
 Journal of Advances in Computer Engineering and Technology, 3(2) 2017

 Data Replication-Based Scheduling in Cloud
Computing Environment

Bahareh Rahmati1, Amir Masoud Rahmani2

Received (2016-02-02)
Accepted (2017-02-14)

Abstract - High-performance computing
and vast storage are two key factors required
for executing data-intensive applications. In
comparison with traditional distributed systems
like data grid, cloud computing provides these
factors in a more affordable, scalable and elastic
platform. Furthermore, accessing data files
is critical for performing such applications.
Sometimes accessing data becomes a bottleneck
for the whole cloud workflow system and decreases
the performance of the system dramatically. Job
scheduling and data replication are two important
techniques which can enhance the performance of
data-intensive applications. It is wise to integrate
these techniques into one framework for achieving
a single objective. In this paper, we integrate
data replication and job scheduling with the aim
of reducing response time by reduction of data
access time in cloud computing environment.
This is called data replication-based scheduling
(DRBS). Simulation results show the effectiveness
of our algorithm in comparison with well-known
algorithms such as random and round-robin.

Index Terms - Cloud Computing, Data Access
Time, Data Replication, Job Scheduling, Response
Time

I. INTRODUCTION

Nowadays data-intensive applications play a
prominent role in different scientific fields.

These applications produce huge amounts of
data. This ever-growing amounts of data affect
the systems’ performance. Besides the delay of
wide area networks and the limitation of network
bandwidth make it difficult to access the data.
Consequently, they lead to a bottleneck for the
whole cloud workflow system. This bottleneck
is more sensible when many parallel tasks
simultaneously require accessing the same data
file on one data center [1].

Since the latency involved in accessing data
files increases the jobs’ response time, data
management is of vital importance [2].

“Data replication” is an appropriate technique
to manage data files. Data replication is to create
multiple copies of data in multiple sources in
order to reduce access time and bandwidth
consumption. It also guarantees data reliability
and load balancing for the system [3].

Data replication and job scheduling are
two effective techniques that can enhance the
performance of data-intensive applications.

 In one hand, scheduling the jobs without
replicating the data files that are required for
them needs remote access to data files. Accessing
remotely to these data files requires more time
than accessing directly so; doing scheduling
without replication imposes an overhead of data
access time to the system. On the other hand,
doing replication without scheduling the jobs
fails to enhance the performance of the system in
an effective way because moving large-sized data
files costs more bandwidth and needs longer time

1- Department of Computer Engineering, Science and
Research Branch, Islamic Azad University, Tehran, Iran
(bahar_rahmatii@yahoo.com)
2- Department of Computer Engineering, Science and
Research Branch, Islamic Azad University, Tehran, Iran

76 Journal of Advances in Computer Engineering and Technology, 3(2) 2017

for transfer.
Furthermore, based on new features of cloud,

comparing to the traditional distributed computing
systems like data grid, a cloud computing system
is more cost-effective from different aspects.

Since the data centers on cloud computing
systems contain clusters of commodity hardware
it is more scalable and cost-effective to provide
massive storage and high-performance computing
for data-intensive applications [4].

However, a lot of algorithms have been
presented in data-intensive applications’ field.
Most of these algorithms consider job scheduling
and data replication as two independent techniques
for boosting the grid systems’ performance. What
distinguishes our algorithm from other algorithms
is based on two viewpoints: first, integrating job
scheduling and data replication for reducing job
response time and increasing load balancing of
the system. Second, considering cloud computing
is a better and more cost-effective platform for
data-intensive applications than data grid. These
aspects offer less response time and more load
balancing to the system.

The remainder of the paper is as follows.
Section 2 presents the related work. Section 3
describes the proposed method. Section 4 shows
the simulation results and the final section is the
conclusion and future works.

II. RELATED WORKS

In [5], a Pre-fetching based Dynamic Data
Replication algorithm (PDDRA) is presented.
PDDRA pre-replicates files based on file access
history of the grid sites. This strategy improves
job execution time, network usage, hit ratio and
storage usage. But the best replica selection has
not been studied in this paper. In [6] the authors
presented an algorithm which considers the
number of file requests and response time to place
the replica in the best site within the cluster. By
this way, mean job execution time is minimized.
In [7] a Bandwidth Hierarchy based Replication
(BHR) is presented. The algorithm decreases the
data access time by maximizing network-level
locality and avoiding network congestions. BHR
strategy performs well only when the storage
capacity is limited. In [8], Modified BHR is
presented. This strategy replicates a file that has
been accessed most and it is probable to be used
in near future.

