribution of this paper is the use of
mutual trust groups that act jointly in relation to
reputation. Nodes form communities that exhibit
mutual trust and cooperate to combat selfishness
and malicious behavior of other nodes.

Nodes with higher reputation should have
easier access to services. When two nodes
compete for a service, the provider node must
choose the node that has a higher reputation. To
get this, the system causes another node serving
get higher reputation when the node is served
higher reputation.

Nodes form trust groups, in which each
member trust in others and uses this knowledge to
defend themselves. The reputation of a node is the
reputation of their group, which is determined by
the average reputation of the nodes in the group.
The reputation of a node only increases when it
provides a service to a node outside the group.
The division into groups provides increased
security (the information is more reliable) and
scalability.

the following attack models are treated:
a node always refuses to cooperate;
a node first cooperate and get reputation, and

then passes uncooperative (traitor);
Malicious nodes make an attack in collusion

aiming to reduce the reputation of certain correct
nodes and cause the expulsion of the same group;
• nodes send fake certificates of satisfaction to
increase the reputation each other, and offer
bad service or bad when requested; with high
reputation, can prevent the execution of certain
tasks correct.

6. Freenet
Freenet [17] is a distributed storage system,

which was designed in order to provide: (A)
privacy for nodes that publish, retrieve and
store objects; (B) resistance to censorship; (C)
high availability and reliability; (D) storage and

routing efficient, scalable and adaptive.
Freenet is implemented as an adaptive P2P

network in which nodes perform requests each
other to store and retrieve objects. These objects
are identified by location independent keys.
Each node maintains its own storage space and
makes it available to the network for reading
and writing. The nodes also maintain a dynamic
routing table containing addresses of other nodes
and key objects they store.

The keys in Freenet are calculated using
operations hash SHA-1. Two types of keys are
accepted:

Content-hash key: generated from the hash
object to be stored, it is useful to verify the
integrity of the object;

Signed-subspace key: generated from
operations hash and XOR (a) a descriptive text
of the object to be stored and (b) the public key
associated with the namespace defined by the
user you want to insert the object in the system.

Recovery and inserting objects. When a node
receives a request, it checks locally and is the
object, returns with a tag identifying himself as
the holder of it. Otherwise, the node forwards the
request to the node, listed on your table, which
stores the closest to what you requested key. This
process repeats until the request reaches the node
that owns the object. At that time, the object is
passed along the same path by which transited
request, making each intermediate node to update
its routing table associating the object holder with
the respective key. To provide anonymity node
that is storing the object, each node along the
route may decide to amend the return message
stating that he or any other is the source of the
object.

Have to insert an object in the system, the
requesting node attaches to a key object and sends
a message INSERT for himself. This message
includes a key and a value of hops-to-live that
indicates the number of copies of the object store.
The process to set the location where the object is
stored is similar to a search; the message INSERT
runs the same way as a request for the same key
would travel.

If the amount of hops-to-live reaches 0 and
no collision is detected, a message ALL CLEAR
is sent to the node that requested the insertion.
This node then sends the object that is being
stored by nodes along the same route where the
message INSERT passed beforehand. To provide
anonymity to the node that is publishing the

Journal of Advances in Computer Engineering and Technology, 3(2) 2017 103

object, each node along the route may decide to
change the insertion message stating that he or
any other is the source of the object.

On the other hand, if the key is already being
used by another object, the node returns the
pre-existing object as the node that requested
the insertion had made a request for it. Thus,
malicious attempts to replace existing legitimate
objects for garbage will result in further spread of
legitimate files already stored.

To reduce the amount of information that a
malicious node can get by accessing the value
of hops-to-live, messages do not fail to follow
through when hops-to-live reaches 1 being
forwarded with a certain probability (with hops-
to-live worth always 1).

