
 Journal of Advances in Computer Engineering and Technology, 2(4) 2016

Adaptive Dynamic Data Placement Algorithm for
Hadoop in Heterogeneous

Environments
Avishan Sharafi1, Ali Rezaee2

Received (2016-07-16)
Accepted (2016-12-11)

Abstract - Hadoop MapReduce framework is
an important distributed processing model for
large-scale data intensive applications. The current
Hadoop and the existing Hadoop distributed file
system’s rack-aware data placement strategy in
MapReduce in the homogeneous Hadoop cluster
assume that each node in a cluster has the same
computing capacity and a same workload is assigned
to each node. Default Hadoop doesn’t consider
load state of each node in distribution input data
blocks, which may cause inappropriate overhead
and reduce Hadoop performance, but in practice,
such data placement policy can noticeably reduce
MapReduce performance and may increase extra
energy dissipation in heterogeneous environments.
This paper proposes a resource aware adaptive
dynamic data placement algorithm (ADDP) .With
ADDP algorithm, we can resolve the unbalanced
node workload problem based on node load status.
The proposed method can dynamically adapt and
balance data stored on each node based on node
load status in a heterogeneous Hadoop cluster.
Experimental results show that data transfer
overhead decreases in comparison with DDP and
traditional Hadoop algorithms. Moreover, the
proposed method can decrease the execution time
and improve the system’s throughput by increasing
resource utilization

Index Terms — Hadoop, MapReduce, Resource-
aware, Data placement, Heterogeneous

I. INTRODUCTION

IN recent years, the World Wide Web has
been adopted as a very useful platform for

developing data-intensive applications, since
the communication paradigm of the Web is
sufficiently open and powerful. The search
engine, webmail, data mining and social network
services are currently indispensable data-
intensive applications. These applications need
data from a few gigabytes to several terabytes or
even petabytes.

Google leverages the MapReduce model to
process approximately twenty petabytes of data
per day in a parallel programming models[1].
Hadoop MapReduce is an attractive model for
parallel data processing in high-performance
cluster computing environments. MapReduce
model is primarily developed by Yahoo [2][site
apache]. Hadoop is used by Yahoo servers, where
hundreds of terabytes of data are generated on at
least 10,000 cores[3]. Facebook uses Hadoop to
process more than 15 terabytes of data per day.
In addition to Yahoo and Facebook, Amazon and
Last.fm are employing Hadoop to manage the
massive huge amount of data [1].

The scalability of MapReduce is proven to be
high, because in the MapReduce programming
model the job will be divided into a series of small
tasks and run on multiple machines in a large-scale
cluster[4]. MapReduce allows a programmer
with no specific knowledge of distributed
programming to create his/her MapReduce
functions running in parallel across multiple
nodes in the cluster. MapReduce automatically
handles the gathering of results across the multiple
nodes and return a single result or set of results
to server[4]. More importantly, the MapReduce

1- Department of Computer Engineering, Islamic Azad
University South Tehran Branch, Tehran, Iran.(Avishan.
Sharafi@gmail.com)
2- Department of Computer Engineering ,Science and
Research Branch, Islamic Azad University, Tehran, Iran.

18 Journal of Advances in Computer Engineering and Technology, 2(4) 2016

platform can offer fault tolerance. MapReduce
model can automatically handle failures and it is
fault tolerance mechanisms. When a node fails,
MapReduce moves tasks, which is run on the
failed node, to be rerun on another node.[5]

In the Hadoop architecture, data locality is
one of the important factors affecting Hadoop
applications performance. However, in a
heterogeneous environment, the data required
for performing a task is often nonlocal ,which
affects the performance of Hadoop platform[4].
Data placement decision of Hadoop distributed
file system (HDFS) is very important for the
data locality which is a determining factor for
the MapReduce performance and is a primary
criterion for task scheduling of MapReduce
model. The existing HDFS’s rack- aware of
data placement strategy and replication scheme
works well with MapReduce framework in
homogeneous Hadoop clusters[6], but in practice,
such data placement policy can noticeably
reduce heterogeneous environment performance
and may cause increasingly the overhead of
transferring unprocessed data from slow nodes to
fast nodes [7]. The rest of this paper is organized
as follows. In Section II, the Hadoop system
architecture, MapReduce model, HDFS, and
the motivation for this study is reported. Section
III presents ADDP algorithm, mathematics
formulas, variable description and scenarios.
Experiments and performance analysis are
presented in Section IV. Section V concludes this
paper by summarizing the main contributions of
this paper and commenting on future directions
of our work.

II. RELATED WORK AND MOTIVATION

1. Hadoop

Hadoop is a successful and well-known

implementation of the MapReduce model, which
is open-source and supported by the Apache
Software.

