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Abstract — Neural networks are applicable in 
identification from input-output data. In this report, 
we analyze the Hammerstein-Wiener models and 
identify them. The Hammerstein-Wiener systems 
are the simplest type of block-oriented nonlinear 
systems where the linear dynamic block is 
sandwiched in between two static nonlinear blocks, 
which appear in many engineering applications; 
the aim of nonlinear system identification by 
Hammerstein-Wiener neural network is finding 
model order, state matrices and system matrices. 
We propose a robust approach for identifying 
the nonlinear system by neural network and 
subspace algorithms. The subspace algorithms 
are mathematically well-established and non-
iterative identification process. The use of subspace 
algorithm makes it possible to directly obtain the 
state space model. Moreover the order of state 
space model is achieved using subspace algorithm. 
Consequently, by applying the proposed algorithm, 
the mean squared error decreases to 0.01 which is 
less than the results obtained using most approaches 
in the literature.

Index Terms — Neural Network, nonlinear 
system identification, Hammerstein-Wiener model, 
state space and subspace identification.

I. INTRODUCTION 

Recently, identification of block-oriented 
models has received more attention. Because 

most of the physical systems are nonlinear so 
we use nonlinear models to describe a system. 
Hammerstein-Wiener recurrent neural network 
(H-W) models and their combinations are block-
oriented models and commonly used in nonlinear 
models.

Hammerstein model consists of a static 
nonlinearity followed by a linear dynamic system 
[7], Wiener model consists of a linear dynamic 
system followed by a static nonlinearity [30]. 
Hammerstein-Wiener model (H-W) consists of 
a linear dynamic subsystem that is sandwiched 
in between two nonlinear static subsystems‎[31]. 
For these models, it is assumed that only input 
and output signals of the models are measurable.

In order to have an efficient model, the 
model has to be simple and easily presentable. 
In comparison to other models, block-oriented 
models are the most efficient models because 
they consist of linear and nonlinear blocks 
separately [22]. In the following, three kinds of 
block-oriented models are mentioned:

In Wiener model that is depicted in “‎Figure 1. 
“, a linear dynamic block (G) is placed before a 
static nonlinear block. Inputs  and outputs    are 
measurable, but  (state variable) is not measurable 
[30].

In Hammerstein model which is depicted in 
”Figure 2. “, static subsystem receives  as input 
and transforms to . All dynamics models by 
linear discrete transform function .  is output‎[7]. 
In Hammerstein-Wiener model a linear dynamic 
block (LS) is sandwiched in between a nonlinear 
static block (N1) and another nonlinear static 
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block (N2)” Figure 3. “[20], [2].
The structure of this network can be mapped 

into a state-space equation, so the determining the 
network structure is equivalent to finding system 
order[19],[12]. The subspace identification is 
represented in 1960s. It is designed especially 
for the time-invariant systems and MIMO system 
which has state space model form. Subspace 
algorithms estimate the state-space models 
dynamic and because of using numerically 
reliable matrices, linear algebra, projection, 
SVD and QR‎[18], so they are quick, stable, 
reliable, non-iterative, efficient, simple, easy to 
interpret and convenient for estimation, filtering, 
prediction and control [9],[34]. So, in this paper 
we use subspace algorithm for representation 
of the linear part of the system to speed up the 
computational rate and accuracy.

 There exists a lot of works on nonlinear 
system identification which use block-oriented 
models. For example estimating the formal 
information of neurons[27], using ARMA 
model for dynamic linear block and a multilayer 
feed forward neural network to model the 
static nonlinear[13], least square and SVD 
for Hammerstein model[11],[8], recursive 
identification for Hammerstein system with 
state space model[33], eigensystem realization 
algorithm(ERA) for accurate parameter estimation 
and the system order determination[23], over 
parameterization and iterative methods[22], 
iterative approaches[20][29], frequency-domain 
method[24], subspace method[17],[18][25],[26], 
stochastic algorithm[6], blind approaches[4], 
magnetosphere identification[3], constructing 
a model for ionospheric dynamics[16], using 
Genetic algorithm for H-W identification[14], 
initializing parameters and order determination 
by Lipchitz[1], fully automated recurrent neural 
network[31], using the spectral magnitude 
matching method[32], using a new maximum-
likelihood based method[33].

