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Abstract - High-performance computing 
and vast storage are two key factors required 
for executing data-intensive applications.  In 
comparison with traditional distributed systems 
like data grid, cloud computing provides these 
factors in a more affordable, scalable and elastic 
platform. Furthermore, accessing data files 
is critical for performing such applications. 
Sometimes accessing data becomes a bottleneck 
for the whole cloud workflow system and decreases 
the performance of the system dramatically. Job 
scheduling and data replication are two important 
techniques which can enhance the performance of 
data-intensive applications. It is wise to integrate 
these techniques into one framework for achieving 
a single objective. In this paper, we integrate 
data replication and job scheduling with the aim 
of reducing response time by reduction of data 
access time in cloud computing environment. 
This is called data replication-based scheduling 
(DRBS). Simulation results show the effectiveness 
of our algorithm in comparison with well-known 
algorithms such as random and round-robin. 

Index Terms - Cloud Computing, Data Access 
Time, Data Replication, Job Scheduling, Response 
Time

I. INTRODUCTION

Nowadays data-intensive applications play a 
prominent role in different scientific fields. 

These applications produce huge amounts of 
data. This ever-growing amounts of data affect 
the systems’ performance. Besides the delay of 
wide area networks and the limitation of network 
bandwidth make it difficult to access the data. 
Consequently, they lead to a bottleneck for the 
whole cloud workflow system. This bottleneck 
is more sensible when many parallel tasks 
simultaneously require accessing the same data 
file on one data center [1].   

Since the latency involved in accessing data 
files increases the jobs’ response time, data 
management is of vital importance [2]. 

“Data replication” is an appropriate technique 
to manage data files. Data replication is to create 
multiple copies of data in multiple sources in 
order to reduce access time and bandwidth 
consumption. It also guarantees data reliability 
and load balancing for the system [3]. 

Data replication and job scheduling are 
two effective techniques that can enhance the 
performance of data-intensive applications.

 In one hand, scheduling the jobs without 
replicating the data files that are required for 
them needs remote access to data files. Accessing 
remotely to these data files requires more time 
than accessing directly so; doing scheduling 
without replication imposes an overhead of data 
access time to the system. On the other hand, 
doing replication without scheduling the jobs 
fails to enhance the performance of the system in 
an effective way because moving large-sized data 
files costs more bandwidth and needs longer time 
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for transfer. 
Furthermore, based on new features of cloud, 

comparing to the traditional distributed computing 
systems like data grid, a cloud computing system 
is more cost-effective from different aspects.

Since the data centers on cloud computing 
systems contain clusters of commodity hardware 
it is more scalable and cost-effective to provide 
massive storage and high-performance computing 
for data-intensive applications [4]. 

However, a lot of algorithms have been 
presented in data-intensive applications’ field. 
Most of these algorithms consider job scheduling 
and data replication as two independent techniques 
for boosting the grid systems’ performance.  What 
distinguishes our algorithm from other algorithms 
is based on two viewpoints: first, integrating job 
scheduling and data replication for reducing job 
response time and increasing load balancing of 
the system. Second, considering cloud computing 
is a better and more cost-effective platform for 
data-intensive applications than data grid. These 
aspects offer less response time and more load 
balancing to the system. 

The remainder of the paper is as follows. 
Section 2 presents the related work. Section 3 
describes the proposed method. Section 4 shows 
the simulation results and the final section is the 
conclusion and future works.

II. RELATED WORKS

In [5], a Pre-fetching based Dynamic Data 
Replication algorithm (PDDRA) is presented. 
PDDRA pre-replicates files based on file access 
history of the grid sites. This strategy improves 
job execution time, network usage, hit ratio and 
storage usage. But the best replica selection has 
not been studied in this paper. In [6] the authors 
presented an algorithm which considers the 
number of file requests and response time to place 
the replica in the best site within the cluster.  By 
this way, mean job execution time is minimized. 
In [7] a Bandwidth Hierarchy based Replication 
(BHR) is presented. The algorithm decreases the 
data access time by maximizing network-level 
locality and avoiding network congestions. BHR 
strategy performs well only when the storage 
capacity is limited. In [8], Modified BHR is 
presented. This strategy replicates a file that has 
been accessed most and it is probable to be used 
in near future.