Hadoop consists of two main components:
the MapReduce programming model and the
Hadoop’s Distributed File System HDFS [4],
in which MapReduce is responsible for parallel
processing and the HDFS is responsible for data
management. In the Hadoop system, MapReduce
and HDFS are responsible for management
parallel process jobs and management data,
respectively. JobTracker module in Mapreduce

partitions a job to some tasks and HDFS partitions
input data into blocks, and assigns them to every
node in a cluster. Hadoop is based on distributed
architecture it means HadoopMapreduce adopts
master/slave architecture, in which a master
node controls a group of slave nodes on which
the Map and Reduce functions run in parallel.
Slaves are nodes that process tasks that master
assigns to them .In the MapReduce model, the
master is called JobTracker, and each slave is
called TaskTracker. In the HDFS, the master
is called NameNode, and each slave is called
DataNode. Master is responsible for distribution
data blocks and assigning tasks slot to every
node in Hadoop cluster. The default Hadoop
assumes that the node computing capacity and
storage capacity are the same in the cluster such
a homogeneous environment, the data placement
strategy of Hadoop can boost the efficiency of
the MapReduce model, but in a heterogeneous
environment, such data placement has many
problems [1].

2. MapReduce

MapReduce is a parallel programming
model used in clusters that have numerous
nodes and use computing resources to manage
large amounts of data in parallel. MapReduce is
proposed by Google in 2004. In the MapReduce
model, an application should process is called a
“job”. Hadoop divides the input of a MapReduce
job into some pieces called “map tasks” and
“reduce tasks”, in which the map-tasks run the
map function and the reduce tasks run the reduce
function. Map function processes input tasks and
data assigned by the Master node and produce
intermediate (key, value) pairs. Based on (key,
value) pairs which are generated by map function
processes, the reduce function then merges, sorts,
and returns the result. The MapReduce model is
based on “master/slave” concept. It distributes a
large amount of input data to many processing
nodes to perform parallel processing, which
reduces the execution time and improves the
performance. Input data are divided into many
of the same size of data blocks; these blocks
are then assigned to nodes that perform the
same map function in parallel. After the map
function is performed, the generated output is an
intermediate several key, value pairs. The nodes
that perform the reduce function obtain these
intermediate data, and finally generate the output

Journal of Advances in Computer Engineering and Technology, 2(4) 2016 19

data[8] . The MapReduce model was conceived
with the principle that “moving computation is
much cheaper than moving data[5] .

3. HDFS

HDFS is based on the Google File System
which is used with the MapReduce model.
It consists of a NameNode module in the
MasterNode and many DataNodes modules in
the slaveNodes. The NameNode is responsible
for the management and storage of the entire file
system and file information (such a namespace
and metadata). NameNode is responsible for
partition the input files that are written in HDFS
into many data blocks. These blocks are the same
size with default size of 64 MB. HDFS allocates
these data blocks to every DataNode. DataNodes
are responsible for storing and processing these
data blocks and sending the result to NameNode.
Hadoop is fault tolerance and makes three replicas
of each data block for the files that are stored on
HDFS. HDFS’s replica placement strategy is to
put one replica of the block on one node in the
local rack, another on a different node in the same
rack, and the third on a node in some other rack.
When failure happens to a node, these replicas
become very important and they should process
instead of lost data blocks [1].

4. Background and motivation

The Hadoop default data placement strategy
assumes that the computing capacity and storage
capacity of each node in the cluster is the same
.Each node is assigned the same workload. Data
placement strategy of Hadoop can boost the
efficiency of the MapReduce model, but in a
heterogeneous environment, such data placement
has many problems. In a heterogeneous
environment, the difference in nodes computing
capacity may cause load imbalance. The reason
is that different computing capacities between
nodes cause different task execution time, so
the faster nodes finish processing local data
blocks faster than slower nodes do. At this point,
the master assigns non-performed tasks to the
idle faster nodes, but these nodes do not own
the data needed for processing .The required
data should be transferred from slow nodes to
idle faster nodes through the network. Because
of waiting for the data transmission time, the
task execution time increases. It causes the

entire job execution time to become extended.
A large number of moved data affects Hadoop
performance. To improve the performance of
Hadoop in heterogeneous clusters, this paper
aims to minimize data movement between slow
and fast nodes. This goal can be achieved by a
data placement scheme that distributes and stores
data across multiple heterogeneous nodes based
on their computing capacities. Data movement
can be reduced if each node is assigned to the
workload that is based on node’s data processing
speed and node’s system load[4, 7].

Some task scheduling strategies have been
proposed in Hadoop framework in recent
years. Reference [9] proposed an Adaptive
Task Scheduling Strategy Based on Dynamic
Workload Adjustment called (ATSDWA). Each
tasktracker collects its own load information
and reports it to jobtracker periodically, so
tasktrackers can adapt to the change of load at
runtime, obtaining tasks in accordance with the
computing abilities. Reference [4] proposed
data placement algorithm (DDP) which
distributes input data blocks based on each node
computing capacity in a heterogeneous Hadoop
cluster. Reference[10]proposed a resource
aware scheduling algorithm in which algorithm
classifies the type of work and node workload
to I/O bound jobs and CPU-bound jobs. Each
workload assigns to a group of nodes. Algorithm
selects appropriate tasks to run according to the
workload of the node. Reference[11] explored
an extensional MapReduce task scheduling
algorithm for deadline constraints (MTSD) for
Hadoop platforms, which allows the user to
specify a job’s deadline and finish it before the
deadline. Reference [6] proposed a novel data
placement strategy (SLDP) for heterogeneous
Hadoop clusters. That algorithm changes
traditional Hadoop data block replication based
on data hotness. SLDP adopts a heterogeneity-
aware algorithm to divide various nodes into
several virtual storage tiers firstly, and then
places data blocks across nodes in each storage
tiers circuitously according to the hotness of data.

