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Abstract — Residue Number System (RNS) 
is a non-weighted number system for integer 
number arithmetic, which is based on the 
residues of a number to a certain set of numbers 
called module set. The main characteristics and 
advantage of residue number system is reducing 
carry propagation in calculations. The elimination 
of carry propagation leads to the possibility of 
maximizing parallel processing and reducing the 
delay. Residue number system is mostly fitted for 
calculations involving addition and multiplication. 
But some calculations and operations such 
as division, comparison between numbers, 
sign determination and overflow detection is 
complicated. In this paper a method for overflow 
detection is proposed for the special moduli set 
{2n-1,2n,2n+1}. This moduli set is favorable because 
of the ease of calculations in forward and reverse 
conversions. The proposed method is based on 
grouping the dynamic range into 22n-2n  groups by 
using the New Chinese Theorem and exploiting the 
properties of residue differences.  Each operand of 
addition is mapped into a group, then the sum of 
these groups is compared with the indicator and 
the overflow is detected. The proposed method 
can detect overflow with less delay comparing to 
previous methods.

Index Terms — Computer Arithmetic, Moduli 
set  , Overflow Detection, Residue Number System.

I. INTRODUCTION
RNS has recently attracted attention. The 

need for high speed and low power computation 
with the emergence of new mobile and embedded 
applications are the driving force behind this 
attraction. RNS is an answer to those new 
challenges; the carry free arithmetic which can 
be used in RNS will result in development of 
parallel fast computation methods[1]. It has 
proven its advantages in the achievement of 
high performance parallel computing. In RNS 
a number is divided into several much smaller 
numbers which can be manipulated concurrently 
and independently. The system is mostly 
beneficial in the applications where addition and 
multiplication are dominant; such applications 
are found in digital signal and image processing 
and cryptography[1]. RNS is also useful in fault 
tolerant applications; due to the non-weighted 
nature of this system, a single error in a digit will 
not affect the whole number so the faulty digit 
may be discarded with no effect other than a 
small reduction in dynamic range. However RNS 
has also its own disadvantages and limitations 
which restrict its application as a primary 
choice for designing an all-purpose CPU. Some 
operations and calculations are complicated 
in RNS[2]; division, magnitude comparison, 
sign determination and overflow detection are 
among those difficult operations in RNS which 
overshadow the full utilization of the RNS in a 
general purpose computer system.

II. DEFINITIONS AND NOTATIONS
An RNS is distinguished by its moduli set; a 

set of N pairwise prime integers such as 
, ,1 1m m mN N

 
 
 

…− . Each member of moduli set is 
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called a modulus. An integer number X is 
represented as a set of N residues according to the 
equation (1) with respect to the moduli set [3]. 
The remainder on division of X by the modulus 
mi is defined as xi and represented by equation(2).

X = xN , xN-1  ,.... , x1              (1)                                       
x X mi i

=                      (2)                                                          

The product of the moduli is defined as 
dynamic range M and it is the upper bound of 
representable numbers in a RNS according to the 
equation (3).

    0
1

N
M m and X Mi

i
= ≤ <∏

=
         (3)                               

Addition, subtraction and multiplication are 
carried out by individually modular adding, 
subtracting or multiplying corresponding residues 
relative to the modulus for their position [3].

, , 1 1 1

, , 1 1 1

X Y x y x yN N m mN

X Y x y x yN N m mN

± = ± … ±

× = × … ×
   (4)                   

Forward Conversion is the process in which 
a number from ordinary (binary) representation 
is converted to RNS representation. The process 
is finding the remainder of the number upon 
division by every modulus. Forward conversion 
is almost always carried out by any technique, 
other than division which is complex and time 
consuming.

Reverse conversion is the process in which 
a number in RNS representation is converted 
back to an ordinary (binary) representation. 
There are two different approaches to the reverse 
conversion; the first method is based of Chinese 
Remainder (Equation (5)) and the second method 
is called Mixed Radix Conversion which is a 
sequential process (Equation (6)).