H-W models have been used in biomedical 
application, heat exchanger, electrical drive, 
thermal microsystem, physiological system[9], 
sticky control valves, solid oxide fuel 
cells[21], submarine detection[28], RF power 
amplifier modeling[10]  and signal processing 
application[34].

In this paper, in section II and III we represent 
some bases and algorithms. Then block-
oriented models and subspace identification 
algorithms have been represented. In section 

III we introduce Hammerstein-wiener neural 
network and parameter initialization (first 
subsystem). In addition we identify the first 
subsystem parameters (bias and weight), second 
subsystem parameters (system order, system and 
state matrices), and third and fourth subsystems 
parameters (weights) in detail. In section ‎IV, we 
present a proposed identifying algorithm based on 
Hammerstein-Wiener nonlinear recurrent neural 
network. In section ‎V computer simulation and 
comparisons with some approaches are provided. 
Finally, conclusions and future works are given 
in section VI . 

II. SUBSPACE IDENTIFICATION
ALGORITHMS

Subspace identification algorithms include 
system theory (realization theory), statistics, 
optimization and linear algebra (projection 
and singular value decompositions) are used to 
estimate the dynamics of state-space models. 
These quick and reliable algorithms are called 
“subspace algorithms”, because the dynamics 
can be estimated based on available input/
output measurements, known matrices row space 
and column space [25],[26]. In recent years, 
numerical subspace algorithms for linear time 
invariant identification have been noticed a lot. 
All of these algorithms identify the system in the 
state-space form by input/output data projection. 
Subspace identification algorithms are divided 
into deterministic, stochastic and deterministic-
stochastic algorithms. One of the deterministic-
stochastic, non-iterative and convergent 
algorithms is “N4SID “. Moreover, this algorithm 
is stable, because it uses linear algebra methods 
such as SVD and QR[25],[26].

In classic identification algorithms, parameter 
initialization and having pre-knowledge about 
system model, controllable and observable 
indexes are necessary. But, in subspace 
algorithms, system order is the only parameter. 
In these algorithms, input and output data are 
available, then finding out system order, system 
matrices(A,B,C,D) are desirable [25],[26].

In 1996, Verhagen and Vest Wick were the 
first people who presented subspace algorithms 
for Hammerstein model. In 2005, Gomz and 
Byenz generalized these algorithms to subspace 
algorithms such as CVA, N4SID, MOESP[21].

Hankel matrices play an important role in 
these algorithms. We define the input block 
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Hankel matrix as 
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 In these algorithms d
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 We assume that { , }A C  is observable and has 
rank N .Also, we define two user defined 
weighting matrices 1 2,W W  so that 1W   is full rank 
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). In the following, you 

see the notation /F G   that represents the 
orthogonal projection of the row space of F  onto 
the row space of G .

Here, iO   is defined as an oblique projection 

of the row space of fY  along the row space of 

fU  
onto the row space of pW    in “(2)” [25],[26]:
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 Where 1S  contains the dominant singular 
values. Now we calculate an oblique projection  

iO   in “(4)” :
d
fii XO .Γ=  (4)

Then System order is equal to the number of 
singular values in (3) different from zero and we 
have the “(5), (6), (7)”:
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T is an arbitrary non-singular similarity 
transformation. To find system matrices, we 

define matrix 1iO −  as in “(8)”:
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the last l rows and l is output numbers), then we 
have “(9)”:
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The N4SID and CVA algorithms (two of the 
numerical subspace algorithms) use the state to 
find the system matrices, while MOESP (another 
numerical subspace algorithm) is based on the 

extended observability matrix iΓ . 

Now we summarize N4SID algorithm in the 
following ‎[25],‎[26]:

1. We obtain system order and extended 

observability matrix iΓ  by oblique 

projection iO  and SVD of the weighted 

matrix 21 WOW i  in “(11)”. System order is 
equal to the number of nonzero singular 

values in 1s .  
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2. Then we obtain extended observability 
matrix in “(12)”:    
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3. Now we find out state matrix by “(13)”: 

T
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4. At the end, the system matrices (A, B, 
C, D) will be calculated by extended 
observability matrix and state matrices 
with “(10)”.

