
 Journal of Advances in Computer Engineering and Technology, 2(1) 2016

Overflow Detection in Residue Number System,
Moduli Set {2n-1,2n,2n+1}

Babak Tavakoli1, Mehdi Hosseinzadeh2, Somayeh Jassbi3

Received (2015-11-23)
Accepted (2016-2-1)

Abstract — Residue Number System (RNS)
is a non-weighted number system for integer
number arithmetic, which is based on the
residues of a number to a certain set of numbers
called module set. The main characteristics and
advantage of residue number system is reducing
carry propagation in calculations. The elimination
of carry propagation leads to the possibility of
maximizing parallel processing and reducing the
delay. Residue number system is mostly fitted for
calculations involving addition and multiplication.
But some calculations and operations such
as division, comparison between numbers,
sign determination and overflow detection is
complicated. In this paper a method for overflow
detection is proposed for the special moduli set
{2n-1,2n,2n+1}. This moduli set is favorable because
of the ease of calculations in forward and reverse
conversions. The proposed method is based on
grouping the dynamic range into 22n-2n groups by
using the New Chinese Theorem and exploiting the
properties of residue differences. Each operand of
addition is mapped into a group, then the sum of
these groups is compared with the indicator and
the overflow is detected. The proposed method
can detect overflow with less delay comparing to
previous methods.

Index Terms — Computer Arithmetic, Moduli
set , Overflow Detection, Residue Number System.

I. INTRODUCTION
RNS has recently attracted attention. The

need for high speed and low power computation
with the emergence of new mobile and embedded
applications are the driving force behind this
attraction. RNS is an answer to those new
challenges; the carry free arithmetic which can
be used in RNS will result in development of
parallel fast computation methods[1]. It has
proven its advantages in the achievement of
high performance parallel computing. In RNS
a number is divided into several much smaller
numbers which can be manipulated concurrently
and independently. The system is mostly
beneficial in the applications where addition and
multiplication are dominant; such applications
are found in digital signal and image processing
and cryptography[1]. RNS is also useful in fault
tolerant applications; due to the non-weighted
nature of this system, a single error in a digit will
not affect the whole number so the faulty digit
may be discarded with no effect other than a
small reduction in dynamic range. However RNS
has also its own disadvantages and limitations
which restrict its application as a primary
choice for designing an all-purpose CPU. Some
operations and calculations are complicated
in RNS[2]; division, magnitude comparison,
sign determination and overflow detection are
among those difficult operations in RNS which
overshadow the full utilization of the RNS in a
general purpose computer system.

II. DEFINITIONS AND NOTATIONS
An RNS is distinguished by its moduli set; a

set of N pairwise prime integers such as
, ,1 1m m mN N

 
 
 

…− . Each member of moduli set is

1- Department of Computer Engineering, Islamic Azad
University, Science and Research Branch (babak_tavakoli@
yahoo.com)
2- Department of Computer Engineering, Islamic Azad
University, Science and Research Branch (mehdi.hoza@
gmail.com)
3- Department of Computer Engineering, Islamic Azad
University, Science and Research Branch (sjassbi@gmail.
com)

10				 Journal of Advances in Computer Engineering and Technology, 2(1) 2016

called a modulus. An integer number X is
represented as a set of N residues according to the
equation (1) with respect to the moduli set [3].
The remainder on division of X by the modulus
mi is defined as xi and represented by equation(2).

X = xN , xN-1 ,.... , x1 (1)
x X mi i

= (2)

The product of the moduli is defined as
dynamic range M and it is the upper bound of
representable numbers in a RNS according to the
equation (3).

 0
1

N
M m and X Mi

i
= ≤ <∏

=
 (3)

Addition, subtraction and multiplication are
carried out by individually modular adding,
subtracting or multiplying corresponding residues
relative to the modulus for their position [3].

, , 1 1 1

, , 1 1 1

X Y x y x yN N m mN

X Y x y x yN N m mN

± = ± … ±

× = × … ×
 (4)

Forward Conversion is the process in which
a number from ordinary (binary) representation
is converted to RNS representation. The process
is finding the remainder of the number upon
division by every modulus. Forward conversion
is almost always carried out by any technique,
other than division which is complex and time
consuming.

