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Abstract - Todays, in many modern applications, 
we search for frequent and repeating patterns in 
the analyzed data sets. In this search, we look for 
patterns that frequently appear in data set and 
mark them as frequent patterns to enable users to 
make decisions based on these discoveries. Most 
algorithms presented in the context of data stream 
mining and frequent pattern detection, work either 
on uncertain data, or use the sliding window model 
to assess data streams. Sliding window model uses 
a fixed-size window to only maintain the most 
recently inserted data and ignores all previous data 
(or those that are out of its window). Many real-
world applications however require maintaining all 
inserted or obtained data. Therefore, the question 
arises that whether other window models can be 
used to find frequent patterns in dynamic streams 
of uncertain data.

In this paper, we used landmark window model 
and time-fading model to answer that question. 
The method presented in the form of proposed 
algorithm, which uses the idea of landmark window 
model to find frequent patterns in the relational 
and uncertain data streams, shows a better 
performance in finding functional dependencies 
than other methods in this field. Another advantage 
of this method compared with other methods 
is that it shows tuples that do not follow a single 
dependency. This feature can be used to detect 
inconsistent data in a data set.

Keywords -  data stream, landmark window, 
data dependency, sliding window, time-fading 
window, relational and uncertain data streams

1. Introduction

Frequent pattern mining is an important field 
of research related to database and data 

mining. This process finds the patterns that 
appear frequently in data set and marks them as 
frequent patterns. This method in used in many 
everyday applications, such as data set related to 
supermarket sales, data set related to the weather 
reports and environmental data sets. There have 
been many studies in the field of frequent pattern 
mining, and most of them have been focused on 
exact and precise data and on cases where users 
have accurate information about the items in 
the data set. But in most everyday (real world) 
situations, users do not have precise information 
about the presence or absence of items in the data 
set (data sets related to quantum physics, thermal 
sensors, and environmental monitoring). This 
type of data is called uncertain data. In uncertain 
data, the presence or absence of an item is 
represented with a probability value (also called 
uncertain value). Furthermore, Data sets used in 
the real world are not static and are often in the 
form of rapid stream of new data. Mining this 
type of dynamic data set, is called data stream 
mining.

Apriori algorithm [1] was presented by 
Agrawal and Srikant in 1994 for mining precise 
static data sets. Any pattern related to data set has a 
support value that describes the number of pattern 
repetition. A pattern (or item set) is considered 
frequent only when support value of that pattern 
is greater than or equal to the minimum support 
threshold set by the user. Apriori uses a “bottom 
up” approach to test the data and determine 
frequent patterns in given data sets. But in 2000 
Han et al [3] introduced FP-growth algorithm 
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which avoids the process of candidate generation. 
This algorithm is composed of two processes: 
1-constructing FP tree and 2- recursively growing 
frequent patterns. FP Tree is an extended Prefix 
Tree which includes the contents of data sets. 
Algorithm needs to examine and re-examine the 
data set to form FP Tree. In First examination, 
algorithm looks for single patterns. It removes 
all unique patterns and then arranges all frequent 
single patterns in order of their support value. FP 
tree potential value decreases similarly. Then, 
algorithm examines the data set for the second 
time to form the FP tree. After the construction 
of this tree, data set examination is no longer 
needed, because FP Tree includes all information 
provided by data set. Then all frequent patterns 
can be obtained by a recursive growth process in 
each branch of this tree.

In 2004, Giannella et al proposed FP-
Streaming algorithm [3] which is an algorithm 
for mining precise data streams. The first stage of 
FP-streaming is to call FP-growth with a 
preMinsup to mine the current data stream. At 
first, FP-growth algorithm finds all frequent 
patterns; the next step of FP-streaming algorithm 
is storing and maintaining these patterns in 
another tree structure which is called FP-stream. 
In FP-streaming, each path represents a frequent 
pattern. Each node in FP-streaming includes a 
sliding window table which contains multiple 
support values for each batch of transactions. It 
should be noted that FP-streaming is a data 
stream mining algorithm for precise data. The 
real challenge is in processing uncertain data 
streams. UF-streaming, which is proposed by 
Leung and Hao, mines frequent patterns from 
uncertain data streams using a fixed-size sliding 
window of w frequent steams. At first, UF 
streaming algorithm calls UF-growth to find 
frequent patterns from the current batch of 
transactions in the streams (using minimum 
support threshold). A pattern is frequent when its 
support value is greater than minimum support 
threshold. Then UF-streaming stores the frequent 
patterns and their support values in a tree 
structure, so that in each node, X stores a list of w 
support values. When a new stream arrives, the 
window slides and support values move to mine 
frequent patterns and their expected support 
values from the newest stream imported into the 
window, and those streams which are found to be 
oldest in the window are deleted. This process is 
repeated for each batch in the stream. The support 