III. ADDP

1. Main Idea

Computing capacity of each node in the
heterogeneous clusters is different so a load
of each node changes dynamically. Therefore,

20 Journal of Advances in Computer Engineering and Technology, 2(4) 2016

adaptive dynamic data placement algorithm
(ADDP) is presented in this paper which uses the
type and volume load of jobs for adjusting the
distribution of input data block. The proposed
algorithm consists of two main phases. In the
first round, NameNode distributes data blocks
based on each node computing capacity ratios
in the Ratio table. In the next rounds, each
node load parameters (average Cpu utilization,
average memory utilization) are monitored and
registered in the “History table” of the node then
NameNode calculates each node appropriate
data block numbers which is more compatible
with load status based on comparing each node
load parameters with cluster load parameters in
the Load-Distribution-Patterns table. This table
has load volume formulas for each load state of
a node and these formulas determine the best
workload that is more compatible with node load
situation. The workload that is calculated for
each node which is more compatible with node
load state is stored in a Cluster-History table and
will distribute to nodes in the next rounds.

Fig. 1. Shows how the Name node deploys data blocks
on data nodes

In the algorithm, there are two tables: “Ratio
table” and ”Load-Distribution-Patterns table”.
Ratio table is a table that stores computing
capacity ratios of each node in different job type
and Load-Distribution-Patterns table stores load
parameters as defined average Cpu utilization
(AvgCpuUsage) and average memory utilization
(AvgMemUsage) of the whole cluster in different
load states to compare each node load parameters
with cluster load parameters. In the cluster, we
assume three main states: the overloading state
is defined as overload, the underloading state is
defined as “underload” and the normal loading
state is defined as “normalload”. There are some
sub load states based on cluster load situation.
These sub-states are for underload state. Every

row in table belongs to a load state .There is
volume load formula for each row. Every load
parameters compare with every row. If a node’s
load parameters will place in any row in the
table, the formulas calculate data load volume
that is appropriate for the node’s load state to
change node’s load state and make it becomes in
normalload. The load volume formulas show how
much workload should add to the current node’s
workload to make it becomes more compatible
with node’s load state so that the nodes use
resources more efficient. The percentage of
added workload is shown by λ factor. Next
node’s volume load average (VLAi+1) is equal
to previous volume load average (VLAi) plus
a percentage of the current load average.This
percentage factor is different from one row to
another and depends on node load state. The
percentage factors are defined in definition
lambda factor table.

TABLE 1

LOAD-DISTRIBUTION-PATTERNS
Load volume formula Average

Cpu Usage
AverageMemory

Usage
load state

)(11 iiii VLAVLAVLA λ+=+ 1 2CpuUsageα α≤ ≤ 1 2MemoryUsageβ β≤ ≤ Underload

)(21 iiii VLAVLAVLA λ+=+ 2 3CpuUsageα α≤ ≤ 2 3MemoryUsageβ β≤ ≤ Normal
load

)(31 iii VLAVLAVLA λ−=+ 3 4CpuUsageα α≤ ≤ 3 4MemoryUsageβ β≤ ≤ Overload

TABLE 2
DEFENITION- LAMBDA-FACTOR
Lambda
definition

Load State

11λ Very Underload

12λ Underload

13λ Underload near to
Normal

2λ NormalLoad

21λ Optimize-NormalLoad

3λ Overload

Every load volume formula in the Load-
distribution-Patterns table tries to calculate
workload that is more compatible with node load
situation. So in general, we have six load levels
which will be explained in the next part.

If a node state is” Very underload”, lambda
factor for it in the load volume formula is ;
so node’s workload which will be assigned to
current node’s workload for the next round is at
least 50% of node current workload plus current
workload.

Journal of Advances in Computer Engineering and Technology, 2(4) 2016 21

If a node state is” Underload”, lambda factor
for it in the load volume formula is ; so node’s
workload which will be assigned to current node’s
workload for the next round is at least 33% of
node current workload plus current workload.

If a node state is” Underload near to
NormalLoad”, lambda factor for it in the load
volume formula is ; so node’s workload which
will be assigned to current node’s workload for
the next round is at least 20% of node current
workload plus current workload.

