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Abstract In the framework of the position-dependent mass

quantum mechanics, the three dimensional Schrödinger

equation is studied by applying the Laplace transforms

combining with the point canonical transforms. For the

potential analogues to Morse potential and via the Pekeris

approximation, we introduce the general solutions appro-

priate for any kind of position dependent mass profile

which obeys a key condition. For a specific position-de-

pendent mass profile, the bound state solutions are obtained

through an analytical form. The constant mass solutions are

also relived.

Keywords Morse potential � Pekeris approximation �
Local mass distribution � Point canonical transformation �
Laplace transformation � Bound state

Introduction

In the recent years, investigations on Schrödinger equation

with position dependent mass, have been attached many

attentions [1–3]. The local mass distributions is an ordinary

feature in cosmology and in describing the large scale

characteristics of the universe. The concept of local mass

has important consequences in the scalar tensor theories of

gravity. This concept has interesting features in the gravi-

tational quantum field theories [4]. The local mass concept

also has been proliferated in more applicable sciences such

as the material science and condensed matter physics. The

footprints of position dependent mass can be seen in the

researches concerned to semiconductors [5–8], quantum

wells and quantum dots [9–12], quantum liquids [13], and

impurities in crystals [14].

Several methods have been applied to solve the Schrö-

dinger equation, among which are the factorization

scheme [15, 16], the path integral formulation [17], the

supersymmetry approach [18], the algebraic way [19], the

power series expansion [20, 21], the two-point quasi-ra-

tional approximation method [22], the shifted large-N pro-

cedure [23], the transfer matrix method [24, 25], the

asymptotic iteration method [26–28], the Nikiforov-

Uvarov approach [29–32], the approximation of perturba-

tion [33] and the auxiliary field method [34].

One of the most effective methods for solving the

Schrödinger equation with different sort of spherically

symmetric potentials is the Laplace transformation method

[35]. The advantage of this method is that a second order

differential equation reduces to a first order differential

equation. It was Schrödinger who used this technique for

the first time in quantum physics to solve the radial

eigenfunction of hydrogen atom [36]. The method has

become commonly employed ever since to solve various

kind of the spherically symmetric potentials [37–44].

One of the significant potential for describing the

vibrational and rotational movements of the diatomic

molecules, is the Morse potential [45]. Solutions of the

Schrödinger equation with position dependent mass for the

Morse potential are investigated by applying different

methods in [46–53].

A mass function has been investigated in [54] of the

form m ¼ m0=ð1 � de�aðr�r0
r0

ÞÞ2
where d is a free parameter

and 0� d\1. They approximately find the solutions in the

presence of the q-deformed Morse potential and by
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applying the Nikiforov- Uvarov method and by using the

Ben Daniel and Duke Hamiltonian [55]. They discussed

numerically the solutions in details. Here we consider, a

similar mass function of the form m=m0 ¼ a=ð1 þ
be

aðr�r0
r0

ÞÞ2
where r0 is the equilibrium position of a typical

diatomic molecule and a characterizes the potential acting

range. We have not apply any estimation except the Pekeris

approximation. Also, We apply the point canonical trans-

formation method [48, 56] to get ride of the first derivative

of the wave function. In this way, we can suitably separate

the terms contained the mass function from the terms of the

field derivatives. Then, by applying some simple con-

straints, on the terms included the mass function, we con-

struct the mass function in such a way that the

corresponding equation can be solved via the Laplace

transformation method of [40, 43].

The organization of this paper is as follows: In section

two, we first introduce the initial form of the mass function

with undetermined parameters. Then by considering the

desired form of the Schrödinger equation which is most

solvable with the Laplace transforms, we setup some con-

strains on our mass parameters to find the final form of the

mass distribution. The parameters of the Morse potential

become untouched. Then, in section three we solve the

equation and introduce a possible bound state solution of the

model. Finally, in the discussions and results section, the

energy spectrums are presented and plotted.