value of each frequent pattern X will be calculated 
by summing all w support values (one for each 
batch in the sliding window). expSup(X, Bi) 
represents the support value of X in batch Bi. 
Then, at the moment of T, the support value of X 
in the current sliding window which contains w 
batches of uncertain data in the form of 

TBwTB ,...,1+−   is calculated as below:
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• sliding window model
The sliding window model needs a user to 

define the size of the window and the extent of 
window slide over certain time periods [15]. As 
can be seen in the figure, vectors represent the 
windows. At first, window W covers the first data 
segment. When the next time period arrives, the 
sliding window grows to size 2. Then, in the third 
time period, the sliding window grows to size 3, 
which is the maximum capacity of the sliding 
window in this model. In the next time period 
window slides one segment to the right side and 
covers data segment 2 to data segment 4, and then 
deletes the data segment in the right end which is 
the oldest data segment to maintain the size of the 
window. The process is then repeated. 

• Landmark window model 
The landmark window model is not a fixed-

size window technique [16, 34]. It starts from 
a given point and ends at the current time and 
increases the size of the window. It should be 
noted that the starting point is fixed, but over time 
the end point shifts. As can be seen in the figure, 
the landmark window model starts from the 
leftmost data segment. The window consists of 
data segment 1. In the next time period, the end-
point of the landmark window moves to the next 
data segment, but the start-point remains fixed. 
Over time, the size of the landmark window 
increases and stores every data segment (figure 
1).

 
Figure 1: Landmark windowing 
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• Conditional Restrictions
Here, we review the important conditions or 

the upper and lower bounds of attribute domain. 
We select the minimum and maximum values 
for all attributes in all relationships with the 
corresponding SQL commands. SQL commands 
use a normal order on numbers for numerical 
attributes and use the lexicographic order on the 
character set for attributes of a symbolic type. It 
is possible to compute two values in one query, 
so the overall computation cost is O(n*m) where 
n is the number of attributes in all tables and m is 
the maximum number of tuples in the table.

• Functional dependencies
The functional dependencies are vital and 

necessary for the design of relational databases, so 
studying these dependencies and their application 
is of significant importance. Functional 
dependency has been thoroughly studied for 
decades. Functional dependency is the relation 
between attributes of a relationship: Functional 
dependency expresses the value of an attribute by 
using the value of some other unique attributes. 
Classic functional dependencies are mostly used 
for designing relational databases, normalizing 
relations, and to avoid data redundancy and key 
anomalies. These dependencies have no flexibility 
against exceptions and potential noise in data. But 
approximate dependencies are another type of 
dependencies which do not necessarily hold for 
the entire data set, and thus are flexible against 
noise and exceptions.

The rest of the paper is organized as follows: 
the proposed method which uses Landmark 
windowing for mining frequent patterns in 
relational and uncertain data streams is presented 
in section 2. Theoretical analysis and experimental 
evaluation of the proposed method are presented 
in section 3 and section 4, respectively. Some 
of the related works are discussed in section 5. 
Finally, the paper is concluded in section 6.  

2. The proposed method

The landmark window model is not a fixed-
size window technique. It stores all data segments 
from the start point, which is a given time, up to the 
end point, which is the current time. This model 
considers all data to be of the same importance, 
so it does not discard any data. In this model, 
the size of the window is also considered to be 
Incremental. Our proposed algorithm operates as 

follows. Assume a stream of uncertain data and 
a minimal threshold defined by user (Minsup). 
The proposed LUF-Streaming algorithm uses 
landmark window model in an uncertain data 
environment to mine frequent patterns of data 
stream (i.e., expected support value is greater than 
or equal to minimum support threshold Minsup). 
The algorithm consists of three main models: 
batch mining model, stream mining model, and 
pruning model.