III. HAMMERSTEIN-WIENER 
RECURRENT NEURAL NETWORK 

STRUCTURE

In this paper, to identify H-W neural network 
system, approximating the static nonlinear 
subsystems is done with gradient descent 
algorithm and the dynamic recurrent linear 
subsystem with subspace algorithms is done. 
Before starting system identification, we use 
a parameter initialization algorithm, which 
guarantees that network initial values are very 
close to local optimums and leads algorithm 
to faster convergence [8]. Recurrent neural 
networks have less computation time and use less 
requested memory. Moreover, control of such 
network is easier.

When we use subspace algorithms, 
extracted rows/columns space matrices include 
information about model and have high 
calculation performance. Also, these algorithms 
work based on linear algebra, mathematics, SVD 
and QR methods. So, they are non-iterative and 
don’t have convergence problem. Moreover, by 
these methods we will calculate system order 
easily and represent system based on state 
space which is easily understandable[25],[26]. 
In this paper, parametric time domain method 
is utilized for identification. The first nonlinear 
static subsystem is simulated by a simple feed 
forward neural network. The second subsystem 
is a linear dynamic model. The third subsystem 
is a nonlinear static system which its sum and 
activation functions are nonlinear. Our aim 
is finding out state and weight matrices with 
gradient descent in neural network and numerical 
subspace algorithms with the minimum error.

This network consists of three subsystems. 
The first subsystem is nonlinear static, the second 
subsystem is recurrent linear dynamic which is 
placed between two nonlinear subsystems and 
the third subsystem is nonlinear static subsystem 
which produces network output. This network, as 
you can see in “Figure 4.” consists of one input 
layer, two hidden layers, one recurrent linear 
dynamic layer and one output layer.

In “Figure 4.” p denotes input dimension, 
r denotes output dimension and q denotes state 
variables dimension. W1 is weights between the 
input layer and the first hidden layer, W2 is weights 
between the first hidden layer and recurrent linear 
layer (matrix B), W3 is weights between the 
recurrent linear layer and the second hidden layer 
(matrix C) and W4 is weights between the output 
layer and the second hidden layer. d is first layer’s 
biases. The matrix A plays the most important 
role in network stability if its Eigen values place 
in unit circle. The most important feature of a 
nonlinear dynamic network is stability. So we 
have to initialize matrix A with a stable matrix.

It is resumed that Out0 is output of input layer, 
Out1 is output of the first hidden layer (the first 
nonlinear static subsystem), Out2 is output of the 
dynamic linear recurrent layer, Out3 is output of 
the second hidden layer and Out4 is the network 
output. 

In this neural network, p is network input’s 
number, r is network output layer neuron’ number 
and q is state vector neuron’s number. In order to 
place neurons’ outputs in active region we have 
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to initialize W1 and d1. Active region is a region 
which its activation function deviation is greater 
than the maximum deviation. We assume that W1 
is independent and uniform distributed in [-Wmax 
, Wmax]domain. In this paper, hyperbolic 
tangent sigmoid function is used because of 
producing bipolar signal for output[30][2]. Based 
on [2], we calculate the maximum Euclidean 
distance between data (Dmax ) with “(14)”. “(14)” 
Calculates the sum of second power of difference 
between the maximum and minimum input data.

2min

1

maxmax )( j

p

j
j uuD −= ∑

=
   (14)

Then we calculate Wmax  with “(15)”:

pD
w 3356.4
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max =             (15)

“(17)”obtains the initial values of biases by 
half of the difference between maximum input 
data and minimum input data that is calculated 
in “(16)”.
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In order to simplify work, we divide neural 
network into following four substructures:

• The first substructure which its input 
is network input and its output is Out1. 
Initializing dj and W1 is necessary. Out1 
is resulted from this substructure which 
is subspace algorithm inputs in the next 
substructure.