  

1, ,
1

N M
X w x w M M Mi i i i im mi iM i

−= = × =∑
= 	

					       (5)      

1 2 1 3 1 2 1 1X z z m z m m z m mN N= + + +…+ … − 	
					        (6)  

III. BACKGROUND

A.	 Problem Statement
Overflow occurs whenever the result of an 

arithmetic operation could not be represented 
correctly by hardware. i.e. the result falls beyond 
the representable range. Overflow can be easily 
detected in a weighted number system by 
comparing methods; the sum of two unsigned 
integers is expected to be greater than each addend 
or the sum of two positive/negative integers 
should not yield a negative/positive result. 
Overflow can also be detected by examining the 
equality between carry-in and carry-out of the 
most significant bit. RNS is non-weighted i.e. the 
digit position carries no weight information so the 
overflow detection is complicated and it is almost 
as complex as magnitude comparison. Although 
most RNS applications avoid complicated 
operations, the detection of overflow is inevitable 
to ensure the correctness and integrity of 
arithmetic operations. There are also some other 
methods based on redundancy [12].

B.	 Overflow Detection Methods
There are three main approaches to overflow 

detection. The first approach relies on the parity 
characteristics[6][8], the second is based on 
grouping the dynamic range[7][9] and the third 
is by comparison.

1-	 Adding an extra modulus 2 to the moduli 
set which has no even modulus, expands the 
dynamic range and adds the parity bit to each 
number. The sum of two even/odd numbers 
naturally results in an even number, the sum of 
an even number and odd number will produce 
an odd number. Any violation of the above 
mentioned rule will indicate an overflow.

2-	 Overflow can also be detected by 
Grouping the dynamic range into different 
partitions and defining comparing rules on groups. 
The advantage of this method is reducing the 
comparison complexity; the comparison between 
groups is performed in the binary number system 
with less bits.

3-	 The other method for overflow detection 
is based on comparison. A mechanism for 
comparing numbers is hired which is similar to 
reverse conversion. The numbers are partially 
converted to a weighted number system in 
which the comparison can be performed. The 
efficiency of these methods is fully dependent 
on the comparison and reverses conversion 
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mechanisms. Some methods such as “Core 
function”[4] are used to evaluate an RNS number 
without full reverse conversion.

IV. PROPOSED METHOD
Our proposed method can detect overflow 

in adding two unsigned integers. Each operand 
and the sum are mapped to a group by using 
the grouping function. The sum of groups is 
calculated and compared with the indicator 22n - 
22 - 1 . If the sum of groups is greater than indicator 
the over flow signal will be set (ov=1), if it is less 
than indicator the over flow signal will be cleared 
(ov=0) and if it is equal to indicator the group 
associated with the sum of operands will be 
compared with zero. If the group is equal to zero 
then over flow signal will be set and otherwise it 
will be cleared according to equations (7). The 
method is illustrated in figure (1).

 

( ) ( )
( ) ( )
( ) ( )

( )

2 22 2 1   1

2 22 2 1   0

2 22 2 1

0 1
0

Z X Y
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otherwise ov

= +
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+ < − − → =

+ = − −

= → =

=





    (7)

                                         

 
Figure 1. Schematic of Proposed Method

A.	 Grouping Function
Grouping function maps every number within 

the dynamic range into a group. The dynamic 
range is divided into 22n-22 groups. Each group 
has 2n+1 members. The grouping is based on 
difference of residues. The difference between 
x3 and x2 modulo m3 is defined as  A ′  and A ′′  

is one bit right rotate of A ′  [9]. The difference 
between x2 and x1 modulo m2 is defined as B ′ . 
The grouping function is defined in equation (8) 
and it is depicted in figure (2).