• Cg Batch mining model
This model finds the frequent patterns in every 

batch of the stream by calling the UF-growth 
algorithm. In a stream, Data do not necessarily 
have uniform distribution; so a unique pattern 
may be repeated later. Here, instead of using the 
UF-growth algorithm with a support threshold 
of minsup, model uses UF-growth algorithms 
with a lower support threshold of preMinsup and 
thus avoids patterns being discarded. Therefore, 
model finds each sub-frequent pattern X (i.e. X 
with an expected support value greater than or 
equal to preMinsup) in each batch of uncertain 
data in the stream. The support value of X in the 
batch Bj can be calculated by summing (most 
transactions in Bj) the product (probabilities of 
independent items  apearing in the pattern X) 
which is expressed by the following equation 
[36]:
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where w is the number of batches in the 

stream.
• Stream mining model
This model stores and maintains the sub 

frequent patterns, discovered in the batches of the 
stream, in a tree structure called LUF-Streaming 
where each node in the tree represents a pattern 
and contains information about the support value 
in the stream (from the start of landmark up to 
the present).

• Pruning model
In the end, when the user requests the final 

results, this model prunes the sub frequent 
patterns that are definitely not frequent. Note 
that to avoid rapid pattern pruning, batch mining 
model finds the sub frequent patterns that have a 
support value greater than or equal to preMinsup 
that may be less than minsup. These sub frequent 
patterns will be maintained in LUF-Streaming 
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and their expected support value will be updated 
by stream mining model. When user requests 
the final list of frequent patterns, pruning model 
removes the patterns that have a support value 
greater than or equal to preMinsup and less than 
minsup.

3. Analyses of overheads

In the functional dependency detection stage, 
Assume that | R | = n is the number of attributes 
in relational schema R, |r| = m is the number of 
attributes in relation r (with a structure of R), 
|fr|= f  is the number of evaluated dependencies, 
|LHS|  is the maximum number of attributes in 
the left hand side of dependencies, and |D| = d 
is the average number of discrete values in the 
attribute domain(i.e. the number of members of 
MB-Set). In the presented algorithm, calculation 
of MB-Set is of the order of O (n.m) and the 
construction of set M for a dependency is of the 
order of O(d|LHS|). Since for each member of 
M, d logical AND operations must be performed, 
the complexity of the F set calculation will be of 
the order of O(d|LHS|+1) and overall complexity 
of the algorithm will be O(n.m + f.d|LHS|+1 ). 
The best condition occurs when the development 
of left hand side of dependency is not needed, 
or in other words, when the accuracy of all 
dependencies that contains 1 attributes on the 
left hand side are acceptable. In this condition, 
|LHS| = 1, and f is at its lowest value i.e. n2. So in 
the best condition, the overall complexity of the 
algorithm is O(n.m + n2.d2).

The worst condition occurs when there is no 
regularity among data and when few attributes on 
the left hand side do not give us any interesting 
dependency. In this condition, the left hand side 
of all dependencies should be developed to the 
point that no other attribute remain to be added to 
the left hand side. So | LHS | will be equal to n- 1 
and the total number of dependencies that will be 
tested will include the whole search space (i.e. 2n 
dependencies). But in practice, this condition is 
very rare especially in the case of real data. In the 
following, we will introduce five algorithms for 
finding frequent patterns from streams of 
uncertain data by using the landmark window 
model and the time-fading model. In this section, 

ifp  represents the number of frequent patterns 

mined from the batch. We assess the proposed 
algorithm from two aspects: memory usage and 

runtime.
• Memory usage
When using landmark window model, LUF-

Streaming algorithm needs i ifp  expSup values 

(to be stored in the LUF-stream to store frequent 
pattern information.

• Runtime overhead
for the landmark window model, the LUF-

streaming first needs to visit/update every node in 
the LUF-stream tree for each data batch. However, 
we can increase the performance of the method in 
a way that it only visits/updates those tree nodes 
that correspond to frequent patterns in the next 
data stream. Except that they need a lesser 
runtime compared with time-fading model and 
this is because of simpler calculations.  
Simplification of Equation also simplifies the 
calculation of support values when α = 1 (for the 
landmark model) because the terms 
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4. Experimental evaluation

In this section, we evaluate the proposed 
method and the performance of algorithms by 
using two following real data sets acquired from 
UCI data repository.