• The second substructure which its input is 
Out1 and its output is Out2 . it is obvious 
that its structure is as like as state space 
models. Matrix A demonstrates system 
dynamic and matrix B demonstrates W2 

weights.
• The third substructure which its input is 

xi(k)(it is equal to Out2 that is extracted 
of the previous substructure). Its function 
is nonlinear activation function and its 
output is Out3.

• The forth substructure which it’s input 
is Out3 that is extracted of previous 

substructure. Its function is linear and 
produces Out4 as output.

Now by applying gradient descent method, 
we update W1,W4 and bias.

IV. LEARNING ALGORITHM BASED 
ON SUBSPACE ALGORITHMS IN 
HAMMERSTEIN-WIENER RECURRENT 

NEURAL NETWORK

In this step, the W2, W3 and A matrices will 
be updated. In “‎Figure 6.” dotted area shows the 
subsystem which will be identified by subspace 
identification algorithm. To start, we calculate 
N4SID algorithm outputs which their number 
is equal to total output numbers. We find out 
N4SID outputs by inversing the second nonlinear 
function (tansig). tansig function is defined as 
“(18)”:

yy

yy
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eeysig −

−
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Its inverse is calculated in “(19)”:
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1ln(
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          (19)
To start, it is necessary to divide network 

output by W4. Then calculate its tansig and 
inverse function by “(19)”. After that the N4SID 
output will be resulted. At the end, because 
the output and inputs of N4SID algorithm are 
resulted from previous step, so system matrices, 
state matrix and system order will be resulted by 
N4SID algorithm. 

The proposed algorithm is summarized in the 
following:

1. Initializing the first and second nonlinear 
subsystems randomly.

2. Calculating W1 and bias for initializing 
these parameters and faster convergence.

3. Obtaining N4SID inputs and outputs by 
total desired output of neural network.

4. Calculating system matrix and state 
matrix by subspace algorithms. 

5. Updating nonlinear subsystems by 
gradient descent and going back to step3.

V. SIMULATION
At first, we gather input/output measured 

data and select a suitable structure for the model. 
Here we consider Hammerstein-Wiener recurrent 
neural network. In training step, model and its 
parameters are approximated. The resulted model 



6                       Journal of Advances in Computer Engineering and Technology, 1(3) 2015

is evaluated to find that its error is less than other 
algorithm or not?

In this algorithm, we work with “(20)”:

22 )2()1(1
)())2()(1()2()1()()1(

−+−+
+−−−−−

=+
kyky

kukykukykykyky βα

      (20)

In “(20)”, it is necessary that β>1. To start, 
we consider the values of α و β equal to (1, 1). 
The training input data are produced randomly in 
[-2, 2] for the half of the training time and are 
produced by function 1.05sin( / 45)kπ  for the 
remaining half of the training time. The test data 
are produced by “(21)”:
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In this algorithm, the elements of matrix A 

have to be initialized, to have stable network in 
the beginning.  In addition, this matrix has to be 
stable. However, the first layer weight parameter 
and the first layer bias are resulted by initialization 
algorithm (it makes fast convergence); other 
parameters are initialized randomly. This 
algorithm is done in 100 epochs on 1000 data 
which its result is in TABLE I.

TABLE I. 
THE PERFORMANCE COMPARISON BETWEEN THE 
PROPOSED ALGORITHM AND MLP AFTER TRAIN 

AND TEST STEPS
model Training 

step mse Test step mse

Neural network 0.05 0.5
The proposed algorithm 0.0201 0.0108

TABLE II.
THE PERFORMANCE COMPARISON BETWEEN THE 
PROPOSED ALGORITHM AND MLP AFTER TRAIN 

AND TEST STEPS

Algorithm
Gradient 
descent 

gradient 
descent with 
momentum

Levenberg-
Marquart

Proposed 
algorithm

Mse 0.683 0.693 0.692 0.0108
Number of runs 1000 54 4 1000

Run time 16 minutes  40 minutes 9 minutes 60 
minutes

Validation error 0 6 4 0

TABLEI. Shows that using proposed algorithm 
is more effective and accurate than not using 
subspace algorithms. Besides, the test error is 
less than the train error. Therefore, the algorithm 
high performance is observable. In TABLEӀӀ, 
we compare the proposed algorithm results with 
Levenberg-Marquart algorithm, gradient descent 
and gradient descent with momentum results 
and evaluate their performance. The GD with 
momentum sees failure after 54  times repetition 
and passing 40 seconds  of run time. Levenberg-
Marquart algorithm checks model validation 4 
times and stops after 4 times and ninth seconds 
of run time. The network will be unstable. The 
gradient descent algorithm continues until the 
last repetition but its performance is 0.675 after 
16 minutes runtime that is not good.