Reverse conversion is the process in which
a number in RNS representation is converted
back to an ordinary (binary) representation.
There are two different approaches to the reverse
conversion; the first method is based of Chinese
Remainder (Equation (5)) and the second method
is called Mixed Radix Conversion which is a
sequential process (Equation (6)).

1, ,
1

N M
X w x w M M Mi i i i im mi iM i

−= = × =∑
= 	

					 (5)

1 2 1 3 1 2 1 1X z z m z m m z m mN N= + + +…+ … − 	
					 (6)

III. BACKGROUND

A.	 Problem Statement
Overflow occurs whenever the result of an

arithmetic operation could not be represented
correctly by hardware. i.e. the result falls beyond
the representable range. Overflow can be easily
detected in a weighted number system by
comparing methods; the sum of two unsigned
integers is expected to be greater than each addend
or the sum of two positive/negative integers
should not yield a negative/positive result.
Overflow can also be detected by examining the
equality between carry-in and carry-out of the
most significant bit. RNS is non-weighted i.e. the
digit position carries no weight information so the
overflow detection is complicated and it is almost
as complex as magnitude comparison. Although
most RNS applications avoid complicated
operations, the detection of overflow is inevitable
to ensure the correctness and integrity of
arithmetic operations. There are also some other
methods based on redundancy [12].

B.	 Overflow Detection Methods
There are three main approaches to overflow

detection. The first approach relies on the parity
characteristics[6][8], the second is based on
grouping the dynamic range[7][9] and the third
is by comparison.

1-	 Adding an extra modulus 2 to the moduli
set which has no even modulus, expands the
dynamic range and adds the parity bit to each
number. The sum of two even/odd numbers
naturally results in an even number, the sum of
an even number and odd number will produce
an odd number. Any violation of the above
mentioned rule will indicate an overflow.

2-	 Overflow can also be detected by
Grouping the dynamic range into different
partitions and defining comparing rules on groups.
The advantage of this method is reducing the
comparison complexity; the comparison between
groups is performed in the binary number system
with less bits.

3-	 The other method for overflow detection
is based on comparison. A mechanism for
comparing numbers is hired which is similar to
reverse conversion. The numbers are partially
converted to a weighted number system in
which the comparison can be performed. The
efficiency of these methods is fully dependent
on the comparison and reverses conversion

Journal of Advances in Computer Engineering and Technology, 2(1) 2016					 11

mechanisms. Some methods such as “Core
function”[4] are used to evaluate an RNS number
without full reverse conversion.

IV. PROPOSED METHOD
Our proposed method can detect overflow

in adding two unsigned integers. Each operand
and the sum are mapped to a group by using
the grouping function. The sum of groups is
calculated and compared with the indicator 22n -
22 - 1 . If the sum of groups is greater than indicator
the over flow signal will be set (ov=1), if it is less
than indicator the over flow signal will be cleared
(ov=0) and if it is equal to indicator the group
associated with the sum of operands will be
compared with zero. If the group is equal to zero
then over flow signal will be set and otherwise it
will be cleared according to equations (7). The
method is illustrated in figure (1).

() ()
() ()
() ()

()

2 22 2 1 1

2 22 2 1 0

2 22 2 1

0 1
0

Z X Y
nif G X G Y ov

nif G X G Y ov

nif G X G Y

and G Z ov
otherwise ov

= +

+ > − − → =

+ < − − → =

+ = − −

= → =

=





 (7)

Figure 1. Schematic of Proposed Method

A.	 Grouping Function
Grouping function maps every number within

the dynamic range into a group. The dynamic
range is divided into 22n-22 groups. Each group
has 2n+1 members. The grouping is based on
difference of residues. The difference between
x3 and x2 modulo m3 is defined as A ′ and A ′′

is one bit right rotate of A ′ [9]. The difference
between x2 and x1 modulo m2 is defined as B ′ .
The grouping function is defined in equation (8)
and it is depicted in figure (2).

