
 Journal of Advances in Computer Engineering and Technology, 1(4) 2015

Mining Frequent Patterns
in Uncertain and Relational Data Streams

using the Landmark Windows
Fatemeh Abdi1, Ali Asghar Safaei2

Received (2015-09-09)
Accepted (2015-12-14)

Abstract - Todays, in many modern applications,
we search for frequent and repeating patterns in
the analyzed data sets. In this search, we look for
patterns that frequently appear in data set and
mark them as frequent patterns to enable users to
make decisions based on these discoveries. Most
algorithms presented in the context of data stream
mining and frequent pattern detection, work either
on uncertain data, or use the sliding window model
to assess data streams. Sliding window model uses
a fixed-size window to only maintain the most
recently inserted data and ignores all previous data
(or those that are out of its window). Many real-
world applications however require maintaining all
inserted or obtained data. Therefore, the question
arises that whether other window models can be
used to find frequent patterns in dynamic streams
of uncertain data.

In this paper, we used landmark window model
and time-fading model to answer that question.
The method presented in the form of proposed
algorithm, which uses the idea of landmark window
model to find frequent patterns in the relational
and uncertain data streams, shows a better
performance in finding functional dependencies
than other methods in this field. Another advantage
of this method compared with other methods
is that it shows tuples that do not follow a single
dependency. This feature can be used to detect
inconsistent data in a data set.

Keywords - data stream, landmark window,
data dependency, sliding window, time-fading
window, relational and uncertain data streams

1. Introduction

Frequent pattern mining is an important field
of research related to database and data

mining. This process finds the patterns that
appear frequently in data set and marks them as
frequent patterns. This method in used in many
everyday applications, such as data set related to
supermarket sales, data set related to the weather
reports and environmental data sets. There have
been many studies in the field of frequent pattern
mining, and most of them have been focused on
exact and precise data and on cases where users
have accurate information about the items in
the data set. But in most everyday (real world)
situations, users do not have precise information
about the presence or absence of items in the data
set (data sets related to quantum physics, thermal
sensors, and environmental monitoring). This
type of data is called uncertain data. In uncertain
data, the presence or absence of an item is
represented with a probability value (also called
uncertain value). Furthermore, Data sets used in
the real world are not static and are often in the
form of rapid stream of new data. Mining this
type of dynamic data set, is called data stream
mining.

Apriori algorithm [1] was presented by
Agrawal and Srikant in 1994 for mining precise
static data sets. Any pattern related to data set has a
support value that describes the number of pattern
repetition. A pattern (or item set) is considered
frequent only when support value of that pattern
is greater than or equal to the minimum support
threshold set by the user. Apriori uses a “bottom
up” approach to test the data and determine
frequent patterns in given data sets. But in 2000
Han et al [3] introduced FP-growth algorithm

1- Nima Institute, Mahmoodabad, Mazandaran, Iran.
(fasaabdi@nima.ac.ir)
2- Department of Biomedical Informatics, Faculty of
Medical Sciences, Tarbiat Modares University, Tehran Iran.
(aa.safaei@modares.ac.ir)

44 Journal of Advances in Computer Engineering and Technology, 1(4) 2015

which avoids the process of candidate generation.
This algorithm is composed of two processes:
1-constructing FP tree and 2- recursively growing
frequent patterns. FP Tree is an extended Prefix
Tree which includes the contents of data sets.
Algorithm needs to examine and re-examine the
data set to form FP Tree. In First examination,
algorithm looks for single patterns. It removes
all unique patterns and then arranges all frequent
single patterns in order of their support value. FP
tree potential value decreases similarly. Then,
algorithm examines the data set for the second
time to form the FP tree. After the construction
of this tree, data set examination is no longer
needed, because FP Tree includes all information
provided by data set. Then all frequent patterns
can be obtained by a recursive growth process in
each branch of this tree.