VI. CONCLUSION
One of the most important issues which 

should be considered to increase the accuracy of 
identification is the initialization process of neural 
networks. Appropriate initialization can boost 
the convergence and may prevent local minima. 
Furthermore, in the design of the Hammerstein-
Wiener the estimation of the parameters of the 
matrix A and its dimension is very important and 
challenging. Subspace methods make it possible 
to approximate this matrix and its dimension. 
The combination of subspace identification 
methods with GD makes it possible to have 
better convergence speed while obtaining better 
accuracy.



Journal of Advances in Computer Engineering and Technology, 1(3) 2015        7

REFERENCES

[1] A.Atiya, and C.Ji. “How initial conditions affect 
generalization performance in large networks.” IEEE Trans. 
Neural Netw., vol. 8, no. 2, 1997,pp. 448-451.

[2] A.Hagenblad. aspects of the identification of wiener 
model. sweden, 1999.

[3] A.Wills, and B.Ninness. “Generalised Hammerstein-
Wiener System Estimation and a Benchmark Application.” 
n.d.

[4] ai, E.W. “A blind approach to the Hammerstein-
Wiener model identification.” Automatica, 38(6), 2002,pp. 
967–979.

[5] Ch.Yan, and J. Wang and Q.Zhang. “ Subspace 
identification methods for Hammerstein systems: rank 
constraint and dimension problem.” International Journal of 
Control, 2010.

[6] D.Wang, F.Ding. “Extended stochastic gradient 
identification algorithms for Hammerstein-Wiener 
ARMAX.” Computers & Mathematics with Applications, 
56(12), 2008 ,pp.157-3164.

[7] E.Eskinat, S.H. Johnson and W.L. Luyben. “Use of 
Hammerstein model in Identification of nonlinear system.” 
AIChE Journal, February ,Vol. 37, No. 2, 1991 .

[8] E.W.Bai. “An optimal two-stage identification 
algorithm forHammerstein-Wiener nonlinear systems.” 
Automatica, vol. 34, no. 3, 1998.

[9] F.Giri, and E.W.Bai. “Block-oriented nonlinear 
system identification.” springer, 2010.

[10] F.Taringou, O. Hamm, B.rinivasan, R.Malhame 
and F.M.Ghannouchi. “Behaviour modelling of wideband 
RF transmitters using Hammerstein-Wiener models.” IET 
Circuits Devices& Systems, 4(4), 2010,pp. 282-290.

[11] F.Z.Chaoui, F.Giri, Y.Rochdi, M.Haloua, and 
A.Naitali. “system identification based on Hammerstein 
model.” International Journal of, 2005,pp. 430-442.

[12] G.B.Giannakis, E.Serpedin. “A bibliography on 
nonlinear system identification.” signal process,vol. 83 ,no. 
3, 2001,pp. 533-580.

[13] H.AI-Duwaish, N.M.Karim, and V.Chandrasekar. 
“Use of multilayer feedforward neural networks in 
identification and control of Wiener model.” IEE 
Proceedings of Control Theory and Applications, Vol. 143, 
1996,pp. 255-258.

[14] H.Al-Duwaish, and W.Naeem. “Nonlinear Model 
Predictive Control of Hammerstein and Wiener models Using 
Genetic Algorithms.” Electrical Engineering Department/
King Fahd University of Petroleum and Minerals, n.d.

[15] H.J. Palanthandalam-Madapusi, D.S. Bernstein 
and A.J. Ridley. “Identifying periodicallyswitching block-
structured models to predictmagnetic-fieldfluctuations.” 
IEEE control systems magazine , 2007.