( )
( )

, , 2 1, 2 , 2 13 2 2 3 2 1

,3 1 2 1 23
   

. 23

n n nX x x x m m m

x x x x mm

one bit right rotate

G X

A B

A A

B A B mm

′ ′

′′ ′

′

= = − = = +

− −

= + −′′ ′

 



(8)     
 

Figure 2. Schematic of Grouping Function

B.	 Mathematical Proof
In this section we present two mathematical 

proofs for our proposed method. The first proof 
assumes the overflow has occurred and shows the 
sum of groups exceeds the indictor. The second 
(reverse) proof assumes the sum of the groups 
is greater than indicator as the hypotheses and 
concludes the sum of two numbers is greater 
than or equal to dynamic range. In both proofs 
we assume that Z is the sum of two unsigned 
integers X and Y (Z=X+Y) and X,Y,Z are mapped 
to G(X),G(Y),G(Z) by grouping function 
respectively.

Before proving the proposed method, two 
useful lemmas are presented.	

Lemma 1: for ,a b ∈Z  if a b≤  then 1a b< +   
Lemma 2: for ,a b ∈Z  if a b>  then  1a b≥ +
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( ) ( )3 2 2 2    2 2 1  n n n nX Y G X G Y+ ≥ − ⇒ + ≥ − −
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n n
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( )( )2 1 2 1 (  1)
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V. HARDWARE IMPLEMENTATION
In this section the logical design of main 

components of the proposed method, are being 
discussed. The grouping unit and the comparators 
are the building blocks of the proposed method. 
The grouping unit and the comparators are 
consist of different parts, each of them are being 
explained in the following sub-sections.

A.	 Grouping Function
The grouping operation is started by 

calculating the differences between the residues 

according to the following equations: 3 1A x x= −  

, 2 1B x x= − . 
These operations are carried out by using two 

Parallel Prefix Adders (PPA). Then the remainder 
of A when dividing by 2 1n −  and the remainder of 
B when dividing by n2  are calculated according 
to equation (9).

, 3 1 2 1 22 1x x x x nnA B′ − −′
−

� �
    

(9)  

The calculation of B ′  is straightforward; the 
remainder of any number when dividing by n2   
is the n least significant bits of the dividend. In 
order to calculate A ′ , a special adder is being 
used which is illustrated in figure (3).

Figure 3. Calculation unit for  

As shown in figure (3), " "A  is added to a 
constant offset. The MSB of " "A  will determine 
this constant; when MSB of " "A  is zero the offset 
will be zero otherwise it will be 01 1 2 1n… = −  
there is also an exception to this rule; when the 
input is 1...10 , the output should be 10...0 . This 
situation is handled by using a 2 input multiplexer 
which is controlled by the exceptional condition. 
The values of A ′  are not ordered; i.e. the even 
values come first and the odd values come after 
even values. To make these values ordered we 
should rotate the A ′   one bit to the right [9]. 
A ′′  is the result of one bit right rotation of A ′
. The remainder of difference between A ′′  and 

B ′  when dividing by 2 13
nm = −  is δ ′   and it is 

calculated by using the same mechanism as A ′ . 
The exceptional condition does not occur and the 
extra hardware which handles the exceptions can 
be eliminated figure (4). When δ ′  is calculated, 
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it should be multiplied by 22
nm =  and added 

to B ′  . The multiplication of any number by 
2n  is just an “n bit” left shift or right padding 
the number with n zeros. While B ′  is an “n bit” 
variable, adding B ′  to the 2n δ× ′  is carried out 
by placing the B ′  bits on the right side of δ ′  
replacing the n zeros without using any hardware.

 
 Figure 4. Calculation unit for δ ′

B.	 Group Addition
When the groups for each operand are 

calculated by grouping module, the groups 
should be added to form the “sum of groups”. The 
result is compared with the indicator to detect the 
overflow. While groups are 2n bit variables, the 
adder should be a 2n bit adder. In order to avoid 
using bigger than n bit component, we use three 
n bit adder instead of one 2n bit adder. These 
method uses up more area while reducing the 
delay. The group adder is depicted in figure (5).