In 2004, Giannella et al proposed FP-
Streaming algorithm [3] which is an algorithm
for mining precise data streams. The first stage of
FP-streaming is to call FP-growth with a
preMinsup to mine the current data stream. At
first, FP-growth algorithm finds all frequent
patterns; the next step of FP-streaming algorithm
is storing and maintaining these patterns in
another tree structure which is called FP-stream.
In FP-streaming, each path represents a frequent
pattern. Each node in FP-streaming includes a
sliding window table which contains multiple
support values for each batch of transactions. It
should be noted that FP-streaming is a data
stream mining algorithm for precise data. The
real challenge is in processing uncertain data
streams. UF-streaming, which is proposed by
Leung and Hao, mines frequent patterns from
uncertain data streams using a fixed-size sliding
window of w frequent steams. At first, UF
streaming algorithm calls UF-growth to find
frequent patterns from the current batch of
transactions in the streams (using minimum
support threshold). A pattern is frequent when its
support value is greater than minimum support
threshold. Then UF-streaming stores the frequent
patterns and their support values in a tree
structure, so that in each node, X stores a list of w
support values. When a new stream arrives, the
window slides and support values move to mine
frequent patterns and their expected support
values from the newest stream imported into the
window, and those streams which are found to be
oldest in the window are deleted. This process is
repeated for each batch in the stream. The support

value of each frequent pattern X will be calculated
by summing all w support values (one for each
batch in the sliding window). expSup(X, Bi)
represents the support value of X in batch Bi.
Then, at the moment of T, the support value of X
in the current sliding window which contains w
batches of uncertain data in the form of

TBwTB ,...,1+− is calculated as below:

∑
+−=+−=

=
T

wTi
i

T

wTi
i BXSupBXSup

11

),(exp),(exp 

• sliding window model
The sliding window model needs a user to

define the size of the window and the extent of
window slide over certain time periods [15]. As
can be seen in the figure, vectors represent the
windows. At first, window W covers the first data
segment. When the next time period arrives, the
sliding window grows to size 2. Then, in the third
time period, the sliding window grows to size 3,
which is the maximum capacity of the sliding
window in this model. In the next time period
window slides one segment to the right side and
covers data segment 2 to data segment 4, and then
deletes the data segment in the right end which is
the oldest data segment to maintain the size of the
window. The process is then repeated.

• Landmark window model
The landmark window model is not a fixed-

size window technique [16, 34]. It starts from
a given point and ends at the current time and
increases the size of the window. It should be
noted that the starting point is fixed, but over time
the end point shifts. As can be seen in the figure,
the landmark window model starts from the
leftmost data segment. The window consists of
data segment 1. In the next time period, the end-
point of the landmark window moves to the next
data segment, but the start-point remains fixed.
Over time, the size of the landmark window
increases and stores every data segment (figure
1).

Figure 1: Landmark windowing

Journal of Advances in Computer Engineering and Technology, 1(4) 2015 45

• Conditional Restrictions
Here, we review the important conditions or

the upper and lower bounds of attribute domain.
We select the minimum and maximum values
for all attributes in all relationships with the
corresponding SQL commands. SQL commands
use a normal order on numbers for numerical
attributes and use the lexicographic order on the
character set for attributes of a symbolic type. It
is possible to compute two values in one query,
so the overall computation cost is O(n*m) where
n is the number of attributes in all tables and m is
the maximum number of tuples in the table.

• Functional dependencies
The functional dependencies are vital and

necessary for the design of relational databases, so
studying these dependencies and their application
is of significant importance. Functional
dependency has been thoroughly studied for
decades. Functional dependency is the relation
between attributes of a relationship: Functional
dependency expresses the value of an attribute by
using the value of some other unique attributes.
Classic functional dependencies are mostly used
for designing relational databases, normalizing
relations, and to avoid data redundancy and key
anomalies. These dependencies have no flexibility
against exceptions and potential noise in data. But
approximate dependencies are another type of
dependencies which do not necessarily hold for
the entire data set, and thus are flexible against
noise and exceptions.

The rest of the paper is organized as follows:
the proposed method which uses Landmark
windowing for mining frequent patterns in
relational and uncertain data streams is presented
in section 2. Theoretical analysis and experimental
evaluation of the proposed method are presented
in section 3 and section 4, respectively. Some
of the related works are discussed in section 5.
Finally, the paper is concluded in section 6.