Anonymous communications. The privacy
in the system is obtained by using a scheme
similar to networks mix Chaum for anonymous
communications [1]. Instead messages are
transported directly from source to destination,
they go through node to node chains in which
each channel is encrypted individually, until the
message reaches the recipient. As each node in the
chain knows only its immediate neighbors, there
is no way to determine the identity of the nodes
publishing, the nodes that are storing objects and
nodes from where the requests to retrieve objects.

Denial of stored objects. For legal and /
or policies in order to provide the appearance
deniability to the nodes, all stored objects are
encrypted. The encryption procedures used do not
aim to make the confidential object content, since
any requesting node should be able to decrypt it
to get it back. Rather, the goal is that the operator
node can deny knowledge of the object’s content,
since he knows only the key of the object and not
the key used to encrypt it.

Cryptographic keys objects stored with
keys signed-subspace can only be obtained
by reversing the operation hash. Already the
cryptographic keys for objects stored with key
content-hash are completely unrelated. So, just a
brute force attack would allow the node operator
has access to the content of the objects it stored.

7. Free Haven
Free Haven [3] is a distributed storage system

based on a community called nodes client. In this
community, each node hosts objects from other
nodes in exchange for an opportunity to store
your own objects that network later. The network
consists of the client is dynamic: objects migrate

from one node to another frequently, considering
the trust that each node has with the others. The
nodes transfer objects from negotiations between
them (trading).

Each node has a public key and one or more
return blocks [8], which together provide secure
communication, certified and pseudonymous with
it. Each node in client has a database containing
the public key and return blocks of other servers.

Objects are divided into shares and stored
in different nodes. Nodes that publish assign an
expiration date to published objects. The nodes
are committed to keep the shares of a particular
object until its validity expires. To encourage
honest behavior, some nodes check whether other
nodes discard their shares before the combined
and decrement their trust in these nodes. This
confidence is monitored and updated by a system
reputation. Each node maintains a database of
trusted values (reputation) of the remaining
nodes.

Recovery and inserting objects. To insert an
object into the system, the node uses to publish
the algorithm for dispersing information proposed
in [9] for dividing the object in shares f1 , ..., fn
where any k shares sufficient to recreate object.
Then, the node generates a cryptographic key pair,
selects and signs a segment object to compose
each share fi, and enters those shares resulting
in your local storage space. The attributes stored
next to each share are: timestamp, expiration
date, public key used to sign it (for integrity
check) number share and signature.

Each object in Free Haven system is indexed
by the key M corresponding to the hashed public
key used to sign the shares that make up the
object. To perform the search for an object, the
requesting node generates a cryptographic key
and a return block. Then sends a route request
message broadcast informing the key H, the public
key PK client and the return block. The message
is received by all nodes that the requesting node
knows.

If so, the node number each share using the
public key PK client and sends it through the
remailer to return block reported in the request
message. These shares will reach the requesting
node; at the time k or more shares have been
received, the node can re-create the object.

Anonymous communications. Communication
between nodes occurs via a network for sending
and receiving e-mails anonymously (remailer
network) [5]. Each node of the Free Haven system

Journal of Advances in Computer Engineering and Technology, 3(2) 2017 104

has associated with it one or more return blocks
(reply blocks) that network. These blocks consist
of routing statements that identify how to get
to a recipient. These instructions are encrypted
successively to a set of remailers, so that each
Remailer can identify only the identity of the
next hop. The instructions in the core block,
visible only by the last remailer reveal the final
destination of the message.

Trading shares. Nodes exchange shares with
each other periodically. The reasons for this
negotiation unfold in four. First, to provide greater
anonymity to the node that publishes; if changes
occur with great frequency in the system, there
is no way assume that a node is proposing an
exchange node that publishes share what he has
to offer. According to enable the input and output
nodes; the idea is that a node that wants to leave
the system negotiates with other nodes targeting
locally store only shares short so that after expiry,
can “get out” smoothly. Third, to allow storage of
long objects with expiry dates. Fourth, to prevent
static targets - for example a node storing certain
shares - can be attacked aiming cause a denial of
service.