 
 Figure 5. Group adder

The left n bits of G(X) and G(Y) are added in 
two n bit adder with and without carry-in. The 
right n bits are added with third n bit adder. By 
using a multiplexer, the carry-out of the right 
adder determines which result will be selected for 
the high n bits of the sum.

C.	 Comparing with Indicator
The sum of groups should be compared with 

the indicator. The indicator is one unit less than, 

the number of groups,i.e. 22 2 1n n− − . Generally 
the comparison is carried out by subtraction 
and testing the sign bit of difference. We would 
like to avoid subtraction so we offer a special 
method to predict the sign bit of the difference 
between sum of groups and indicator without 
subtraction. The method is completely dependent 
on the characteristics of the indicator. The two’s 
complement (negative form) of indicator bit 
pattern is  110..010..01

1 1n n− −
 . It is composed of two “1 

bits” on the left followed by two (n bit) blocks 
of 0..01

1n−
 on the right. The sum of groups should 

be added to two”s complement of indicator then, 
the sign bit of result will be tested to determine 
whether sum of groups is greater than indicator 
or less than indicator. Groups are 2n bit variables 
so the sum of groups is 2n+1 variable, the 
indicator is also 2n bit variable and it should be 
considered that, the indicator will be compared 
with a 2n+1 bit variable (the sum of groups) so 
one extra bit is added to the left side of indicator. 
The complement operation also adds another bit 
to extend the range and make room for negative 
values and the final length of minus-indicator 
will be 2n+2. One zero bit is added to the left 
side of “sum of groups” to match the 2n+2 bit 
length of minus-indicator. As illustrated in figure 
(6), the minus indicator is consist of two n bit 
blocks followed by two “1” at the left. The sum 
of groups is shown above the minus indicator.

Figure 6. The minus-indicator in two blocks

We define the variable  as the carry bit coming 
out of right block. If all bits of 1 1 0S S Sn …−  
equal to 1, the carry will be generated i.e. α  
equals to 1, otherwise α  equals to 0. If 0α =  the 
final carry-out of left block is dependent on the 

2 1 1S S S nn n…− +  if all bits of 2 1 1S S S nn n…− +  
equal to 1, then the carry-out of left block equals 
to 1. If 0α =  the final carry-out is dependent 
on the 2 1 1S Sn n…− +  similar to the previous 
situation, if all bits of 2 1 1S Sn n…− +   equal to 1, 
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then the carry-out of left block equals to 1. The 
carry bit coming out of left block combining with 

2S n  will determine the final sign bit as depicted 
in figure (7).

Figure 7. Schematic of comparator

The comparator can be implemented by using 
one “n input AND gate”, one “n-1 input AND” 
gate, three “2 input AND” gates and one “2 input 
NOR” gate as illustrated in figure (8).

Figure 8. Implementation of comparator

The comparator descried above can determine 
whether the sum of groups is greater than 
indicator or less than it. It cannot tell if the sum of 
groups is equal to indicator. To have a complete 
comparator we should use another unit for 
“equality comparison”, this unit can be made of 
“XOR” gates combining with one “n input AND 
gate” figure (9).

 
Figure 9. Equality comparison between X and Y

The “n input AND” gate is a hypothetical gate 
which cannot be implemented directly similar 
to a regular “2 input AND” gate. The “fan-in” 
is a parameter of synthetic technology which 
limits the inputs of any gate. Regarding to the 
restrictions imposed by VLSI technology and 
fabrication methods, the number of inputs for 
any gate is limited. In our proposed method we 
consider the worst case; we suppose that, we 
cannot use any gate which has more than two 
inputs. So implementing the “N input AND” 
gate is accomplished by cascading, n-1 “2 input 
AND” gate in a tree like design. An example of 
a 16 input AND gate is illustrated in Figure (10).