2. The proposed method

The landmark window model is not a fixed-
size window technique. It stores all data segments
from the start point, which is a given time, up to the
end point, which is the current time. This model
considers all data to be of the same importance,
so it does not discard any data. In this model,
the size of the window is also considered to be
Incremental. Our proposed algorithm operates as

follows. Assume a stream of uncertain data and
a minimal threshold defined by user (Minsup).
The proposed LUF-Streaming algorithm uses
landmark window model in an uncertain data
environment to mine frequent patterns of data
stream (i.e., expected support value is greater than
or equal to minimum support threshold Minsup).
The algorithm consists of three main models:
batch mining model, stream mining model, and
pruning model.

• Cg Batch mining model
This model finds the frequent patterns in every

batch of the stream by calling the UF-growth
algorithm. In a stream, Data do not necessarily
have uniform distribution; so a unique pattern
may be repeated later. Here, instead of using the
UF-growth algorithm with a support threshold
of minsup, model uses UF-growth algorithms
with a lower support threshold of preMinsup and
thus avoids patterns being discarded. Therefore,
model finds each sub-frequent pattern X (i.e. X
with an expected support value greater than or
equal to preMinsup) in each batch of uncertain
data in the stream. The support value of X in the
batch Bj can be calculated by summing (most
transactions in Bj) the product (probabilities of
independent items apearing in the pattern X)
which is expressed by the following equation
[36]:

∑ ∏
∈= ∈

=
w

Bti Xx
ij

ji

txPBXSup
,1

)),((),(exp

where w is the number of batches in the

stream.
• Stream mining model
This model stores and maintains the sub

frequent patterns, discovered in the batches of the
stream, in a tree structure called LUF-Streaming
where each node in the tree represents a pattern
and contains information about the support value
in the stream (from the start of landmark up to
the present).

• Pruning model
In the end, when the user requests the final

results, this model prunes the sub frequent
patterns that are definitely not frequent. Note
that to avoid rapid pattern pruning, batch mining
model finds the sub frequent patterns that have a
support value greater than or equal to preMinsup
that may be less than minsup. These sub frequent
patterns will be maintained in LUF-Streaming

46 Journal of Advances in Computer Engineering and Technology, 1(4) 2015

and their expected support value will be updated
by stream mining model. When user requests
the final list of frequent patterns, pruning model
removes the patterns that have a support value
greater than or equal to preMinsup and less than
minsup.

3. Analyses of overheads

In the functional dependency detection stage,
Assume that | R | = n is the number of attributes
in relational schema R, |r| = m is the number of
attributes in relation r (with a structure of R),
|fr|= f is the number of evaluated dependencies,
|LHS| is the maximum number of attributes in
the left hand side of dependencies, and |D| = d
is the average number of discrete values in the
attribute domain(i.e. the number of members of
MB-Set). In the presented algorithm, calculation
of MB-Set is of the order of O (n.m) and the
construction of set M for a dependency is of the
order of O(d|LHS|). Since for each member of
M, d logical AND operations must be performed,
the complexity of the F set calculation will be of
the order of O(d|LHS|+1) and overall complexity
of the algorithm will be O(n.m + f.d|LHS|+1).
The best condition occurs when the development
of left hand side of dependency is not needed,
or in other words, when the accuracy of all
dependencies that contains 1 attributes on the
left hand side are acceptable. In this condition,
|LHS| = 1, and f is at its lowest value i.e. n2. So in
the best condition, the overall complexity of the
algorithm is O(n.m + n2.d2).

The worst condition occurs when there is no
regularity among data and when few attributes on
the left hand side do not give us any interesting
dependency. In this condition, the left hand side
of all dependencies should be developed to the
point that no other attribute remain to be added to
the left hand side. So | LHS | will be equal to n- 1
and the total number of dependencies that will be
tested will include the whole search space (i.e. 2n
dependencies). But in practice, this condition is
very rare especially in the case of real data. In the
following, we will introduce five algorithms for
finding frequent patterns from streams of
uncertain data by using the landmark window
model and the time-fading model. In this section,

ifp represents the number of frequent patterns

mined from the batch. We assess the proposed
algorithm from two aspects: memory usage and

runtime.
• Memory usage
When using landmark window model, LUF-

Streaming algorithm needs i ifp expSup values

(to be stored in the LUF-stream to store frequent
pattern information.