()
()

, , 2 1, 2 , 2 13 2 2 3 2 1

,3 1 2 1 23

. 23

n n nX x x x m m m

x x x x mm

one bit right rotate

G X

A B

A A

B A B mm

′ ′

′′ ′

′

= = − = = +

− −

= + −′′ ′

 



(8)

Figure 2. Schematic of Grouping Function

B.	 Mathematical Proof
In this section we present two mathematical

proofs for our proposed method. The first proof
assumes the overflow has occurred and shows the
sum of groups exceeds the indictor. The second
(reverse) proof assumes the sum of the groups
is greater than indicator as the hypotheses and
concludes the sum of two numbers is greater
than or equal to dynamic range. In both proofs
we assume that Z is the sum of two unsigned
integers X and Y (Z=X+Y) and X,Y,Z are mapped
to G(X),G(Y),G(Z) by grouping function
respectively.

Before proving the proposed method, two
useful lemmas are presented.	

Lemma 1: for ,a b ∈Z if a b≤ then 1a b< +
Lemma 2: for ,a b ∈Z if a b> then 1a b≥ +

12				 Journal of Advances in Computer Engineering and Technology, 2(1) 2016

() ()3 2 2 2 2 2 1 n n n nX Y G X G Y+ ≥ − ⇒ + ≥ − −

()() ()()2 1 2 1 2
n n n

G X X G X+ ≤ ≤ + +

()() ()()2 1 2 1 2
n n n

G Y Y G Y+ ≤ ≤ + +

()()2 1 2 1 (1)
n n

X G X lemma< + + +

()()2 1 2 1 (1)
n n

Y G Y lemma< + + +

()() ()() ()2 1 2 1 2 2 1
n n n

X Y G X G Y+ < + + + + +

() () ()() ()2 1 2
n

X Y G X G Y I+ < + + +

()() ()3 2
 2 2 2 2 2 1

n n n n n
X Y X Y II+ ≥ − → + ≥ − +

() (), :I II

() () ()() ()()2
2 1 2 2 2 2 1

n n n n
G X G Y+ + + > − +

() () 2 2
 2 2 2 2 2 1 (2)

n n n n
G X G Y lemma+ > − − ≥ − −

() () 2
 2 2 1

n n
G X G Y+ ≥ − −

() () 2 32 2 1 2 2 n n n nG X G Y X Y+ > − − ⇒ + ≥ −

() () ()2
2 2 (2)

n n
G X G Y I lemma+ ≥ −

() ()() ()3 2
2 2 2

n n n
G X G Y II+ ≥ −

() () () () () () 2 3 2
 2 2 2 2 2 2

n n n n n n
I II G X G Y G X G Y+ → + + + ≥ − + −

() () () () 3
2 2 2 2

n n n n
G X G X G Y G Y+ + + ≥ −

()() ()() ()3
2 1 2 1 2 2

n n n n
G X G Y III+ + + ≥ −

()() ()()
()() ()()

2 1 2 1 2 ,

2 1 2 1 2

n n n
G X X G X

n n n
G Y Y G Y

+ ≤ ≤ + +

+ ≤ ≤ + +

()() ()()2 1 , 2 1
n n

G X X G Y Y+ ≤ + ≤

()() ()() ()2 1 2 1
n n

G X G Y X Y IV+ + + ≤ +

() () 3
, 2 2

n n
III IV X Y→ + ≥ −

V. HARDWARE IMPLEMENTATION
In this section the logical design of main

components of the proposed method, are being
discussed. The grouping unit and the comparators
are the building blocks of the proposed method.
The grouping unit and the comparators are
consist of different parts, each of them are being
explained in the following sub-sections.

A.	 Grouping Function
The grouping operation is started by

calculating the differences between the residues

according to the following equations: 3 1A x x= −

, 2 1B x x= − .
These operations are carried out by using two

Parallel Prefix Adders (PPA). Then the remainder
of A when dividing by 2 1n − and the remainder of
B when dividing by n2 are calculated according
to equation (9).