Trading ends with the exchange of confirmation
messages, accompanied by “receipt”, between
the nodes involved. In addition, each node sends
receipts (a) the buddy linked to the share which is
crumbling and (b) the buddy of the share that will
store. The concept of buddy is used to provide
reputation Free Haven and will be explained
below.

Reputation. Malicious nodes can accept to
receive certain shares and purposely fail when
storing them. To avoid this kind of behavior,
the system proposes the association between
pairs of shares of the same object. Each share is
responsible for maintaining information about the
location of the other share or buddy. Periodically,
the node responsible for a share sends a request to
the node that is storing their buddy to make sure
that it continues to exist. If it does not respond,
the node that made the request announces the
problem occurred, revealing the identification - in
case a pseudonym - the node that was responsible
for the storage buddy.

Given this and other opportunities that a
node has to take advantages over the other, the
Free Haven system uses a reputation mechanism
which is to identify and account for misbehaving
nodes. Each node maintains two information
about the other: reputation and credibility. The

first refers to the degree of confidence that a
node is complying with the specification of Free
Haven protocol. The second is the belief that the
information received from that node are true.

The nodes spread “references” to the other
whenever register the successful completion
of negotiations, suspect that the buddy of a
particular share was lost or when the reputation
and credibility of values for a given node change
substantially.

Attacks on anonymity. A set of attacks can be
carried out in order to reveal information about the
identity elements of the system, compromising
their anonymity:

Attacks on anonymity reader: an attacker can
develop and publish the Free Haven system a kind
of virus that automatically contacts a particular
host to be performed, revealing information about
the node that the recovered object. Another attack
is to become a node in both client and in mixnet
and attempt an end-to-end attack, correlating,
for example, the traffic of messages with the
request by objects. Still, a compromised node
may disclose which has given object and see
who requests the same or simply monitor request
messages by objects and store their origin. From
there, it would be possible to determine system
usage profiles and frame users to them. According
in [1] Free Haven prevents this type of attack by
employing each return block for only transaction.

Attacks on the anonymity of the node that
stores objects: an attacker can create shares large
and purposely try to reduce the set of nodes
known for their ability to store these shares. Such
an attack partially compromises the anonymity
of these nodes. An attacker can also assume the
role of one of the nodes, and if so, to collect
information on the status and participation of
other nodes in the system (e.g. lists of nodes).
Finally, a simple but very damaging attack is the
spread of a worm in the system, which identifies
the objects stored in the nodes and informs them
to an external application.

Attacks on the anonymity of the node that
publishes: the attacker can assume the role of a
node and register publication actions, seeking to
associate source/origin and time. Alternatively,
the malicious node can observe nodes that
potentially recently published objects and try to
determine who was communicating with them in
the same period.

Attacks on reputation aimed at compromising
the mechanisms associated with the identification

Journal of Advances in Computer Engineering and Technology, 3(2) 2017 105

and accounting of malicious nodes. In the case
of Free Haven system, the main attacks on
reputation are as follows.

Simple treason: the attacker can become part
of the network clients, behave properly long
enough to build a good reputation and then move
to act maliciously deleting locally stored objects
before its expiration date.

Comrade pickup: if a malicious node or
collusion obtains control over the share and its
respective buddy, it can delete both without this
action reflected in the system.

False recommendation (false referrals): a
malicious node can disseminate “references”
false network or send them to a subset of nodes,
compromising the reputation of calculation
performed on them.

Trapping: a malicious node may violate the
Free Haven protocol in several ways. When
another node detects this bad behavior and
accuses him, the malicious node can present
receipts that contradict the informer, and report
the correct node to send “references” false.

V. CONCLUSION
In this paper we present a summary of the main

safety aspects to be considered in P2P networks,
highlighting its importance for the development
of P2P applications and systems on the Internet
and deployment of enterprise applications with
more critical needs in terms of security.