• Runtime overhead
for the landmark window model, the LUF-

streaming first needs to visit/update every node in
the LUF-stream tree for each data batch. However,
we can increase the performance of the method in
a way that it only visits/updates those tree nodes
that correspond to frequent patterns in the next
data stream. Except that they need a lesser
runtime compared with time-fading model and
this is because of simpler calculations.
Simplification of Equation also simplifies the
calculation of support values when α = 1 (for the
landmark model) because the terms

]*),([exp 1

1
α

−

=

T

i iBXSup and

]*),([exp
1

LVTLV

i iBXSup −
=

α can be

simplified to),(
1

LV

i iBX
= and),(1

1
−

=

T

i iBX .

4. Experimental evaluation

In this section, we evaluate the proposed
method and the performance of algorithms by
using two following real data sets acquired from
UCI data repository.

1)Nursery data set
2)Mushroom data set [37].
Overall statistics regarding these data sets is

presented in table 1.

TABLE 1
DESCRIPTION OF USED DATA SETS

 number of tuplesNumber of
attributes

Data set

129609Nursery
812422Mushroom

Presented data sets also have some attributes
with continuous numerical values. Before the
start of main operation, the values of these
attributes were converted to discrete values by
partitioning their domains into 5 equal parts. To
equalize the tests conditions for two algorithms,

Journal of Advances in Computer Engineering and Technology, 1(4) 2015 47

we set the accuracy threshold to 1.0. Runtime
performance of AD-Miner algorithm (which is
more efficient than other dependency mining
methods) is obtained for data sets and the results
are shown in table 2.

TABLE 2
 DURATION OF DATA MINING PROCESS FOR USED

DATASETS
AD_Miner (s)Datasets

82Nursery
54Mushroom

AD-Miner algorithm is able to mine

dependencies with any degree of accuracy.
These data sets are pretty well-known in the

field of data mining. For Nursery data set, we
prepare two sets of data; (50-60) and (10-100).
These ranges represent the occurrence probability
in the data set. For example, (50-60) in the data
set means that all item sets (patterns) will have
support values in the range between 0.5 and 0.6.
Similarly, (10-100) in the data set means that all
patterns will have support values in the range
between 0.1 and 1.0. Nursery data set consists
of 12960 streams. We divide these streams into
20 separate data batches (each batch consists of
648 streams). For Mushroom data set, there are
a total of 8124 streams. We also divide these
streams into 20 data batches (On average, each
batch contains 406 streams or transactions). For
each of these data sets, we examine the proposed
method in terms of different aspects: (1) The
effect of number of batches on the runtime, and
(2) the effect of threshold minsup set by the user
on the runtime. Then, we select the algorithms
that show the best performance to compare them
with another algorithm for mining the streams of
uncertain data, which is UF-streaming algorithm.

•Evaluation of different numbers of data
batches

Experiment 1. In this experimental evaluation,
we compared the runtime of algorithms by
running different numbers of batches on Nursery
data set. In all steps of algorithm, the support
threshold minsup was assumed as 1.2 (figure 2).

0
10
20

1 5 1 0 1 2 1 5 2 0

T
im

e

Number of data batches

NURSERY DATA
SET(10-100)

LUF-Streaming TUF-Streaming(Time)

TUF-Streaming(Space) TUF-Streaming(Navie)

0

5

10

15

1 5 1 0 1 2 1 5 2 0

T
im

e

Number of data batches

NURSERY DATA
SET(50-60)

LUF-Streaming TUF-Streaming(Time)

TUF-Streaming(Space) TUF-Streaming(Navie)

Figure 2: evaluation of different numbers of data batches on
Nursery data set (experiment 1)

0
100

1 5 1 0 1 2 1 5 2 0T
im

e

of batches

MUSHROOM DATA
SET

LUF-Streaming TUF-Streaming(Time)

TUF-Streaming(Space) TUF-Streaming(Navie)

Figure 3: evaluation of different numbers of data batches on

Mushroom data set (experiment 2)