If a node state is” NormalLoad”, lambda
factor for it in the load volume formula is .When
node’s load state is in the normal situation, most
of the time there is no need to add workload to
node current workload, but sometimes cluster
administrator can add some more workload to
the node current workload to optimize node
resource utilization. In this situation the lambda
factore will be and the percentage of this factor
is based on administrator opinion. If a node state
is ” Overload”, lambda factor for it in the load
volume formula is ; so node’s workload which
will be assigned to current node’s workload is
at least 10% of node current workload minus
current workload.

2. Mathematical Formulation

For making Ratio table, mathematical
formulation 1 to 4 are needed and for making
Load-distribution-Patterns table mathematical
formulation 5 to 8 are needed

()
1

N

i
avg

TaskExeTime i
T

Number of Tasks
==
∑ (1)

avgT ()
(x)

NumberOfTaskSlottNodeComputingCapacity
x

T= = (2)

t

(x) t

T (x)
Min

(x)
 TtNodeComputingCapacityRatio R= = (3)

t

1

R (x)

()
n

t
t

BlockNumber Total BlockNum
R

b
x

er

=

= ×

∑
 (4)

() ()1 1 1 2 2 2

1 2

user sys nice user sys nice
cpuUsage

Total Total
+ + − + +

=
− (5)

1 1 1 1 1 1 1 1Total user sys nice idle IOwait irq softirq= + + + + + + (6)

2 2 2 2 2 2 2 2Total user sys nice idle IOwait irq softirq= + + + + + + (7)

Total Memory Free Memory Buffers CacheMemoryUsage
Total Memory

+ + +
= (8)

3. Variable Description

In the mentioned mathematical formulation,
Tavg(i) denotes the average execution time to
complete a batch of tasks in the node(i) and Tt(i)
shows the average time required to complete one
task for the node (I) [4].

In order to get the real-time information of
CpuUsage, we can use related parameters in
the file /proc/stat of Linux system to calculate
CpuUsage. Seven pieces of items can be extracted
from file /proc/stat: user-mode time (user), low-
priority user-mode time (nice), system mode time
(sys), idle task-mode time (idle), hard disk I/O
preparing time (iowait), hardware interrupting
time (irq), and software interrupting time (softirq).
File /proc/stat keeps track of a variety of different
statistics about the system since it was restarted.
The time unit is called “Jiffy” (1/100 of Figure
axis labels are often a source of a second for×86
systems). Thus, CpuUsage is calculated with the
difference of values between two sample points.
The memory utilization (MemUsage) reflects
the state of memory in real time. The relevant
parameters are used from file /proc/meminfo of
Linux system to calculate MemUsage. There are
four pieces of useful items extracted from file /
proc/meminfo: total memory size (MemTotal),
free memory (MemFree), block-device buffers
(Buffers), and file cache (Cached). MemUsage
can be calculated by (8) [9].

Journal of Advances in Computer Engineering and Technology, 2(4) 2016 22

The followings are algorithm ADDP workflow and pseudocode.

Data Input
Job Input

Check if Job Type is In the
Ratio TableYES

Distribute Test DataSet and
Test TaskSet

Calculate AvgCpuUsage
AvgMemUsage

ComputingCapacity
Ratio

Is data Volume exist in
ClusterHistoy Table

Check whether Utilize Field in
Cluster History Table is true

Make a record in Ratio Table and
LoadDistributionPattern Table for job type

Distribute calculated Data Block Numbers on
each node

Calculate each node block numbers based on Ratio Table

Calculate all nodes
AvgCpuUsage

AvgMemUsage

Are All Nodes AvgCpuUsage and
AvgMemUsage Utilized based on

LoadDistributionPattern Table

Set Utilize Fild false in
Cluster history Table

NO

Set Utilize Fild True in
Cluster history Table

YES

Add each node blocks number
in Cluster history Table

Calculate Nubmer of Distribution
Data block for each Node Based on

LoadDistributionPattern Table

Add Type and
Volume to

ClusterHistory Table
and Type to Ratio

Table

NO

Add Type and
Volume to

ClusterHistory Table

NO

Distribute input Data
volume based on Block

Number Result in
ClusterHistory Table

YES

YES

NO

End Of Process One Job

Fig. 2. Workflow of ADDP algorithm

Journal of Advances in Computer Engineering and Technology, 2(4) 2016 23

Algorithm 1: Adaptive Dynamic Data Placement Algorithm(ADDP)

Find number of cluster’s node and number of each node’s core 1.

Find Job Type in Ratio Table 2.
IF Job Type Doesn’t exist in Ratio Table do 3.

Add Job Type and Job input Volume in Cluster-History Table and add Job Type in Ratio Table 4.

Distribute Test data and Test task on each cluster’s nodes 5.
Make a record for Job in Ratio-Table (see Algorithm(2)) 6.
Make Load- Distribution-Patterns Table (see Algorithm (3)) 7.

for each node in the cluster do 8.
 Calculate BlockNumbers

9. BlockNumber= Total BlockNumber*[

∑
=

n

t
t xR

1

t

)(

(x)R
]

End 10.

for each node in the cluster do 11.