, 3 1 2 1 22 1x x x x nnA B′ − −′
−

� �

(9)

The calculation of B ′ is straightforward; the
remainder of any number when dividing by n2
is the n least significant bits of the dividend. In
order to calculate A ′ , a special adder is being
used which is illustrated in figure (3).

Figure 3. Calculation unit for

As shown in figure (3), " "A is added to a
constant offset. The MSB of " "A will determine
this constant; when MSB of " "A is zero the offset
will be zero otherwise it will be 01 1 2 1n… = −
there is also an exception to this rule; when the
input is 1...10 , the output should be 10...0 . This
situation is handled by using a 2 input multiplexer
which is controlled by the exceptional condition.
The values of A ′ are not ordered; i.e. the even
values come first and the odd values come after
even values. To make these values ordered we
should rotate the A ′ one bit to the right [9].
A ′′ is the result of one bit right rotation of A ′
. The remainder of difference between A ′′ and

B ′ when dividing by 2 13
nm = − is δ ′ and it is

calculated by using the same mechanism as A ′ .
The exceptional condition does not occur and the
extra hardware which handles the exceptions can
be eliminated figure (4). When δ ′ is calculated,

Journal of Advances in Computer Engineering and Technology, 2(1) 2016					 13

it should be multiplied by 22
nm = and added

to B ′ . The multiplication of any number by
2n is just an “n bit” left shift or right padding
the number with n zeros. While B ′ is an “n bit”
variable, adding B ′ to the 2n δ× ′ is carried out
by placing the B ′ bits on the right side of δ ′
replacing the n zeros without using any hardware.

 Figure 4. Calculation unit for δ ′

B.	 Group Addition
When the groups for each operand are

calculated by grouping module, the groups
should be added to form the “sum of groups”. The
result is compared with the indicator to detect the
overflow. While groups are 2n bit variables, the
adder should be a 2n bit adder. In order to avoid
using bigger than n bit component, we use three
n bit adder instead of one 2n bit adder. These
method uses up more area while reducing the
delay. The group adder is depicted in figure (5).

 Figure 5. Group adder

The left n bits of G(X) and G(Y) are added in
two n bit adder with and without carry-in. The
right n bits are added with third n bit adder. By
using a multiplexer, the carry-out of the right
adder determines which result will be selected for
the high n bits of the sum.

C.	 Comparing with Indicator
The sum of groups should be compared with

the indicator. The indicator is one unit less than,

the number of groups,i.e. 22 2 1n n− − . Generally
the comparison is carried out by subtraction
and testing the sign bit of difference. We would
like to avoid subtraction so we offer a special
method to predict the sign bit of the difference
between sum of groups and indicator without
subtraction. The method is completely dependent
on the characteristics of the indicator. The two’s
complement (negative form) of indicator bit
pattern is  110..010..01

1 1n n− −
 . It is composed of two “1

bits” on the left followed by two (n bit) blocks
of 0..01

1n−
 on the right. The sum of groups should

be added to two”s complement of indicator then,
the sign bit of result will be tested to determine
whether sum of groups is greater than indicator
or less than indicator. Groups are 2n bit variables
so the sum of groups is 2n+1 variable, the
indicator is also 2n bit variable and it should be
considered that, the indicator will be compared
with a 2n+1 bit variable (the sum of groups) so
one extra bit is added to the left side of indicator.
The complement operation also adds another bit
to extend the range and make room for negative
values and the final length of minus-indicator
will be 2n+2. One zero bit is added to the left
side of “sum of groups” to match the 2n+2 bit
length of minus-indicator. As illustrated in figure
(6), the minus indicator is consist of two n bit
blocks followed by two “1” at the left. The sum
of groups is shown above the minus indicator.