Experiment 2. Figure 3 shows the result of
running algorithms on mushroom data set. In
this section, we again compare the algorithms
runtimes for different numbers of batches. We
again assume the support threshold as 1.2 and
the α value for all TUF-Streaming algorithms as
1. The difference between the performances of
algorithms is much clearer in the Mushroom data
set compared with Nursery data set. The reason
behind this difference is that the result obtained by
mining mushroom data set contains more frequent
patterns compared with Nursery data set, which
leads to a larger TUF-stream tree structure (or

Journal of Advances in Computer Engineering and Technology, 1(4) 2015 48

LUF-Streaming structure). So the performance
of tree updating process becomes much better.
Overall, the TUF-Streaming (simple) has the
longest runtime and LUF-Streaming and TUF-
Streaming (Time) have the shortest runtime.

Experiment 3. Both LUF-Streaming and TUF-
Streaming (Time) show the best performance in
terms of runtime. We use the same method also
used in previous experiments to compare these
two algorithms with the existing algorithm.
At first, we run all algorithms for Nursery data
set (Fig. 3) and Mushroom data set (Fig. 4) by
an increasing numbers of batches. A possible
argument may be that different window models
are used for these algorithms, so the results may
be different. The result of this experiment shows
the strength of proposed algorithm in using data
streams. This method also provides readers with
some idea regarding the runtime with respect
to importance (magnitude) when making a
comparison between algorithms.

0
5

10
15

1 5 1 0 1 2 1 5 2 0

T
im

e

of batches

NURSERY DATA
SET(10-100)

LUF-Streaming

TUF-Streaming(Time)

UF-Streaming

Figure 4: evaluation of different numbers of data batches on
Nursery data set (experiment 3)

0

20

40

60

1 5 1 0 1 2 1 5 2 0

T
im

e

of batches

MUSHROOM DATA SET
LUF-Streaming TUF-Streaming(Time) UF-Streaming

Figure 5: evaluation of different numbers of data batches on
Mushroom data set (experiment 3)

• Evaluation of different thresholds
Experiment 4. In this experiment, we

assess all proposed algorithms with different
thresholds on both Nursery data set (figure 6) and
Mushroom data set (figure 7). In both figures,
x-axis represents the threshold, and y-axis
represents the runtime. We assume the number
of data batches in each run to be 10. To make
sure that our assessment is correct, we assume the
value of α for all TUF-Streaming algorithms as 1.
The results show that LUF-Streaming and TUF-
Streaming (Time) have the shortest runtimes
among the tested algorithms.

0

20

40

60

0 . 3 0 . 5 0 . 8 1 . 3 1 . 5 2

TI
M

E

Min. Threshold

NURSERY DATA SET(50-60)
LUF-Streaming TUF-Streaming(Time)

TUF-Streaming(Space) TUF-Streaming(Navie)

0
50

100

0 . 3 0 . 5 0 . 8 1 . 3 1 . 5 2

T
im

e

Min. Threshold

NURSERY DATA SET(10-100)
LUF-Streaming TUF-Streaming(Time)

TUF-Streaming(Space) TUF-Streaming(Navie)

Figure 6: evaluation of different thresholds on Nursery data
set (experiment 4)

49 Journal of Advances in Computer Engineering and Technology, 1(4) 2015

0

50

100

0 . 3 0 . 5 0 . 8 1 . 3 1 . 5 2

T
im

e

MIN. THRESHOLD

MUSHROOM DATA SET
LUF-Streaming TUF-Streaming(Time)

TUF-Streaming(Space) TUF-Streaming(Navie)

Figure 7: evaluation of different thresholds on Mushroom

data set (experiment 4)

Experiment 5. This experiment compares
TUF-Steaming (Time) and LUF-Streaming and
UF-Streaming running on the Nursery data set
(figure 8) and Mushroom data set (figure 9) with
different thresholds. According to Experiment
3, we know that the number of frequent patterns
returned by UF-streaming is different from the
number of frequent patterns returned by proposed
algorithms. This is because the UF-Streaming
uses sliding window to remove data. However,
we see that our algorithms are only slightly
slower than UF-streaming.