Distribute the calculated Data Block Numbers

 12.

End 13.

for each node in the cluster do 14.
 Calculate the AvgCpuUsage and the AvgMemUsage

15.
1

[]
n

x
AvgCpuUsage x

NumberOfNodes
=
∑ AvgCpuUsage =

1

n

x
AvgMemUsage

NumberOfNodes
=
∑

AvgMemUsage =

 16.

 end 17.

each node in the cluster do for 18.
Determine Node’s LoadState by comparing Node’s AvgCpuUsage and AvgMemUsage with Load-
Distribution-Patterns Table

 19.

Calculate Node’s new volume-load based on Node’s LoadState by using Load- Distribution-Patterns
Table’s formulas.

 20.

Store Node’s new volume- load in Cluster-History Table 21.
 end 22.

All Node’s AvgCpuUsage and AvgMemUsage are Utilized based on Load-Distribution-Patterns Table
do If 23.

Set the Utilized flag = True 24.
Store utilized flag in utilized field in the Cluster-History Table 25.
 else 26.
 Set the Utilized flag = False 27.
Store utilized flag in utilized field in the Cluster-History Table 28.
 end 29.

Journal of Advances in Computer Engineering and Technology, 2(4) 2016 24

Algorithm 1: Adaptive Dynamic Data Placement Algorithm(ADDP) (Continue)

 Else 30.
Input data volume exists in Cluster-History Table do If 31.
Distribute the input Data volume based on the value of Block Numbers which exist in the Cluster-
History Table 32.

Check utilized flag in utilized field in the Cluster-History Table 33.
The Input data volume is utilized based on utilized field in the Cluster-History Table do if 34.
Print “ The Cluster Is Utilized” and finish 35.

Go to 14 els
e 36.

 end 37.
Go to 9 Else 38.

 End 39.
 End 40.
 41. End Of Algorithm 1

Algorithm for making Ratio-Table:

Algorithm 2: Make Ratio-Table
for each node do 1.

Distribute TestTasks 2.

()
1

N

total
i

T TaskExeTime i
=

=∑

Calculate Node’s TotalExeTime(Ttotal) = 3.

() total
avg

TT x
Number of TaskSlots

= Calculate Node’s AverageExeTime(Tavg) =
 4.

Calculate Node’s ComputingCapacity (Tt) =
()avgT x

NumberofTaskSlots
 5.

Calculate Node’s ComputingCapacityRatio(Rt) =
(x)

()
t

x t

T
Min T x 6.

 end 7.
Fill Computing-Capacity-Ratio Table with (Rt) ratios 8.
Add JobType in Computing-Capacity-Ratio Table (RatioTable) 9.
End Of Algorithm 2 10

Journal of Advances in Computer Engineering and Technology, 2(4) 2016 25

Algorithm for making Load-distribution-Patterns Table:

Algorithm 3: Make Load-Distribution-Patterns Table
for each node in cluster do 1.

Calculate Node’s Average CpuUsage(AvgCpuUsage)

() ()1 1 1 2 2 2

1 2

user sys nice user sys nice
cpuUsage

Total Total
+ + − + +

=
−

1 1 1 1 1 1 1 1Total user sys nice idle IOwait irq softirq= + + + + + +

2 2 2 2 2 2 2 2Total user sys nice idle IOwait irq softirq= + + + + + +

 2.

Algorithm 3: Make Load-Distribution-Patterns Table (Continue)

Calculate Node’s Average MemoryUsage(AvgMemUsage)
Total Memory Free Memory Buffers CacheMemoryUsage

Total Memory
+ + +

=

 3.

End 4

() 1
()

n

xCalculate Cluster AverageCpuUsage LoadParameter
AvgCpuUsage x

NumberOfNodes
=→
∑

5.

() 1
()

n

xCalculate Cluster AverageMemoryUsage LoadParamete
AvgMemUsage x

NumberOfNodes
r =→

∑

6.

Fill Load-distribution-Pattern Table with LoadParameters 7.
End Of Algorithm 3 8.

Journal of Advances in Computer Engineering and Technology, 2(4) 2016 26

When a new job is submitted to a cluster
and there is no information of that job in the
NameNode, at the first round NameNode
distributes input data blocks based on values in
Ratio table. In the next rounds, the whole cluster
will be monitored by monitoring module.

4. Scenarios

In the monitoring phase in general, NameNode
monitors each node load state and compare these
states with the values in the Load-distribution-
Patterns table until node’s new workload which
is more compatible with node’s load state will
be calculated. For every node these calculated
workloads will be registerd in the Cluster- History
table and will be distributed to each node in the
next rounds .

In General, based on workflow for every job
which is submitted to the cluster, there are there
scenarios (three situations) described in next
subsection. The first scenario happens when a
new type of job submits to cluster and there are no
information of job type and its input data volume
in the cluster. The second scenario happens when
the type of job isn’t new, but its data volume is
new. The third scenario happens when the type of
submitted job and its input data volume are not
new for the cluster.