In [9], different replica placements are 

discussed. The authors consider a set of parameters 
such as access cost, bandwidth consumption and 
scalability for evaluating the different replica 
placement strategies. In [10], replica placement 
in a hierarchical data grid is studied. The authors 
consider the hierarchical data grid as a tree 
structure. They attempted to avoid unnecessary 
replications and enhance the performance of the 
system by a new labeling scheme called Dewey 
encoding. The authors believed that frequent 
insertion can be optimized. Moreover, replicas’ 
placement can be modified to guarantee service 
quality and it is proper to boost the system 
performance with a new file placement algorithm. 
In [11], a replacement algorithm for data grid is 
proposed. This algorithm has two levels and uses 
fuzzy logic to evaluate the value of the replicas. 
This algorithm enhances the performance of the 
system by minimizing the jobs’ execution time 
and the numbers of replications. 

In [12], research issues in cloud data 
management for scientific workflow systems 
are discussed. Three research directions are data 
storage, data placement and data replication. In 
each direction, the existing research problems 
are analyzed and promising methodologies are 
introduced. In [13], the importance of migrating 
scientific workflow management systems from 
traditional grid to cloud is focused. It shows that 
cloud computing offers a cost-effective solution 
for data-intensive applications. Furthermore, 
cloud computing systems provide a new platform 
for scientists from all over the world to do their 
research together. The authors have integrated 
Swift scientific workflow management system 
with the Open Nebula cloud platform, which 
supports high-throughput task scheduling and 
efficient resource management in the cloud. They 
are working on an interface that will improve the 
integration of Swift with other Cloud platforms 
such as Amazon EC2 and Open Stack for future. 
In [14], the authors investigated the QOS data 
replication for big data applications in cloud 
computing. To improve the performance of the 
cloud computing QOS-aware data replication 
algorithm is proposed. This algorithm operates 
based on the idea of minimum-cost maximum-
flow problem. The algorithm reduces the total 
replication cost and the total time. Reducing 
storage space and energy consumption is the case 
that can be improved about this algorithm.
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III. THE PROPOSED ALGORITHM

Problem Assumptions
The system contains independent jobs. Each 

job is composed of dependent tasks and requires 
an input data file. Therefore each job requires 
a set of input data files for its execution. It is 
possible that a data file in a job being used by 
more than one task of that job. 

Data files have different sizes, they are read 
only and they cannot be modified. 

Jobs execute in data centers. There is a 
database for each data center which keeps the data 
files (replicas) of the data center. The database of 
each data center is placed in that data center. 

Since each job requires a set of data files. The 
data files are distributed on data centers. The 
data file distribution is random proportional to 
bandwidth and capacity of the data centers. 

Each data center is connected to other data 
centers through cloud network links. Each link 
has a specific bandwidth and data files are sent 
sequentially (in a queue) over network links. Jobs 
are executed simultaneously in the data centers 
with considering the data center workload.    Job 
response time is proportional to its data access 
time. 

Each data center has an independent 
scheduler which keeps the neighbor data centers’ 
information.  

The DRBS goal is to reduce job response time 
by reduction of data access time.

Data Replication-Based Scheduling
DRBS algorithm contains three steps. These 

three steps are summarized as follows:
1) Scheduling the jobs with considering the 

location of required input data files.
2) Data replication in data centers.
3) Replacement of the data files with the 

arrival of new jobs and lack of storage capacity.

1. Scheduling
In scheduling part of the algorithm when a 

job arrives at the system an appropriate virtual 
machine (VM) is chosen as below:

The job is sent to a data center with maximum 
files matching number (maximum number of data 
files for the job available at the data center) in 
compare with neighbor data centers. This helps 
to reduce data access latency involved in moving 
the data file which is not present in the scheduled 

data center.
If more than one data center has the same 

condition in terms of files matching number “job 
access time” is checked. Job access time is the 
cost of moving the data files that are required for 
the job to the scheduled data center. To calculate 
job access time first, we calculate the access time 
of each required data files for a job then we get 
the sum of all “access times”. Finally, the job is 
sent to the data center with minimum job access 
time. Job access time calculation is shown by (2). 