0
20
40
60
80

0 . 3 0 . 5 0 . 8 1 . 3 1 . 5 2

T
im

e

Min. Threshold

NURSERY DATA SET(10-100)
LUF-Streaming TUF-Streaming(Time) UF-Streaming

0
10
20
30
40
50

0 . 3 0 . 5 0 . 8 1 . 3 1 . 5 2

T
im

e

MIN. THRESHOLD

NURSERY DATA SET(50-60)
LUF-Streaming TUF-Streaming(Time) UF-Streaming

Figure 8: evaluation of different thresholds on Nursery data
set (experiment 5)

0

20

40

60

0 . 3 0 . 5 0 . 8 1 . 3 1 . 5 2

T
im

e

Min. Threshold

MUSHROOM DATA SET
LUF-Streaming TUF-Streaming(Time) UF-Streaming

Figure 9: evaluation of different thresholds on Mushroom

data set (experiment 5)

5. Related work

The most related previous researches can be
categorized as follows.

Approximate dependency search algorithm
We use a search algorithm called AD-Miner

to obtain the set of all minimal dependencies.
For each attribute such as A from the relational
schema R, We search for dependencies in the form
to find all possible attributes combinations that
are minimal, for the left hand side of dependency.
In this search process, we consider a fixed order
(such as alphabetical order) for the attributes.
The list of attribute that can be used for left hand
side of dependency consists of all attributes of
R, except A itself. To find the left hand side of
dependency, attributes will be selected one by
one starting from the bottom of the list. For each
selected attribute, such as X, we perform a depth
first search to find a set of attributes that contains
X, is minimal, and its resulting dependency has
an acceptable degree of accuracy.

Key features of AD-Miner algorithm
This algorithm is flexible against exceptions

and noisy data and also computes the degree
of accuracy of all discovered dependencies. In
addition, this algorithm also shows the position
of tuples (tuples index in the relationship) that do
not hold over each dependency. This feature is
especially useful when we want to find exceptions
and inconsistent data in a data set. Another
important feature of AD-Miner algorithm is that
it is Incremental.

6. Conclusion

The results of experiments on data sets show
that AD Miner algorithm is one of the most
efficient methods among existing incremental
and non- incremental algorithms aimed at finding

50 Journal of Advances in Computer Engineering and Technology, 1(4) 2015

functional dependencies. Another advantage
of this method compared with other methods is
that it shows tuples that do not follow a single
dependency. This feature can be used to detect
inconsistent data in a data set. First, we focus
our assessment on four introduced algorithms;
Evaluations show that among the four proposed
algorithms, LUF-streaming algorithm which
uses the landmark window model, and TUF-
streaming (time) algorithm which uses time-
fading window had the best performance. These
two algorithms which had the best performance
was then compared with existing algorithm, UF-
streaming , which uses Sliding window; the result
of this comparison show that proposed algorithms
are only slightly slower than the UF-streaming
algorithm, and this is while UF-streaming
uses the sliding window which means that it
discards the older data; meanwhile our proposed
algorithms use window techniques in which the
window size increases with the increase in data,
and this means that it provides more information
from mining the data stream, which enables users
to utilize the older data as well as present data to
implement their strategies.

References

[1] Mining association rules in large databases.
In Proceedings of the 20th International
Conference on Very Large Data Bases (VLDB
1994), Santiago de Chile, Chile, pages 487{499.
Morgan Kaufmann Publishers Inc., 1994.

[2] Jiawei Han, Jian Pei, and Yiwen Yin.
Mining frequent patterns without candidate
generation. SIGMOD Rec., 29:1{12, May 2000.

[3] Chris Giannella, Jiawei Han, Jian Pei,
Xifeng Yan, and Philip S. Yu. Mining frequent
patterns in data streams at multiple time
granularities. Data Mining: Next Generation
Challenges and Future Directions, pages
191{212, 2004.

[4] Carson Kai-Sang Leung and Boyu Hao.
Mining of frequent itemsets from streams of
uncertain data. In Proceedings of the 2009
IEEE 25th International Conference on Data
Engineering (ICDE 2009), Shanghai, China,
pages 1663{1670. IEEE Computer Society, 2009.