A possible mass distribution

The most general form of Hamiltonian for the position

dependent mass m ¼ mðrÞ, is given by [5, 50]:

H ¼ 1

4ðaþ 1Þ a
1

m
P2 þ P2 1

m

� �
þ maPmbPmc

�

þ mcPmbPma

�
þ VðrÞ; ð1Þ

where P denotes the momentum operator and V(r) is an

arbitrary potential. Also a, b, c and a are the ambiguity

parameters satisfying the constrain aþ bþ c ¼ �1. Let us

consider a spherically symmetric mass function and

potential function, respectively, m ¼ mðrÞ and V ¼ VðrÞ
with r being the radial coordinate.

On account of the differentiating properties of the

momentum operator P, one find the commutation relation:

½P; f ðrÞ� ¼ Pf � fP ¼ �i�h
df

dr
r̂ ð2Þ

where f(r) is an arbitrary function of the radial coordinate

r and r̂ is the radial unit vector. Using Eqs. (2), (1) turns

into:

H ¼ 1

2m
P2 þ i�h

2

1

m2

dm

dr
Pr þ Ua;b;c;aðrÞ ð3Þ

where

Ua;b;c;aðrÞ ¼ � �h2

4m3ðaþ 1Þ ðaþ c� aÞm d2m

dr2

�

þ 2ða� a� c� acÞ dm

dr

� �2

� þ VðrÞ: ð4Þ

In a special case, the effective potential Ua;b;c;aðrÞ can be

reduced to Ua;b;c;aðrÞ ¼ VðrÞ by imposing some conven-

tional constrain on the ambiguity parameters namely: ðaþ
c� aÞ ¼ 0 and ða� a� c� acÞ ¼ 0 which has two pos-

sible solutions (i) a ¼ 0 and a ¼ c or (ii) a ¼ a and c ¼ 0

[50]. Here, we are interested in this case where the

Schrödinger equation yields:

� �h2

2m
r2 � 1

m

dm

dr
rr

� �
uðrÞ ¼ E � VðrÞ½ �uðrÞ: ð5Þ

In the spherically symmetric case, which is considered

here, the wave function can be separated to the following

form:

uðrÞ ¼ 1

r
w‘ðrÞY‘mðh;/Þ: ð6Þ

Inserting Eq. (6) into (5), the first term can be expressed as:

r2uðrÞ ¼ Y‘mðh;/Þ
r

d2

dr2
� ‘ð‘þ 1Þ

r2

� �
w‘ðrÞ ð7Þ

and the second term as

1

m

dm

dr
rruðrÞ ¼ �Y‘mðh;/Þ

rm
dm

dr
1

r
� d

dr

� �
w‘ðrÞ: ð8Þ

Finally, inserting Eqs. (7) and (8), the radial wave equation

turns into

d2

dr2
� 1

m

dm

dr
d

dr
� 1

r

� �
� ‘ð‘þ 1Þ

r2

� �
w‘ðrÞ

¼ � 2m

�h2
E � VðrÞ½ �w‘ðrÞ: ð9Þ

The first derivative can be eliminated from the right hand

side of Eq. (9) by using the transformation:

w‘ðrÞ ¼
ffiffiffiffiffiffiffiffiffiffi
mðrÞ

p
/‘ðrÞ: ð10Þ

This technique is based on the point canonical transfor-

mation method, [48, 56]. Substituting Eq. (10) in Eq. (9),

one obtain

d2/‘

dr2
þ 1

2m

d2m

dr2
� 3

4

1

m

dm

dr

� �2

þ 1

rm
dm

dr
� ‘ð‘þ 1Þ

r2

" #
/‘

¼ � 2m

�h2
E � VðrÞ½ �/‘: ð11Þ
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The Morse potential [45], can be written as

VðrÞ ¼ V1e
�ar þ V2e

�2ar; ð12Þ

where

r ¼ r� r0

r0

; ð13Þ

and r0 is the equilibrium position of molecules and the

dimensionless parameter a characterizes the potential act-

ing range. We suppose that V1 and V2 are two general

potential parameters which in the traditional Morse

potential are given by V1 ¼ �2D and V2 ¼ D with D de-

scribing the depth of the potential. In the Pekeris approx-

imation it is convenient to expand the centrifugal potential

barrier term of Eq. (11) as follows:

‘ð‘þ 1Þ
r2

¼ ‘ð‘þ 1Þ
r2

0ð1 þ rÞ2

ffi ‘ð‘þ 1Þ
r2

0

C0 þ C1e
�ar þ C2e

�2ar
	 


; ð14Þ

where

C0 ¼ 1 � 3

a
þ 3

a2
; C1 ¼

4

a
� 6

a2
; C2 ¼ � 1

a
þ 3

a2
: ð15Þ

In the same manner, we expand the term 1
rm

dm
dr in Eq. (11) as

follows:

1

rm
dm

dr
¼ 1

r0m

dm

dr
1

ð1 þ rÞ

ffi 1

r0m

dm

dr
B0 þ B1e

�ar þ B2e
�2ar

	 

; ð16Þ

where

B0 ¼ 1 � 3

2a
þ 1

a2
; B1 ¼

2

a
� 2

a2
; B2 ¼

1

a2
� 1

2a
: ð17Þ

Substituting Eqs. (12–14) and (16) into (11), and applying

y ¼ ke�ar; ð18Þ

where k is a constant parameter, yields:

y2 d2

dy2
þ y

d

dy
þ !m

� �
/‘

¼ ‘ð‘þ 1Þ
a2

C0 þ
C1

k
yþ C2

k2
y2

� �
/‘: ð19Þ

Here all the mass dependent terms are placed into !m as:

!m ¼ y2

2m

d2m

dy2
� 3y2

4m2

dm

dy

� �2

þ y

m

dm

dy

1

2
�1

a
B0 þ

B1

k
yþB2

k2
y2

� �� �
� m

m0

b2 þGyþFy2
	 


ð20Þ

and

b2 ¼ � 2m0r2
0E

a2�h2
; G ¼ 2m0r2

0V1

ka2�h2
; F ¼ 2m0r2

0V2

k2a2�h2
: ð21Þ

where m0 is a mass dimensional parameter. Here, we use

the following effective mass distribution:

mðyÞ
m0

¼ s

ðcþ gyÞ2
; ð22Þ

where s, c and g are constant parameters. In our procedure,

we choose these parameters in such a way that !m in

Eq. (20), which contains the mass function m, yields:

!m � D0 þ D1yþ D2y
2 ð23Þ

where D0, D1 and D2 are three parameters. Here we study

the following two different sets of parameters which sat-

isfies Eq. (23). The first set is characterized as:

g ¼ 0; s ¼ s c ¼ 1

D0 ¼ �b2s; D1 ¼ �Gs D2 ¼ �Fs

�
ð24Þ

where G, F and s are free parameters. This case exactly

corresponds to the constant mass case and for which we put

G ¼ �2kF and s ¼ 1. This case has already been studied in

[43], and we show that its solutions coincides with the

results in the next section as well. The other possible set of

the appropriate parameters have the following forms:

g ¼ 2B2

kð2B1 � akD1Þ
; s ¼ s; c ¼ 1; D0 ¼ �b2s; D1 ¼ D1

G ¼ �D2
1a

2k2 þ 2kB1D1 þ 4D0 þ 2ð ÞB2½ �a� 4B0B2

ak D1ak � 2B1ð Þs ; D2 ¼ 2B2

ak2

F ¼
2B2 D2

1a
2k2 þ �2D0 � 2ð ÞB2 � 2kB1D1½ Þaþ 4B0B2

� �
ak2 D1ak � 2B1ð Þ2s

8>>>>>>>>>><
>>>>>>>>>>:

ð25Þ
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where s and D1 are free parameters.