1)Nursery data set 
2)Mushroom data set [37].
Overall statistics regarding these data sets is 

presented in table 1.

TABLE 1
DESCRIPTION OF USED DATA SETS

 number of tuplesNumber of 
attributes

Data set

129609Nursery
812422Mushroom

Presented data sets also have some attributes 
with continuous numerical values. Before the 
start of main operation, the values of these 
attributes were converted to discrete values by 
partitioning their domains into 5 equal parts. To 
equalize the tests conditions for two algorithms, 
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we set the accuracy threshold to 1.0. Runtime 
performance of AD-Miner algorithm (which is 
more efficient than other dependency mining 
methods) is obtained for data sets and the results 
are shown in table 2.

TABLE 2
 DURATION OF DATA MINING PROCESS FOR USED   

DATASETS
AD_Miner (s)Datasets

82Nursery
54Mushroom

  
AD-Miner algorithm is able to mine 

dependencies with any degree of accuracy.
These data sets are pretty well-known in the 

field of data mining. For Nursery data set, we 
prepare two sets of data; (50-60) and (10-100). 
These ranges represent the occurrence probability 
in the data set. For example, (50-60) in the data 
set means that all item sets (patterns) will have 
support values in the range between 0.5 and 0.6. 
Similarly, (10-100) in the data set means that all 
patterns will have support values in the range 
between 0.1 and 1.0. Nursery data set consists 
of 12960 streams. We divide these streams into 
20 separate data batches (each batch consists of 
648 streams). For Mushroom data set, there are 
a total of 8124 streams. We also divide these 
streams into 20 data batches (On average, each 
batch contains 406 streams or   transactions). For 
each of these data sets, we examine the proposed 
method in terms of different aspects: (1) The 
effect of number of batches on the runtime, and  
(2) the effect of threshold  minsup  set by the  user  
on the runtime. Then, we select the algorithms 
that show the best performance to compare them 
with another algorithm for mining the streams of 
uncertain data, which is UF-streaming algorithm.

•Evaluation of different numbers of data 
batches

Experiment 1.  In this experimental evaluation, 
we compared the runtime of algorithms by 
running different numbers of batches on Nursery 
data set. In all steps of    algorithm, the support 
threshold minsup was assumed as 1.2 (figure 2).

 

 

 

 

 

0
10
20

1 5 1 0 1 2 1 5 2 0

T
im

e

Number of data batches

NURSERY DATA 
SET(10-100)

LUF-Streaming TUF-Streaming(Time)

TUF-Streaming(Space) TUF-Streaming(Navie)

0

5

10

15

1 5 1 0 1 2 1 5 2 0

T
im

e

Number of data batches

NURSERY DATA 
SET(50-60)

LUF-Streaming TUF-Streaming(Time)

TUF-Streaming(Space) TUF-Streaming(Navie)

Figure 2: evaluation of different numbers of data batches on 
Nursery data set (experiment 1)
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Figure 3: evaluation of different numbers of data batches on 

Mushroom data set (experiment 2)

Experiment 2. Figure 3 shows the result of 
running algorithms on mushroom data set. In 
this section, we again compare the algorithms 
runtimes for different numbers of batches. We 
again assume the support threshold as 1.2 and 
the α value for all TUF-Streaming algorithms as 
1. The difference between the performances of 
algorithms is much clearer in the Mushroom data 
set compared with Nursery data set. The reason 
behind this difference is that the result obtained by 
mining mushroom data set contains more frequent 
patterns compared with Nursery data set, which 
leads to a larger TUF-stream tree structure (or 
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LUF-Streaming structure). So the performance 
of tree updating process becomes much better. 
Overall, the TUF-Streaming (simple) has the 
longest runtime and LUF-Streaming and TUF-
Streaming (Time) have the shortest runtime.