4.1 Scenario 1 (Statements 1 to 16):

 When a new job is submitted to a cluster
and data are written into the HDFS, NameNode
first checks the RatioTable. These data are used
to determine whether this type of job has been
performed. If there is no record of the job type in
the RatioTable, It means this type of job is new
and there isn’t any information of job type in the
NameNode, so for distributing input data blocks,
NameNode needs to make record of the job type
in Ratio Table and make records of the job type
and its data volume in Cluster-History Table.
Then NameNode makes Load-Distribution-
Patterns Table for the job type.After distributing
input data blocks based on information in Ratio
Table, monitoring phase will start.

4.2 Scenario 2 (Statements 18 to29):

If the RatioTable has a record of the submitted
job, it means the type of job has been performed.
Thus there is a record for the job in the Cluster-

History Table and there is Load-Distribution-
Patterns Table for the job type. Then NameNode
checks job input volume in the Cluster-History
table.

If the input volume of the submitted job is
not on the Ratio table , it means that there is no
distribution pattern for input data in the Cluster-
History table. As a result the newly written data
will be allocated to each node in accordance
with the computing capacity which exists in the
RatioTable. After assigning input data blocks,
NameNode monitors and compares each node’s
load state with the values in the Load-distribution-
Patterns table until the workload that is more
compatible with node load situation is calculated
by load formulas in the Load-distribution-
Patterns table. This workload will register for
each node in the Cluster- History table and will
distribute to nodes when that job with same data
input will be submitted into the cluster.

4.3 Scenario 3 (Statements 30 to 35):

If there are records of the submitted job type
and its load volume input data in the Ratio table and
Cluster-History table, it means that NameNode
has all information for distributing input data
blocks to each node. NomeNode distributes input
data blocks based on information that registered
in Cluster-History table. If all nodes in the cluster
are in normal load situation, the utilized field for
that job with its input load volume in Cluster-
History table will set True (T), otherwise will
set False (F). These histories in Cluster-History
table will help the NameNode to distribute input
data blocks without any more effort when a job
with the same workload is submitd to the cluster,
because all information for distributing input data
blocks is registered in the Cluster-History table.

IV. EXPERIMENTAL RESULT

This section presents the experimental
environment and the experimental results for the
proposed algorithm.

Journal of Advances in Computer Engineering and Technology, 2(4) 2016 27

TABLE 3
 EACH NODE SPECIFICATION

Machine Operating
system

Memor
y
(GB)

Number
ofCores

Disk(GB)

Master Windows7 6 4 930

Slave1 Ubuntu Linux15.0 2 1 19.8

Slave2 Ubuntu Linux15.0 3 2 19.8

Slave3 Ubuntu Linux15.0 6 4 583.4

A TestBed was designed for testing and
comparing presented algorithm with DDP
algorithm and Hadoop framework. WordCount
is a type of job runs to evaluate the performance
of the proposed algorithm in a Hadoop
heterogeneous cluster. The WordCount is a
MapReduce application running on a Hadoop
cluster and it is an application used for counting
the words in the input file.

The experimental environment is shown
in the table. 3. We use Intel Core i5-4210U
1.70GHZ for salve1 and Intel Core i5-4210U
1.70GHZ for salve2 and Intel Core i7-4790
3.60GHZ for salve3.We use VirtualBox 4.1.14 to
create our computing node for slave1 and salve2.
In order to achieve the effect of a heterogeneous
environment, the capacity of the nodes is not the
same. Different amounts of CPUs and memories
were set on nodes. In total, four machines were
created: one master and three slaves. One machine
as the master has 4 CPUs, 6 GB of memory, and
930 GB disk; one virtual machine as a slave1 has
1 CPU, 2 GB of memory, and a 19 GB disk; one
virtual machine as a slave2 has 2 CPUs, 3GB of
memory, and a 19 GB disk; one machine as a
slave3 has 4CPUs, 6GB of memory, and a 538
GB disk.

Table 3 presents the specifications of each
node. All of the slave machines adopt the
operating system as Ubuntu 15.0 LTS, and the
master machine adopts the operating system as
windows 7.

TABLE 4
RATIO TABLE

Job Type Slave1 Slave2 Slave3

WordCount 1 2 4

TABLE 5
RATIO TABLE EXAMPLE

Job Type Input Data Slave1 Slave2 Slave3

WordCount

α 1
1 2 4

α ×
+ +

2
1 2 4

α ×
+ +

4
1 2 4

α ×
+ +

Parametri
c Each
node
workload

β 2 β 4 β

350 MB 50 MB 100 MB 200 MB

Table 4 shows ratios for WordCount job in
the RatioTable. Table 5 is made by ratios in the
RatioTable and is shown if input data block is
350 MB, slave1 is assigned 50 MB, slave2 is
assigned 100 MB and slave3 is assigned 200
MB. In proposed algorithm number of tasks that
run on each node is based on node core numbers.
Slave1 has one core, so slave1 just runs 1task
in each round .Slave2 has two cores, so it runs
2 tasks in each round simultaneously. Slave3
has four cores, so it runs 4 tasks in each round
simultaneously. Each job processes different
input data in which the size of input data for slave
1, slave2 and slave3 are 50 MB, 100 MB and 350
MB, respectively.