Figure 6. The minus-indicator in two blocks

We define the variable as the carry bit coming
out of right block. If all bits of 1 1 0S S Sn …−
equal to 1, the carry will be generated i.e. α
equals to 1, otherwise α equals to 0. If 0α = the
final carry-out of left block is dependent on the

2 1 1S S S nn n…− + if all bits of 2 1 1S S S nn n…− +
equal to 1, then the carry-out of left block equals
to 1. If 0α = the final carry-out is dependent
on the 2 1 1S Sn n…− + similar to the previous
situation, if all bits of 2 1 1S Sn n…− + equal to 1,

Journal of Advances in Computer Engineering and Technology, 2(1) 2016					 14

then the carry-out of left block equals to 1. The
carry bit coming out of left block combining with

2S n will determine the final sign bit as depicted
in figure (7).

Figure 7. Schematic of comparator

The comparator can be implemented by using
one “n input AND gate”, one “n-1 input AND”
gate, three “2 input AND” gates and one “2 input
NOR” gate as illustrated in figure (8).

Figure 8. Implementation of comparator

The comparator descried above can determine
whether the sum of groups is greater than
indicator or less than it. It cannot tell if the sum of
groups is equal to indicator. To have a complete
comparator we should use another unit for
“equality comparison”, this unit can be made of
“XOR” gates combining with one “n input AND
gate” figure (9).

Figure 9. Equality comparison between X and Y

The “n input AND” gate is a hypothetical gate
which cannot be implemented directly similar
to a regular “2 input AND” gate. The “fan-in”
is a parameter of synthetic technology which
limits the inputs of any gate. Regarding to the
restrictions imposed by VLSI technology and
fabrication methods, the number of inputs for
any gate is limited. In our proposed method we
consider the worst case; we suppose that, we
cannot use any gate which has more than two
inputs. So implementing the “N input AND”
gate is accomplished by cascading, n-1 “2 input
AND” gate in a tree like design. An example of
a 16 input AND gate is illustrated in Figure (10).

Figure 10. Implementation of 16 Input AND gate

VI.	 COMPLEXITY AND DELAY
CALCULATION

In this section the area and delay of proposed
method is calculated. The procedure for
calculating the area and delay is based on uni-
gate [5] method. In this method each basic gate
has 1 unit delay and 1 unit area. The basic gates
are “AND”,”OR”,”NOR” and “NAND”. The
compound gates such as “XOR” and “XNOR”
have 2 units of delay and 3 units of area. Our
proposed method is consist of 3 grouping
units two comparators (one for comparing
with indicator and other for comparing with
zero) and a multiplexer. We also suppose all
of adders are “Parallel Prefix” which has the
delay of 2 log 42T nPPA = + , and the area of

3
5 log22

A n n nPPA = + [5], the area and delay of

grouping unit can be calculated as follows:

() ()3
10 7 1 log 122

A n n nGrouping = + + + +

() () () ()6 1 1 log 1 16 3 log 1 72 2n n n n n n+ + + + + ≈ + + +

() ()2 log 1 5 3log 12 2T n nGrouping = + + + +

()9 5 log 1 142 n+ = + +

Journal of Advances in Computer Engineering and Technology, 2(1) 2016					 15

If we add all the area and delay of components
considering the parallel and serial parts the total
delay and area can be calculated as follows:

3 A A A A AComparatorTotal Grouping Group Adder is equal
comparator

= + ++


 2 1 (1)A Ais zero MUX bit+ + ×

()() 9
3 16 3 log 1 7 17 log2 22

A n n n n n nTotal = + + + + +
 
 
 

() () ()2 2 3 1 2 1 3n n n

comparator

+ + + − + − +


()27
72 log 1 1022

A n n nTotal = + + +

 2 1 (1)T T T T ATotal Grouping Group Adder Comparator MUX bit= + + + ×

()() () ()5 log 1 14 6 log 2 log 3 22 2 2T n n nTotal = + + + + + + +

()12 log 1 212T nTotal = + +

We substitute all log2 n with ()log 12 n + to
form a uniform equation. This substitution will
not violate the uni-gate rules; because the upper
bound of delay (the worst case) is used.

VII. COMPARISON
There are few methods which directly and

specifically dealt with overflow detection in
moduli set { }n n n2 1, 2 , 2 1− + . Some of the fast
and efficient (in terms of complexity and area)
are compared with our proposed method in table
1.