Access time (fi) = ( )
( )

                         (1)

S(i): size of file (fi).
Bw(i): bandwidth.

Job access time (j) = ( i)   (2)

Ji ϵ J,  J: set of jobs. 
Mj : set of file indexes in j, i: file number.

It is probable that when data replicated to data 
centers more than one data center contains the 
requested data file. In this situation, minimum 
access time is accepted.

Finally between different virtual machines 
in a data center the job schedules to a virtual 
machine with less queuing size with considering 
the number of jobs to the number of processors. 

If there was any unscheduled job at this point 
we repeat the mentioned steps. Fig. 1 shows the 
pseudo code of scheduling algorithm.

 
  
 
 
 
 
 

Algorithm of scheduling 
Input: J: set of jobs. 
Output: all jobs sequenced to an appropriate virtual machines. 
Description: 

Jieach Jfor  .1 
2. Send the job to a DC with maximum files matching number 
3. if more than one DC exists with same file matching number 
Send the job to a DC with less job access time 

)i = access time (j)Job ,   = )iAccess time (f//
  

//S(i)= file size, Bw(i)= bandwidth 
4. end if 
5. In each DC send the job to a virtual machine with less waiting 
time 
6. end for 

Fig.1. Scheduling algorithm

2. Data Replication
When jobs scheduled to the appropriate data 

centers we replicate data files as follow:
First, we list the required data files for all 

jobs in a data center that do not exist in that data 
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center. Then we calculate file frequency of each 
data file in the list. 

“File frequency” is the number of times that 
tasks of one job require a shared data file and sum 
of all jobs’ file frequencies for each file in one 
data center is called “demand”.

Demand (fi)  = file frequency (j, i)       (3)

Ji ϵ J, J: set of jobs. 
Mj : set of file indexes in j, i: file number.

We calculate the demand of files in the list 
and also the access time of each file. In this 
step we compute the multiplication of these two 
parameters as in (4):

Demand (fi) * Access time (fi)                   (4)

We sort the required data files in descending 
order according to the multiplication results. 
At last, we replicate the sorted data files till the 
storage is full. Note that we will not have more 
than one replica of a data file in each data center 
after replication. Fig. 2 shows the replication 
algorithm.

Algorithm of replication 
---------------------------------------------------------------------------

Input: L: list of files that are required by jobs in each DC but 
don’t exist in it.
Output: replicated files. 
Description: 
//i = file index 
//M = job indexs in each DC 
1: for each DC 
2: for i  L 
3:calculate Demand(fi)
// Demand (fi)  =  ( )
4:yi =  Demand (fi)  * Access time (fi) // Access time (fi) = )

)
5:end for 
6: sort yi in descending order 
7: Replicate files according to their orders. 
8: if (new jobs arrive && storage is full) 
9: Replace files  //replacement algorithm 
10: end if
11: end for

Fig.2. Replication algorithm

3. Replacement 
With the arrival of new jobs and lack of 

storage capacity replacement is done as follow:
We consider two important factors for 

choosing a new replica and replacing it with 
the old ones. These factors are access time and 
demand. If the value in (4) for the new replica be 
greater than the mean of this multiplication for all 

the existing replicas on the data center, the new 
replica is a candidate for replacement.

Note that access time for the existing replica 
in here is the minimum access time from the 
nearest data center which contains the data file.

The candidate data file for deletion is chosen 
by (4) but in ascending order. It is probable that 
one or more replicas need to be removed from 
the storage in order to store new replica. In this 
condition, we compare the importance of the new 
replica with the replicas which are supposed to 
be deleted (Lines 13 and 14 of the replacement 
algorithm). Fig. 3 shows the replacement 
algorithm.