P2P systems are no longer limited to home
users, and start being accepted in academic and
corporate environments. For example, network
file storage systems, data transmission, distributed
computing and collaboration have also taken
advantage of these networks. This computing
model is attractive because a number of reasons.
First, because P2P networks are scalable, because
they have no central point of failure or neck, in
the form of a central server. Second, because
they resist better the intentional attacks such as
denial of service them. Third, because it has the
power to attract a large number of users from the
benefits offered by the community but without
giving up the autonomy of its participants.

One of the main challenges in P2P is to
provide guarantees for safe operation of P2P
applications in decentralized settings and large-
scale, crossing multiple institutional domains and
users congregate and corporations with goals and

demands so distinct.
The aim that P2P networks are widely

adopted, they need to be protected against the
action of malicious nodes. We present various
types of vulnerabilities, attacks that exploit, and
proposals of defense mechanisms to render such
innocuous attacks. Examples of vulnerabilities
discussed in this paper are attacks on the routing
system (and the possible repercussions for the
overlay), communications anonymity attacks and
attacks on reputation systems. Problems such
as these make the security area one of the main
fields of study in P2P networks.

Journal of Advances in Computer Engineering and Technology, 3(2) 2017 106

REFERENCES

[1] Schollmeier, R. (2011, August). A definition of peer-
to-peer networking for the classification of peer-to-peer
architectures and applications. In Peer-to-Peer Computing,
2011. Proceedings. First International Conference on (pp.
101-102). IEEE.‏

[2] Cai, M., & Frank, M. (2014, May). RDFPeers: a
scalable distributed RDF repository based on a structured
peer-to-peer network. In Proceedings of the 13th international
conference on World Wide Web (pp. 650-657). ACM.

[3] Ripeanu, M. (2011, August). Peer-to-peer
architecture case study: Gnutella network. In Peer-to-
Peer Computing, 2011. Proceedings. First International
Conference on (pp. 99-100). IEEE.‏

[4] Ripeanu, M., Foster, I., & Iamnitchi, A. (2012).
Mapping the gnutella network: Properties of large-scale
peer-to-peer systems and implications for system design.
arXiv preprint cs/0209028.‏

[5] Lua, E. K., Crowcroft, J., Pias, M., Sharma, R., &
Lim, S. (2015). A survey and comparison of peer-to-peer
overlay network schemes. IEEE Communications Surveys
& Tutorials, 7(2), 72-93.‏

[6] Bawa, M., Garcia-Molina, H., Gionis, A., &
Motwani, R. (2013). Estimating aggregates on a peer-to-
peer network. submitted for publication.‏

[7] Rowstron, A., & Druschel, P. (2011, November).
Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In IFIP/ACM
International Conference on Distributed Systems Platforms
and Open Distributed Processing (pp. 329-350). Springer
Berlin Heidelberg.‏

[8] Saroiu, S., Gummadi, P. K., & Gribble, S. D.
(2011, December). Measurement study of peer-to-peer file
sharing systems. In Electronic Imaging 2012 (pp. 156-170).
International Society for Optics and Photonics.‏

[9] Stoica, I., Morris, R., Liben-Nowell, D., Karger, D.
R., Kaashoek, M. F., Dabek, F., & Balakrishnan, H. (2013).
Chord: a scalable peer-to-peer lookup protocol for internet
applications. IEEE/ACM Transactions on Networking
(TON), 11(1), 17-32.‏

[10] Freedman, M. J., & Morris, R. (2012, November).
Tarzan: A peer-to-peer anonymizing network layer. In
Proceedings of the 9th ACM conference on Computer and
communications security (pp. 193-206). ACM.‏

[11] Kuhn, M., Szklarczyk, D., Franceschini, A.,
Campillos, M., von Mering, C., Jensen, L. J., ... &