In [9], different replica placements are

discussed. The authors consider a set of parameters
such as access cost, bandwidth consumption and
scalability for evaluating the different replica
placement strategies. In [10], replica placement
in a hierarchical data grid is studied. The authors
consider the hierarchical data grid as a tree
structure. They attempted to avoid unnecessary
replications and enhance the performance of the
system by a new labeling scheme called Dewey
encoding. The authors believed that frequent
insertion can be optimized. Moreover, replicas’
placement can be modified to guarantee service
quality and it is proper to boost the system
performance with a new file placement algorithm.
In [11], a replacement algorithm for data grid is
proposed. This algorithm has two levels and uses
fuzzy logic to evaluate the value of the replicas.
This algorithm enhances the performance of the
system by minimizing the jobs’ execution time
and the numbers of replications.

In [12], research issues in cloud data
management for scientific workflow systems
are discussed. Three research directions are data
storage, data placement and data replication. In
each direction, the existing research problems
are analyzed and promising methodologies are
introduced. In [13], the importance of migrating
scientific workflow management systems from
traditional grid to cloud is focused. It shows that
cloud computing offers a cost-effective solution
for data-intensive applications. Furthermore,
cloud computing systems provide a new platform
for scientists from all over the world to do their
research together. The authors have integrated
Swift scientific workflow management system
with the Open Nebula cloud platform, which
supports high-throughput task scheduling and
efficient resource management in the cloud. They
are working on an interface that will improve the
integration of Swift with other Cloud platforms
such as Amazon EC2 and Open Stack for future.
In [14], the authors investigated the QOS data
replication for big data applications in cloud
computing. To improve the performance of the
cloud computing QOS-aware data replication
algorithm is proposed. This algorithm operates
based on the idea of minimum-cost maximum-
flow problem. The algorithm reduces the total
replication cost and the total time. Reducing
storage space and energy consumption is the case
that can be improved about this algorithm.

Journal of Advances in Computer Engineering and Technology, 3(2) 2017 77

III. THE PROPOSED ALGORITHM

Problem Assumptions
The system contains independent jobs. Each

job is composed of dependent tasks and requires
an input data file. Therefore each job requires
a set of input data files for its execution. It is
possible that a data file in a job being used by
more than one task of that job.

Data files have different sizes, they are read
only and they cannot be modified.

Jobs execute in data centers. There is a
database for each data center which keeps the data
files (replicas) of the data center. The database of
each data center is placed in that data center.

Since each job requires a set of data files. The
data files are distributed on data centers. The
data file distribution is random proportional to
bandwidth and capacity of the data centers.

Each data center is connected to other data
centers through cloud network links. Each link
has a specific bandwidth and data files are sent
sequentially (in a queue) over network links. Jobs
are executed simultaneously in the data centers
with considering the data center workload. Job
response time is proportional to its data access
time.

Each data center has an independent
scheduler which keeps the neighbor data centers’
information.

The DRBS goal is to reduce job response time
by reduction of data access time.

Data Replication-Based Scheduling
DRBS algorithm contains three steps. These

three steps are summarized as follows:
1) Scheduling the jobs with considering the

location of required input data files.
2) Data replication in data centers.
3) Replacement of the data files with the

arrival of new jobs and lack of storage capacity.

1. Scheduling
In scheduling part of the algorithm when a

job arrives at the system an appropriate virtual
machine (VM) is chosen as below:

The job is sent to a data center with maximum
files matching number (maximum number of data
files for the job available at the data center) in
compare with neighbor data centers. This helps
to reduce data access latency involved in moving
the data file which is not present in the scheduled

data center.
If more than one data center has the same

condition in terms of files matching number “job
access time” is checked. Job access time is the
cost of moving the data files that are required for
the job to the scheduled data center. To calculate
job access time first, we calculate the access time
of each required data files for a job then we get
the sum of all “access times”. Finally, the job is
sent to the data center with minimum job access
time. Job access time calculation is shown by (2).

Access time (fi) = ()
()

 (1)

S(i): size of file (fi).
Bw(i): bandwidth.

Job access time (j) = (i) (2)

Ji ϵ J, J: set of jobs.
Mj : set of file indexes in j, i: file number.

It is probable that when data replicated to data
centers more than one data center contains the
requested data file. In this situation, minimum
access time is accepted.

Finally between different virtual machines
in a data center the job schedules to a virtual
machine with less queuing size with considering
the number of jobs to the number of processors.

If there was any unscheduled job at this point
we repeat the mentioned steps. Fig. 1 shows the
pseudo code of scheduling algorithm.

Algorithm of scheduling
Input: J: set of jobs.
Output: all jobs sequenced to an appropriate virtual machines.
Description:

Jieach Jfor .1
2. Send the job to a DC with maximum files matching number
3. if more than one DC exists with same file matching number
Send the job to a DC with less job access time

)i = access time (j)Job , =)iAccess time (f//

//S(i)= file size, Bw(i)= bandwidth
4. end if
5. In each DC send the job to a virtual machine with less waiting
time
6. end for

Fig.1. Scheduling algorithm

2. Data Replication
When jobs scheduled to the appropriate data

centers we replicate data files as follow:
First, we list the required data files for all

jobs in a data center that do not exist in that data

78 Journal of Advances in Computer Engineering and Technology, 3(2) 2017

center. Then we calculate file frequency of each
data file in the list.