TABLE I. COMPARISON BETWEEN OVERFLOW
DETECTION METHODS

Method Area Delay
[11] 115 186n + 4 log 362n n+ +

[10] 96 log 162n n n+ + 8 log 122n n+ +

[]13 CI− 56 22n ABC+ + 16 4n BCτ+ +

[]13 CII− 96 24n ABC+ + 4 4n BCτ+ +

[]13 CIII− 80 18n ABC+ + 4 4n BCτ+ +

[9] 33
76 log22

n n n+
 
 
 

6 log 232 n +

Proposed
Method ()27

72 log 1 1022
n n n+ + +

()12 log 1 212 n + +

VIII. CONCLUSIONS
Overflow detection is an essential part of all

arithmetic operations. Undoubtedly any ALU
needs a mechanism for overflow detection to
insure that, results are correct and to provide
a guarantee against possible out of range,
incorrect calculation results. Overflow detection
is considered as a complicated operation with
the complexity almost equal to magnitude
comparison and sign detection. In this paper we
proposed an overflow detection mechanism based
on grouping. Our method shows less delay and
area, comparing to previous methods and all the
operations are n bit long, avoiding complexity of
processing 2n bit and 3n bit numbers which are
common among previous algorithms.

REFERENCES
[1] Omondi A., Premkumar B., RESIDUE NUMBER

SYSTEMS, Theory and Implementation, ImperialCollege
Press, 2007.

[2] N. S. Szabo and R. I. Tanaka, Residue Arithmetic
and Its Application to Computer Technology, New York:
McGraw- Hill, 1967.

[3] Parhami B., Computer arithmetic Algorithms and
hardware designs, Oxford University Press, 2000.

[4] Miller D.D., Analysis of the residue class core
function of Akushskii, Burcev, and Park. In: G. Jullien, Ed.,
RNS Arithmetic: Modern Applications in Digital Signal
Processing. IEEE Press 1986.

[5] Zimmermann R., Efficient VLSI implementation of
modulo 2n+-1 addition and multiplication. Proc. 14th IEEE
Symp. Computer Arithm. , Adelaide, Australia, 1999, pp.
158–167

[6] Zarei B., Askarzadeh M., Derakhshanfard
N.,Hosseinzadeh M., A High-speed Residue Number
Comparator For the 3-Moduli Set {2n-1, 2n+1, 2n+3}.
Proceedings of International Symposium on Signals,

Journal of Advances in Computer Engineering and Technology, 2(1) 2016					 16

Systems and Electronics (ISSSE2010),2010
[7] DEBNATH R.C., PUCKNELL D.A.,ON

MULTIPLICATIVE OVERFLOW DETECTION IN
RESIDUE NUMBER SYSTEM,Department of Electrical
Engineering University of Adelaide, 1977

[8] Askarzadeh M.,Hosseinzadeh M., Keivan Navi K.,A
New approach to Overflow detection in moduli set {2n-3,
2n-1, 2n+1, 2n+3},Second International Conference on
Computer and Electrical Engineering,2009

[9] Rouhifar M.,Hosseinzadeh M.,Bahanfar
S.,Teshnehlab M.,Fast Overflow Detection in Moduli Set
{2n – 1, 2n, 2n + 1},IJCSI International Journal of Computer
Science Issues, Vol. 8, Issue 3, No. 1, May 2011

[10] Shaoqiang B., Groos W.J.,Efficient Residue
Comparison Algorithm for General Moduli Sets,IEEE
International Circuits and Systems, 2005, (2): 1601-1604.

[11] Gholami E., Farshidi R., Hosseinzadeh M., Navi
K.,High speed residue number system comparison for the
moduli set {2n-1, 2n, 2n+1},Journal of Communication and
Computer, ISSN 1548-7709, USA,2009.

[12] TAI L.C.,CHEN C.F., Overflow Detection In a
Redundant Residue Number System,IEE PROCEEDINGS,
Vol. 131, Pi. E, No. 3, MAY 1984

[13] Wang Y., Song X., Abdolhamid M., Shen H., Adder
based residue to binary converters for {2n-1, 2n, 2n+1},
2002, pp. 1772-1779