 
Figure 10. Implementation of 16 Input AND gate

VI.	 COMPLEXITY AND DELAY 
CALCULATION  

In this section the area and delay of proposed 
method is calculated. The procedure for 
calculating the area and delay is based on uni-
gate [5] method. In this method each basic gate 
has 1 unit delay and 1 unit area. The basic gates 
are “AND”,”OR”,”NOR” and “NAND”. The 
compound gates such as “XOR” and “XNOR” 
have 2 units of delay and 3 units of area. Our 
proposed method is consist of 3 grouping 
units two comparators (one for comparing 
with indicator and other for comparing with 
zero) and a multiplexer. We also suppose all 
of adders are “Parallel Prefix” which has the 
delay of  2 log 42T nPPA = + , and the area of 

3
5 log22

A n n nPPA = +  [5], the area and delay of 

grouping unit can be calculated as follows:

( ) ( )3
10 7 1 log 122

A n n nGrouping = + + + +

( ) ( ) ( ) ( )6 1 1 log 1 16 3 log 1 72 2n n n n n n+ + + + + ≈ + + +

( ) ( )2 log 1 5 3log 12 2T n nGrouping = + + + +

( )9 5 log 1 142 n+ = + +
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If we add all the area and delay of components 
considering the parallel and serial parts the total 
delay and area can be calculated as follows:

  

3   A A A A AComparatorTotal Grouping Group Adder is equal
comparator

= + ++
 

  2 1 (1 )A Ais zero MUX bit+ + ×

( )( ) 9
3 16 3 log 1 7 17 log2 22

A n n n n n nTotal = + + + + +
 
 
 

( ) ( ) ( )2 2  3 1 2 1 3n n n

comparator

+ + + − + − +


( )27
72 log 1 1022

A n n nTotal = + + +

  2 1 (1 )T T T T ATotal Grouping Group Adder Comparator MUX bit= + + + ×

( )( ) ( ) ( )5 log 1 14 6 log 2 log 3 22 2 2T n n nTotal = + + + + + + +

( )12 log 1 212T nTotal = + +

We substitute all log2 n  with ( )log 12 n +  to 
form a uniform equation. This substitution will 
not violate the uni-gate rules; because the upper 
bound of delay (the worst case) is used.

VII. COMPARISON 
There are few methods which directly and 

specifically dealt with overflow detection in 
moduli set { }n n n2 1, 2 , 2 1− + . Some of the fast 
and efficient (in terms of complexity and area) 
are compared with our proposed method in table 
1.

TABLE I. COMPARISON BETWEEN OVERFLOW 
DETECTION METHODS

Method Area Delay
[11] 115 186n + 4 log 362n n+ +

[10] 96 log 162n n n+ + 8 log 122n n+ +

[ ]13 CI− 56 22n ABC+ + 16 4n BCτ+ +

[ ]13 CII− 96 24n ABC+ + 4 4n BCτ+ +

[ ]13 CIII− 80 18n ABC+ + 4 4n BCτ+ +

[9] 33
76 log22

n n n+
 
 
 

6 log 232 n +

Proposed 
Method ( )27

72 log 1 1022
n n n+ + +

( )12 log 1 212 n + +

VIII. CONCLUSIONS 
Overflow detection is an essential part of all 

arithmetic operations. Undoubtedly any ALU 
needs a mechanism for overflow detection to 
insure that, results are correct and to provide 
a guarantee against possible out of range, 
incorrect calculation results.  Overflow detection 
is considered as a complicated operation with 
the complexity almost equal to magnitude 
comparison and sign detection. In this paper we 
proposed an overflow detection mechanism based 
on grouping. Our method shows less delay and 
area, comparing to previous methods and all the 
operations are n bit long, avoiding complexity of 
processing 2n bit and 3n bit numbers which are 
common among previous algorithms. 
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