“File frequency” is the number of times that
tasks of one job require a shared data file and sum
of all jobs’ file frequencies for each file in one
data center is called “demand”.

Demand (fi) = file frequency (j, i) (3)

Ji ϵ J, J: set of jobs.
Mj : set of file indexes in j, i: file number.

We calculate the demand of files in the list
and also the access time of each file. In this
step we compute the multiplication of these two
parameters as in (4):

Demand (fi) * Access time (fi) (4)

We sort the required data files in descending
order according to the multiplication results.
At last, we replicate the sorted data files till the
storage is full. Note that we will not have more
than one replica of a data file in each data center
after replication. Fig. 2 shows the replication
algorithm.

Algorithm of replication

Input: L: list of files that are required by jobs in each DC but
don’t exist in it.
Output: replicated files.
Description:
//i = file index
//M = job indexs in each DC
1: for each DC
2: for i L
3:calculate Demand(fi)
// Demand (fi) = ()
4:yi = Demand (fi) * Access time (fi) // Access time (fi) =)

)
5:end for
6: sort yi in descending order
7: Replicate files according to their orders.
8: if (new jobs arrive && storage is full)
9: Replace files //replacement algorithm
10: end if
11: end for

Fig.2. Replication algorithm

3. Replacement
With the arrival of new jobs and lack of

storage capacity replacement is done as follow:
We consider two important factors for

choosing a new replica and replacing it with
the old ones. These factors are access time and
demand. If the value in (4) for the new replica be
greater than the mean of this multiplication for all

the existing replicas on the data center, the new
replica is a candidate for replacement.

Note that access time for the existing replica
in here is the minimum access time from the
nearest data center which contains the data file.

The candidate data file for deletion is chosen
by (4) but in ascending order. It is probable that
one or more replicas need to be removed from
the storage in order to store new replica. In this
condition, we compare the importance of the new
replica with the replicas which are supposed to
be deleted (Lines 13 and 14 of the replacement
algorithm). Fig. 3 shows the replacement
algorithm.

Algorithm of replacement

Input: L: list of new files
Output: Replaced files
1: for x DC
2: calculate p= (Demand (fi)
min(Access time (fi)from nearest DC))
//S= list of file indexes that exist in that DC, Access time (fi) =

)
)

3:for t L
4: if Demand(ft) * Access time (ft) is greater than mean(p)
// (Demand (ft) * Access time (ft) >), n= number of existing
files in DC
5: Candidate this file for replacing in that DC
6:end if
7:end for
8: calculate yi = (Demand (fi) * min (Access time (fi) from nearest
DC)
// Access time (fi) =)

)
, i= file indexes that exist in that DC

9: sort yi in ascending order
10: Replace the file with highest priority in sorted form with ft

11: if there is not enough space for replacement
12: Select files for removing in sorted list till enough space is
available
13:if (Demand (ft) * Access time (ft)) is greater than sum of
(Demand (fk) * Access time (fk))
// k =list of selected file indexes in sorted list
14:Replace new file with selected files
15:end if
16: end if
17:end for

Fig.3. Replacement algorithm

IV. SIMULATION AND RESULTS

In order to demonstrate the performance
improvement of DRBS, we used “MATLAB
R2014a” to evaluate our algorithm.

Simulation Environment Assumptions
The parameters values in the simulation

appear as below:
Our simulation platform contains 12 to 100

independent jobs with 8 to 80 different input
data files. The size of data files is in the range of

Journal of Advances in Computer Engineering and Technology, 3(2) 2017 79

[100 GB-900 GB]. There are 4 data centers and
24 virtual machines in our system. Instruction
number per job is in the range of [3000-7000]
instructions and VM MIPS are in range of [2000-
3000]. The data centers have 1.5TB to 28TB
storage capacities and 50 TB/S to 300 TB/S
bandwidths.

Response time and standard deviation are our
evaluation criteria.

We compare DRBS with the time when no
replication is used in this algorithm and also
standard algorithms: random and round-robin
(with and without replication). As mentioned
DRBS algorithm contains two parts: scheduling
and replication. We refer to the scheduling part as
DRBS without replication.

Simulation and Results
Fig. 4 shows the mean job response time of the

three scheduling strategies when no replication is
used for 12 to 100 jobs with 8 to 80 different input
data files on 4 data centers. The mean response
time improvements of DRBS without replication
in comparison with random and round-robin
algorithms are 41.94% and 37.80%.