Experiment 1:

In the experiment 1, a comparison is made
between the DDP algorithm and the ADDP
algorithm when an overload state happens in the
cluster. Fig 3. Shows the normal execution time
of three slaves of cluster when the workloads in
normal load are 50, 100 and 200 MB for slave 1
to 3, respectively.

Slave 2 in the cluster is overloaded (Fig.4.),
because it takes 240 s to finish its job (more than
its normal execution time). The execution time
of WordCount is measured for each node in all
rounds in DDP algorithm and ADDP algorithm
in this situation and the results is shown in Fig.
4 to Fig. 11.

The both algorithms in the first round distribute
data blocks based on computing capacity ratios
(Fig.4, Fig5.).

In round 2, the DDP algorithm distributes
data blocks based on computing capacity, but
the presented ADDP algorithm distributes data
blocks based on values which is registered in
Cluster-History table.

NameNode assigns data blocks based on

Journal of Advances in Computer Engineering and Technology, 2(4) 2016 28

this values which are calculated by Load-
Distribution-Patterns table formulas. Slave2 is
overloaded, so 10% of slave2 workload must be
added to workload of salve3 which is underload.
As a result, in round2 the nodes’ workloads
become 50MB, 90MB, 210MB and the execution
times are 33s, 190s and 61s for slave1, slave2 and
slave3, respectively.(Fig.7)

The execution time 190s for slave2 is still too
much, so 10% of slave2 workload must be added
to workload of salve3. As a result, in round3 the
nodes’ workloads become 50MB, 81MB, 219MB
and the execution times are 33s, 141 s and 73 s for
slave1, slave2 and slave3, respectively (Fig.9).

 The execution time of slave2 is still too much,
so in similar approach, 10% of slave2 workload
is added to workload of salve3 in round 4. Thus,
in round4 the nodes’ workloads become 50MB,
73MB, 227MB and the execution times are
33s, 91s and 80s for slave1, slave2 and slave3,
respectively (Fig.11).

After four rounds the cluster with 350 MB
input data volume, is balanced and the average
execution time of the whole cluster is 68 seconds,
but the average execution time of the whole
cluster in DDP algorithm is 108.66 seconds.

33

83

53

0

20

40

60

80

100

Slave1: 50 Slave2: 100 Slave3: 200

E
xe

cu
tio

n
T

im
e(

s)

Size Of Data (MB)

Fig. 3.Execution time of each slave in normal load state

33

240

53

0
50

100
150
200
250
300

slave1: 50 slave2: 100 slave3: 200

E
xe

cu
tio

n
T

im
e

(s
)

Size Of Data (MB)

Fig.4.Execution time of each slave for DDP in overload
state (Round (1))

33

240

53

0

50

100

150

200

250

300

slave1: 50 slave2: 100 slave3: 200

E
xe

cu
tio

n
T

im
e

(s
)

Size Of Data (MB)

Fig. 5.Execution time of each slave for ADDP in overload
state (Round (1))

33

240

53

0
50

100
150
200
250
300

slave1: 50 slave2: 100 slave3: 200
E

xe
cu

tio
n

T
im

e
(s

)

Size Of Data (MB)

Fig. 6.Execution time of each slave for DDP in overload
state (Round (2))

33

190

61

0

50

100

150

200

slave1: 50 slave2: 90 slave3: 210

E
xe

cu
tio

n
T

im
e(

s)

Size Of Data (MB)

Fig. 7.Execution time of each slave for ADDP in overload
state (Round (2))

33

240

53

0

50

100

150

200

250

300

slave1: 50 slave2: 100 slave3: 200

E
xe

cu
tio

n
T

im
e

(s
)

Size Of Data (MB)

Fig. 8.Execution time of each slave for DDP in overload
state (Round (3))

Journal of Advances in Computer Engineering and Technology, 2(4) 2016 29

33

141

73

0
20
40
60
80

100
120
140
160

salve1: 50 slave2: 81 slave3: 219

E
xe

cu
tio

n
T

im
e

(s
)

Size Of Data (MB)

Fig. 9.Execution time of each slave for ADDP in overload
state (Round (3))

33

240

53

0

50

100

150

200

250

300

slave1: 50 slave2: 100 slave3: 200

E
xe

cu
tio

n
T

im
e

(s
)

Size Of Data (MB)

Fig. 10.Execution time of each slave for DDP in overload
state (Round (4))

33

91
80

0

20

40

60

80

100

slave1: 50 slave2: 73 slave3: 227

E
xe

cu
tio

n
T

im
e(

s)

Size of Data (MB)
Fig. 11.Execution time of each slave for ADDP in overload

state (Round (4))

In fact, the whole cluster executions time
of the presented ADDP algorithm are reduced
in each round, but executions time of the DDP
algorithm is the same in all rounds (Fig.4, Fig6,
Fig8 and Fig10).