[5] Carson Kai-Sang Leung, Christopher L.
Carmichael, and Boyu Hao. Efficient mining
of frequent patterns from uncertain data. In
Proceedings of the Seventh IEEE International
Conference on Data Mining Workshops (ICDM
2007), Washington, DC, USA, pages 489{494.
IEEE Computer Society, 2007.

[6] Chun-Kit Chui, Ben Kao, and Edward
Hung. Mining frequent itemsets from uncertain
data. In Proceedings of the 11th Pacific-
Asia Conference on Advances in Knowledge
Discovery and Data Mining (PAKDD 2007),
Nanjing, China, pages 47{58. Springer-Verlag,
2007.

[7] Carson Kai-Sang Leung, Mark Anthony
F. Mateo, and Dale A. Brajczuk. A tree-based
approach for frequent pattern mining from
uncertain data. In Proceedings of the 12th Paci_c-
Asia Conference on Advances in Knowledge
Discovery and Data Mining (PAKDD 2008),
Osaka, Japan, pages 653{661. Springer-Verlag,
2008.

[8] Man Lung Yiu, Nikos Mamoulis,
Xiangyuan Dai, Yufei Tao, and Michail Vaitis.
E_cient evaluation of probabilistic advanced
spatial queries on existentially uncertain data.
IEEE Transactions on Knowledge and Data
Engineering, 21:108{122, January 2009.

[9] Xiangyuan Dai, Man Lung Yiu, Nikos
Mamoulis, and Michail Vaitis. Probabilistic
spatial queries on existentially uncertain data. In

51 Journal of Advances in Computer Engineering and Technology, 1(4) 2015

Proceedings of the 9th International Symposium
on Spatial and Temporal Databases (SSTD 2005),
Angra dos Reis, Brazil, pages 400{417.Springer-
Verlag, 2005.

[10] Chun-Kit Chui and Ben Kao. A
decremental approach for mining frequent
itemsets from uncertain data. In Proceedings of
the 12th Pacific- Asia Conference on Advances
in Knowledge Discovery and Data Mining
(PAKDD 2008), Osaka, Japan, pages 64{75.
Springer-Verlag, 2008.

[11] George A. Mihaila, Ioana Stanoi, and
Christian A. Lang. Anomaly-free incremental
output in stream processing. In Proceedings of
the 17th ACM Conference on Information and
Knowledge Management (CIKM 2008), Napa
Valley, California, USA, pages 359{368. ACM,
2008.

[12] Anamika Gupta, Vasudha Bhatnagar,
and Naveen Kumar. Mining closed itemsets in
data stream using formal concept analysis. In
Proceedings of the 12th International Conference
on Data Warehousing and Knowledge Discovery
(DaWaK 2010), Bilbao, Spain, pages 285{296.
Springer- Verlag, 2010.

[13] Nan Jiang and Le Gruenwald. Research
issues in data stream association rule mining.
SIGMOD Rec., 35:14{19, March 2006.

[14] Carson Kai-Sang Leung and Boyu
Hao. Mining of frequent itemsets from streams
of uncertain data. In Proceedings of the 2009
IEEE 25th International Conference on Data
Engineering (ICDE 2009), Shanghai, China,
pages 1663{1670. IEEE Computer Society, 2009.

[15] Mahmood Deypir, Mohammad Hadi
Sadreddini, An Efficient Algorithm for Mining
Frequent Itemsets Within Large Windows Over
Data Streams, International Journal of Data
Engineering (IJDE), Volume (2) : Issue (3) : 2011.

[16] Li H, Lee S, Shan M. “An efficient
algorithm for mining frequent itemsets over the
entire history of data streams”. Proceedings of
the first international workshop on konwledge
discovery in data streams, Pisa, Italy, 2004.

[17] Carson Kai-Sang Leung and Fan Jiang,
Frequent Pattern Mining from Time-Fading
Streams of Uncertain Data, LNCS 6862, pp.
252–264, 2011.

[18] Mannila, H. and R¨aih¨a, K.-J. (1991).
The design of relational databases. Addison-
Wesley.

[19] Brockhausen, P. (1994). Discovery of
functional and unary inclusion dependencies in

relational databases. Master’s thesis, University
Dortmund, Informatik VIII. In German.