This is because in the proposed algorithm,
at first step of scheduling each job schedules
to a data center with maximum files matching
number. Hence as we expected the job response
time is reduced by reducing data movement
between data centers.

Fig.4. Mean jobs response time of three strategies

without replication

Fig.5 also shows this comparison when
data are replicated to data centers. In this case,
the DRBS mean response time improvements
increased to 55.67%, 51.74% in comparison
with random round-robin algorithms. This is
justified by the primary scheduling strategy and

considering the files that are required by the jobs.

Fig.5. Mean jobs response time of three strategies with
replication

Fig. 6 and 7 show the comparison of STD
(standard deviation) of the three strategies (with
and without replication). The STD of DRBS
is less than others which indicate better load
balancing of our algorithm.

Fig.6. Mean job STD of three strategies without
replication

Fig.7. Mean job STD of three strategies with replication

Journal of Advances in Computer Engineering and Technology, 3(2) 2017 80

V. CONCLUSION

In this work, we proposed data replication
based scheduling algorithm. The DRBS
integrates scheduling and replication with the aim
of reducing response time by reduction of data
access time in cloud computing environment.
We compared the DRBS strategy with well-
known algorithms: random and round-robin.
Experimental results demonstrate that our DRBS
algorithm can achieve a significant improvement
over random and round-robin algorithms in case of
response time and load balancing which indicates
the effectiveness of our algorithm.

In future, we will propose a dynamic data
replication algorithm and we will also consider
a threshold for replicating data. Since the DRBS
algorithm focuses on scheduling independent
jobs; the algorithm can be extended to incorporate
job dependencies in workflow environment and
data files can be pre-fetched on the data centers
based on the dependency between data files.

REFERENCES

[1] Djebbar, E.I. and Belalem, G., 2013, December.
Optimization of tasks scheduling by an efficacy data
placement and replication in cloud computing. In
International Conference on Algorithms and Architectures
for Parallel Processing (pp. 22-29). Springer International
Publishing.

[2] Mansouri, N., 2014. A threshold-based dynamic data
replication and parallel job scheduling strategy to enhance
Data Grid. Cluster Computing, 17(3), pp.957-977.

[3] Ma, J., Liu, W. and Glatard, T., 2013. A classification
of file placement and replication methods on grids. Future
Generation Computer Systems, 29(6), pp.1395-1406.

[4] Yuan, D., Yang, Y., Liu, X. and Chen, J., 2010.
A data placement strategy in scientific cloud workflows.
Future Generation Computer Systems, 26(8), pp.1200-1214.

[5] Saadat, N. and Rahmani, A.M., 2012. PDDRA: A
new pre-fetching based dynamic data replication algorithm
in data grids. Future Generation Computer Systems, 28(4),
pp.666-681.

[6] Sashi, K. and Thanamani, A.S., 2010. Dynamic
replica management for data grid. International Journal of
Engineering and Technology, 2(4), p.329.

[7] Park, S.M., Kim, J.H., Ko, Y.B. and Yoon, W.S.,
2003, December. Dynamic data grid replication strategy
based on Internet hierarchy. In International Conference on
Grid and Cooperative Computing (pp. 838-846). Springer
Berlin Heidelberg.

[8] Sashi, K. and Thanamani, A.S., 2011. Dynamic
replication in a data grid using a Modified BHR Region

Based Algorithm. Future Generation Computer Systems,
27(2), pp.202-210.

[9] Souri, A. and Rahmani, A.M., 2014. A survey for
replica placement techniques in data grid environment.
International Journal of Modern Education and Computer
Science, 6(5), p.46.

[10] Rahmani, A.M., Fadaie, Z. and Chronopoulos,
A.T., 2015. Data placement using Dewey Encoding in a
hierarchical data grid. Journal of Network and Computer
Applications, 49, pp.88-98.

[11] Saadat, N. and Rahmani, A.M., 2016. A Two-Level
Fuzzy Value-Based Replica Replacement Algorithm in Data
Grids. International Journal of Grid and High Performance
Computing (IJGHPC), 8(4), pp.78-99.

[12] Yuan, D., Cui, L. and Liu, X., 2014, August.
Cloud data management for scientific workflows: Research
issues, methodologies, and state-of-the-art. In Semantics,
Knowledge and Grids (SKG), 2014 10th International
Conference on (pp. 21-28). IEEE.

[13] Zhao, Y., Li, Y., Raicu, I., Lin, C., Tian, W. and
Xue, R., 2014. Migrating Scientific Workflow Management
Systems from the Grid to the Cloud. In Cloud Computing
for Data-Intensive Applications (pp. 231-256). Springer
New York.

[14] Vijaya-Kumar-C, D.G., 2014, Optimization of
Large Data in Cloud computing using Replication Methods.
International Journal of Computer Science & Information
Technologies, 5(3).