Algorithm of replacement 
-------------------------------------------------------------------------------

-----
Input: L: list of new files 
Output: Replaced files 
1: for x  DC 
2: calculate p= (Demand (fi)
min(Access time (fi)from nearest DC))
//S= list of file indexes that exist in that DC, Access time (fi) = 

)
)

3:for  t  L 
4: if Demand(ft) * Access time (ft) is greater than mean(p) 
// (Demand (ft) * Access time (ft)  > ), n= number of existing 
files  in DC 
5: Candidate this file for replacing in that DC 
6:end if 
7:end for
8: calculate yi =  (Demand (fi) * min (Access time (fi) from nearest 
DC) 
// Access time (fi) = )

)
, i= file indexes that exist in that DC

9: sort yi in ascending order 
10: Replace the file with highest priority in sorted form with ft

11: if  there is not enough space for replacement 
12: Select files for removing in sorted list till enough space is 
available 
13:if  (Demand (ft) * Access time (ft)) is greater than sum of 
(Demand (fk) * Access time (fk))
// k =list of selected file indexes in sorted list 
14:Replace new file with selected files 
15:end if 
16: end if
17:end for

Fig.3. Replacement algorithm

IV. SIMULATION AND RESULTS

In order to demonstrate the performance 
improvement of DRBS, we used “MATLAB 
R2014a” to evaluate our algorithm.

Simulation Environment Assumptions
The parameters values in the simulation 

appear as below:
Our simulation platform contains 12 to 100 

independent jobs with 8 to 80 different input 
data files. The size of data files is in the range of 
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[100 GB-900 GB]. There are 4 data centers and 
24 virtual machines in our system. Instruction 
number per job is in the range of [3000-7000] 
instructions and VM MIPS are in range of [2000-
3000]. The data centers have 1.5TB to 28TB 
storage capacities and 50 TB/S to 300 TB/S 
bandwidths. 

Response time and standard deviation are our 
evaluation criteria.  

We compare DRBS with the time when no 
replication is used in this algorithm and also 
standard algorithms: random and round-robin 
(with and without replication). As mentioned 
DRBS algorithm contains two parts: scheduling 
and replication. We refer to the scheduling part as 
DRBS without replication.

Simulation and Results
Fig. 4 shows the mean job response time of the 

three scheduling strategies when no replication is 
used for 12 to 100 jobs with 8 to 80 different input 
data files on 4 data centers. The mean response 
time improvements of DRBS without replication 
in comparison with random and round-robin 
algorithms are 41.94% and 37.80%. 

This is because in the proposed algorithm, 
at first step of scheduling each job schedules 
to a data center with maximum files matching 
number. Hence as we expected the job response 
time is reduced by reducing data movement 
between data centers.

 
Fig.4. Mean jobs response time of three strategies 

without replication

Fig.5 also shows this comparison when 
data are replicated to data centers. In this case, 
the DRBS mean response time improvements 
increased to 55.67%, 51.74% in comparison 
with random round-robin algorithms. This is 
justified by the primary scheduling strategy and 

considering the files that are required by the jobs.

 

Fig.5. Mean jobs response time of three strategies with 
replication

Fig. 6 and 7 show the comparison of STD 
(standard deviation) of the three strategies (with 
and without replication). The STD of DRBS 
is less than others which indicate better load 
balancing of our algorithm.

Fig.6. Mean job STD of three strategies without 
replication

   

Fig.7. Mean job STD of three strategies with replication
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V. CONCLUSION

In this work, we proposed data replication 
based scheduling algorithm. The DRBS 
integrates scheduling and replication with the aim 
of reducing response time by reduction of data 
access time in cloud computing environment. 
We compared the DRBS strategy with well-
known algorithms: random and round-robin. 
Experimental results demonstrate that our DRBS 
algorithm can achieve a significant improvement 
over random and round-robin algorithms in case of 
response time and load balancing which indicates 
the effectiveness of our algorithm.  

In future, we will propose a dynamic data 
replication algorithm and we will also consider 
a threshold for replicating data. Since the DRBS 
algorithm focuses on scheduling independent 
jobs; the algorithm can be extended to incorporate 
job dependencies in workflow environment and 
data files can be pre-fetched on the data centers 
based on the dependency between data files.
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