[16] H.J.Palanthandalam-Madapusi, J.A.Ridley, and 
D.S.Bernstein. “Identification and Prediction of Ionospheric 
Dynamics Using a Hammerstein-Wiener Model with Radial 
Basis Functions.” Proceedings of the American control 
conference, Vols 1-7, 2005, pp. 5052-5057.

[17] I.Goethals, K.Pelckmans, L.Hoegaerts, J.Suykens, 

and B.DeMoor. “Subspace intersection identification of 
Hammerstein-Wiener systems.” 44th IEEE Conference on 
Decision and Control & European Control conference, vols 
1-8, 2005, pp. 7108-7113.

[18] I.Goethals, L.Hoegaerts, V.Verdult, J.A.K.Suykens, 
B.Moor, and K.U.Leuven. “Subspace Identification of 
Hammerstein-Wiener systems using Kernel Canonical 
Correlation Analysis.” 2004.

[19] J.Sh.Wang, Y.Hsu. “dynamic nonlinear system 
identification using a wiener-type recurrent network with 
OKID algorithm.” n.d.

[20] J.Voros. “An Iterative Method for Hammerstein-
Wiener Systems Parameter Identification.” Journal of 
Electrical engineering, 55(11-22), 2004, pp. 328-331.

[21] J.Wang, Q.Zhang, and L.Ljung. Revisiting 
Hammerstein system identification through the Two-Stage 
Algorithm for bilinear parameter estimation. Technical 
report from Automatic Control at Linköpings universitet, 
Sweden: Automatica, Vol 45, 2010.

[22] M.Schukens, E.W.Bai, and Y.Rolain. “Identification 
of Hammerstein-Wiener systems.” 16th IFAC Symposium 
on System Identification, 2012.

[23] N.J.Juang, and R.S.Pappa. “An eigensystem 
realization algorithm for modal parameter identification and 
model reduction.” Journal of Guidance, Vol. 8, 1985, pp. 
620-627.

[24] P.Crama, and J.Schoukens. “Hammerstein-Wiener 
system estimator initialization.” Automatica, 40(9), 2004, 
pp. 1543-1550.

[25] P.V.Overchee, and B.D.Moor. “N4SID :subspace 
algorithms for the identification of combined deterministic-
stochastic system.” 1996.

[26] P.V.Overchee ,”Subspace identification for linear 
system.”, Kluwer academic publisher, 1996.

[27] R.Abbasi-Asl, and R.Khorsandi and B.Vosooghi-
Vahdat. “Hammerstein-Wiener Model: A New Approach 
to the estimation of formal neural information.” basic and 
clinical neuro science, 2012.

[28] R.Abrahamsson, S.M.Kay, and P.Stoica. 
“Estimation of the parameters of a bilinear model 
with applications to submarine detection and system 
identification.” digital signal processing 17(4), 2007, pp. 
756-773.

[29] Y.C.Zhu. “Estimation of an N-L-N Hammerstein-
Wiener model.” Automativa 38, 2002, pp. 1607-1614.

[30] Y.Ch.Chen, J.Sh.Wang. “A Hammerstein-Wiener 
Recurrent Neural Network with Frequency - Domain 
Eigensystem Realization Algorithm for Unknown system 
identification.” Journal of Universal Computer Science, vol. 
15, no. 13 , 2009: 2547-2565.

[31] Y.Chen, J.Sh.Wang. “A Fully Automated 
Recurrent Neural Network for Unknown Dynamic System 
Identification and Control.” IEEE TRANSACTIONS ON 
CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, 
VOL. 53, NO. 6, 2006.

[32] E.Abd-Elrady , L.Gan, “identification of 
Hammerstein and Wiener models using Spectral Magnitude 
Matching”, Proceedings of the 17th World Congress,2008



8                       Journal of Advances in Computer Engineering and Technology, 1(3) 2015

[33] A. Wills, T. Schön, L. Ljung and B. Ninness, 
“Identification of Hammerstein-Wiener models”,Automatica, 
(49), 1, 2013,pp. 70-81.

[34] CH. Xi, F. Hai-Tao, “Recursive Identification 
for Hammerstein Systems with State-space Model”, Acta 
Automatica Sinica, Vol. 36, No. 10, 2010