Experiment 3. Both LUF-Streaming and TUF-
Streaming (Time) show the best performance in 
terms of runtime. We use the same method also 
used in previous experiments to compare these 
two algorithms with the existing algorithm. 
At first, we run all algorithms for Nursery data 
set (Fig. 3) and Mushroom data set (Fig. 4) by 
an increasing numbers of batches. A possible 
argument may be that different window models 
are used for these algorithms, so the results may 
be different. The result of this experiment shows 
the strength of proposed algorithm in using data 
streams. This method also provides readers with 
some idea regarding the runtime with respect 
to importance (magnitude) when making a 
comparison between algorithms.
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Figure 4: evaluation of different numbers of data batches on 
Nursery data set (experiment 3)

 
 

0

20

40

60

1 5 1 0 1 2 1 5 2 0

T
im

e

# of batches

MUSHROOM DATA SET
LUF-Streaming TUF-Streaming(Time) UF-Streaming

Figure 5: evaluation of different numbers of data batches on 
Mushroom data set (experiment 3)

• Evaluation of different thresholds
Experiment 4. In this experiment, we 

assess all proposed algorithms with different 
thresholds on both Nursery data set (figure 6) and 
Mushroom data set (figure 7). In both figures, 
x-axis represents the threshold, and y-axis 
represents the runtime. We assume the number 
of data batches in each run to be 10. To make 
sure that our assessment is correct, we assume the 
value of α for all TUF-Streaming algorithms as 1. 
The results show that LUF-Streaming and TUF-
Streaming (Time) have the shortest runtimes 
among the tested algorithms. 
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Figure 6: evaluation of different thresholds on Nursery data 
set (experiment 4)
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Figure 7: evaluation of different thresholds on Mushroom 

data set (experiment 4)

Experiment 5. This experiment compares 
TUF-Steaming (Time) and LUF-Streaming and 
UF-Streaming running on the Nursery data set 
(figure 8) and Mushroom data set (figure 9) with 
different thresholds. According to Experiment 
3, we know that the number of frequent patterns 
returned by UF-streaming is different from the 
number of frequent patterns returned by proposed 
algorithms. This is because the UF-Streaming 
uses sliding window to remove data. However, 
we see that our algorithms are only slightly 
slower than UF-streaming.
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Figure 8: evaluation of different thresholds on Nursery data 
set (experiment 5)
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Figure 9: evaluation of different thresholds on Mushroom 

data set (experiment 5)

5. Related work

The most related previous researches can be 
categorized as follows. 

Approximate dependency search algorithm
We use a search algorithm called AD-Miner 

to obtain the set of all minimal dependencies. 
For each attribute such as A from the relational 
schema R, We search for dependencies in the form   
to find all possible attributes combinations that 
are minimal, for the left hand side of dependency. 
In this search process, we consider a fixed order 
(such as alphabetical order) for the attributes. 
The list of attribute that can be used for left hand 
side of  dependency consists of all attributes of 
R, except A itself. To find the left hand side of 
dependency, attributes will be selected one by 
one starting from the bottom of the list. For each 
selected attribute, such as X, we perform a depth 
first search to find a set of attributes that contains 
X, is minimal, and its resulting dependency has 
an acceptable degree of accuracy.

Key features of AD-Miner algorithm
This algorithm is flexible against exceptions 

and noisy data and also computes the degree 
of accuracy of all discovered dependencies. In 
addition, this algorithm also shows the position 
of tuples (tuples index in the relationship) that do 
not hold over each dependency. This feature is 
especially useful when we want to find exceptions 
and inconsistent data in a data set. Another 
important feature of AD-Miner algorithm is that 
it is Incremental.

6. Conclusion

The results of experiments on data sets show 
that AD Miner algorithm is one of the most 
efficient methods among existing incremental 
and non- incremental algorithms aimed at finding 
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functional dependencies. Another advantage 
of this method compared with other methods is 
that it shows tuples that do not follow a single 
dependency. This feature can be used to detect 
inconsistent data in a data set. First, we focus 
our assessment on four introduced algorithms; 
Evaluations show that among the four proposed 
algorithms, LUF-streaming algorithm which 
uses the landmark window model, and TUF- 
streaming (time) algorithm which uses time-
fading window had the best performance. These 
two algorithms which had the best performance 
was then compared with existing algorithm, UF-
streaming , which uses Sliding window; the result 
of this comparison show that proposed algorithms 
are only slightly slower than the UF-streaming 
algorithm, and this is while UF-streaming 
uses the sliding window which means that it 
discards the older data; meanwhile our proposed 
algorithms use window techniques in which the 
window size increases with the increase in data, 
and this means that it provides more information 
from mining the data stream, which enables users 
to utilize the older data as well as present data to 
implement their strategies.
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