[20] Anforderungen An , Lehrstuhl Viii
, Lehrstuhl Viii , Siegfried Bell , Siegfried
Bell Peter Brockhausen , Peter Brockhausen ,
Fachbereich Informatik , Fachbereich Informatik,
Fachbereich Informatik , Fachbereich Informatik
, Fachbereich Informatik, Discovery of Data
Dependencies in Relational Databases, Machine
Learning: ECML-95: 8th European Conference
on Machine Learning, Volume 8, 1995.

[21] P. Bosc, L. Lietard, and O. Pivert,
Functional dependencies revisited under
graduality and imprecision, pp. 57 - 62, NAFIPS,
1997.

[22] F. Berzal, I.Blanco, D. Sanchez, J.M.
Serrano and M.A. Vila, A definition for fuzzy
approximate dependencies, Fuzzy Sets and
Systems, Vol. 149, No. 2, pp. 105 – 129, 2005.

[23] J. Kivinen and H. Mannila, Approximate
inference of functional dependencies from
relations, Theoretical Computer Science, Vol.
149, No. 1, pp. 129 – 149, 1995.

[24] J.M. Morrissey, Imprecise information
and uncertainty in information systems, ACM
Transactions on Information Systems, Vol.8, No.
2, pp. 159–180, 1990.

[25] U. Nambiar, and S. Kambhampati,
Answering Imprecise Queries over Autonomous
Web Databases, In: Proc. ICDE 2006, 22nd
International Conference on Data Engineering,
2006.

[26] S.L. Wang, J.W. Shen, and T.P.
Hong, Discovering functional dependencies
Incrementally from Fuzzy Relational Databases,
in: Proc. English National Conference on Fuzzy
Theory and Its Applications, pp. 17 – 24, 2000.

[27] S.L. Wang, J.S. Tsai, B.C. Chang, Mining
Approximate Dependencies using partitions on
Similarity-Relation based Fuzzy databases, in:
Proc. IEEE SMC’99, Vol. 6, PP. 871_875, 1999.

[28] S.L. Wang, J.S. Tsai and T.P. Hong,
Discovering functional dependencies from
Similarity-based Fuzzy Relational Databases,
Intelligent Data Analysis, Vol. 5, No. 2, pp. 131
– 149, 2001.

[29] P. A. Flach and I. Savnik, Database
dependency discovery: a machine learning
approach, AI communications, Vol. 12, No. 3, pp.
139 – 160, 1999.

[30] H. Mannila and K.J. Raiha. Algorithms
for inferring functional dependencies from
relations. DKE, Vol. 12, No. 1, pp. 83-99, 1994.

52 Journal of Advances in Computer Engineering and Technology, 1(4) 2015

[31] S. Lopes, J.M. Petit, L. Lakhal, Efficient
Discovery of Functional Dependencies and
Armstrong Relations, in: Proc. ICDT 2000,
the 7th International Conference on Extending
Database Technology: Advances in Database
Technology, Vol. 1777, pp. 350 – 364, 2000.

[32] C. Wyss, C. Giannella, and E. Robertson,
FastFDs, A Heuristic-Driven Depth-First
Algorithm for Mining Functional Dependencies
from Relation Instances, Data Warehousing and
Knowledge Discovery, Vol. 2114, No. 1, pp. 101
– 123, 2001.

[33] Y. Huhtala, J. Karkkainen, P. Porkka
and H. Toivonen, TANE: An Efficient Algorithm
for Discovering Functional and Approximate
Dependencies. The Computer Journal. Vol. 42,
No. 2, pp. 100 – 111, 1999.

[34] Xuan Hong Dang, Kok-Leong Ong, and
Vincent Lee, An Adaptive Algorithm for Finding
Frequent Sets in Landmark Windows, Springer-
Verlag Berlin Heidelberg, pp. 590–597, 2012.

[35] S.M. Fakhr Ahmad, M. Zolghadri Jahromi,
M.H. Sadreddini, A new incremental method for
discovery of minimal approximate dependencies
using logical operations, Journal of Intelligent
Data Analysis, Volume 12 pages.607-619, 2008.