The DDP algorithm allocates data to each node
in accordance with the nodes computing capacity
which is accordance to hardware, so it doesn’t
work well in overload state and underload states.
In contrast, the presented ADDP algorithm not

only considers computing capacity in assigning
data, but also monitors and considers load state
of nodes in assigning data block.

Experiment 2:

In the experiment 2, a comparison is made
between the DDP algorithm, the ADDP algorithm
and Hadoop1.2.1 when an overload state happens
in the cluster. Fig. 12 shows cluster in overload
states in the Hadoop-1.2.1 framework. Fig. 13
shows execution time of the whole cluster in the
Hadoop framework, the DDP algorithms and
the presented ADDP when slave2 is overload.
As the results shown, Hadoop framework and
DDP algorithm can’t understand overloading
state in the nodes and can’t handle underload
and overload state in the cluster, but ADDP can
make the corresponding adjustment to achieve
the optimal state and realize self-regulation and
decrease the execution time in each round.

80

250

83

0

100

200

300

Slave1: 116 Slave2 :116 Slave3: 116E
xe

cu
tio

n
T

im
e

(s
)

Size Of Data (MB)

Fig. 12.Execution time of each slave for Hadoop in
overload state

108.66108.66108.66108.66
108.6694.66

82.33 68

137.66137.66137.66137.66

0

50

100

150

1 2 3 4

E
xe

cu
tio

n
T

im
e(

s)

Execution Rounds

DDP
algorithm
ADDP
algorithm

Fig.13.Comparison between the execution time of the
whole cluster for Hadoop, DDP and ADDP algorithms,

in each round in overload state

V. CONCLUSION

This paper proposes adaptive dynamic data
placement algorithm (ADDP) for map tasks of
data locality to allocate data blocks. This algorithm
belongs to the resource aware scheduling

Journal of Advances in Computer Engineering and Technology, 2(4) 2016 30

algorithms classification. IN a heterogeneous
environment, the difference in nodes computing
capacity may cause load imbalance and creates
the necessity to spend additional overhead to
transfer unprocessed data from slow nodes to fast
nodes. To improve the performance of Hadoop in
heterogeneous clusters, we aim to minimize data
movement between slow and fast nodes. This
goal can be achieved by a data placement scheme
that distributes and stores data across multiple
heterogeneous nodes based on their computing
capacities and workloads. The proposed ADDP
algorithm mechanism distributes fragments of
an input file to heterogeneous nodes based on
their computing capacities, and then calculates
each node appropriate workload base on load
parameters of each node to allocate data blocks,
thereby improving data locality and reducing
the additional overhead to enhance Hadoop
performance. The presented algorithm improves
the performance of Hadoop heterogeneous
clusters and significantly benefits both DataNodes
and NameNode.

REFERENCE

[1] G. Turkington, 2013. Hadoop Beginner’s Guide:
Packt Publishing Ltd.

[2] A. Holmes , 2012. Hadoop in practice: Manning
Publications Co.

[3] R. D. Schneider, 2012. Hadoop for Dummies Special
Edition, John Wiley&Sons Canada.

[4] C.-W. Lee, K.-Y. Hsieh, S.-Y. Hsieh, and H.-C.
Hsiao, 2014. A dynamic data placement strategy for hadoop
in heterogeneous environments, Big Data Research,1, pp.
14-22

[5] A. Hadoop, “Welcome to apache hadoop,” Hämtat
från http://hadoop. apache. org, 2014.

[6] R. Xiong, J. Luo, and F. Dong, 2015. Optimizing
data placement in heterogeneous Hadoop clusters, Cluster
Computing, 18, pp. 1465-1480.

[7] J. Xie, S. Yin, X. Ruan, Z. Ding, Y. Tian, J. Majors,
et al, 2010. Improving mapreduce performance through data
placement in heterogeneous hadoop clusters, in Parallel
& Distributed Processing, Workshops and Phd Forum
(IPDPSW), IEEE International Symposium on, 2010, pp.
1-9.

[8] K. Singh and R. Kaur, 2014. Hadoop: addressing
challenges of big data. In Advance Computing Conference
(IACC), on (pp. 686-689). IEEE.

[9] X. Xu, L. Cao, and X. Wang, 2014. Adaptive task
scheduling strategy based on dynamic workload adjustment
for heterogeneous Hadoop clusters.

[10] P. Xu, H. Wang, and M. Tian, 2014.New Scheduling
Algorithm in Hadoop Based on Resource Aware in Practical
Applications of Intelligent Systems, ed: Springer, pp. 1011-
1020.

[11] Z. Tang, J. Zhou, K. Li, and R. Li, 2012. MTSD:
A task scheduling algorithm for MapReduce base on
deadline constraints, in Parallel and Distributed Processing
Symposium Workshops & PhD Forum (IPDPSW), IEEE
26th International.