Substituting Eq. (23) in (19) yields:

y2 d2/‘

dy2
þ y

d/‘

dy
� l2

‘ � v2
‘yþ m2

‘y
2

	 

/‘ ¼ 0; ð26Þ

where:

l2
‘ ¼ �D0 þ

‘ð‘þ 1Þ
a2

C0; v2
‘ ¼ D1 �

‘ð‘þ 1Þ
a2

C1

k
;

m2
‘ ¼ �D2 þ

‘ð‘þ 1Þ
a2

C2

k2
: ð27Þ

Bound state solutions

In the presence of the mass function (22) our Schrödinger

equation turns into Eq. (26). To have finite solutions at

large values of y, we should apply the following ansatz

/‘ ¼ y�l‘ f‘ðyÞ: ð28Þ

Eq. (26) becomes

y
d2

dy2
� ð2l‘ � 1Þ d

dy
þ ðv2

‘ � m2
‘yÞ

� �
f‘ðyÞ ¼ 0: ð29Þ

Here we use the Laplace transformation method to solve

Eq. (29), [40, 43]. By applying Laplace transform FðsÞ ¼ L
½f ðyÞ� ¼

R1
0

e�syf ðyÞdy, [35], the following equation can be

obtained

s2 � m2
‘

	 
 d

ds
F‘ðsÞ þ ð2l‘ þ 1Þs� v2

‘

 �
F‘ðsÞ ¼ 0; ð30Þ

Eq. (30) is a first order differential equation and its solu-

tions are in the form

F‘ðsÞ¼N
00
sþ m‘ð Þ�2l‘�1

1� 2m‘
sþ m‘

� � v2
‘
m‘
�ð2l‘þ1Þ

h i�
2

; ð31Þ

where N
00

is a constant. Here
v2
‘

m‘
�ð2l‘þ1Þ

h i
is a multi-

valued function. To have a single valued wave function we

impose the condition

v2
‘

m‘
� ð2l‘ þ 1Þ ¼ 2n; n ¼ 0;�1;�2;�3; . . .: ð32Þ

Here, the positive or negative values of n depends on the

magnitude of
v2
‘

m‘
. In fact, according to Eq. (28), the parameter

l‘ needs to be positive to have finite wave function at large

y. However, according to Eq. (32), for sufficiently large

values of
v2
‘

m‘
and for positive and negative values of n, we can

find positive values of l. But for smaller values of
v2
‘

m‘
only for

the minus sign of n we can obtain positive values of l.

Let us separately consider each sign of n in Eq. (32). To

apply the inverse Laplace transformation to Eq. (31), it

needs to be expanded in power series which yields

FðsÞ¼
X1
j¼0

ð2m‘Þj

j!

N
00

þ
ð�1Þjn!
ðn� jÞ! ðsþm‘Þ�ð2lþ

n‘
þ1þjÞ; n[0;

N
00

�
ð�1Þ2jðnþ j�1Þ!

ðn�1Þ! ðsþm‘Þ�ð2l�
n‘
þ1þjÞ; n\0:

8>>>><
>>>>:

ð33Þ

where N
00

� are two integrating constants and l�n‘, in

according to Eq. (32), corresponds to positive or negative

values of n. Now, applying the inverse Laplace transforms

to Eq. (33) yields:

FðsÞ¼
X1
j¼0

ð2m‘Þjyje�m‘y

j!

N
00
þ

ð�1Þjn!
ðn� jÞ!Cð2lþn‘þ1þ jÞy

2lþ
n‘ ; n[0;

N
00
�

ðnþ j�1Þ!
ðn�1Þ!Cð2l�n‘þ1þ jÞy

2l�
n‘ ; n\0:

8>>><
>>>:

ð34Þ

The series expansion of the confluent hypergeometric

functions is given by

Fða; b; zÞ ¼ 1 þ a

b
zþ aðaþ 1Þ

bðbþ 1Þ
z2

2!
þ � � �

¼
X1
j¼0

ðaþ j� 1Þ!CðbÞ
ða� 1Þ!Cðbþ jÞ

zj

j!
: ð35Þ

Comparing Eq. (34) with Eq. (35), both solutions yield

f‘ðyÞ ¼ N
0
y2ln‘e�m‘yFð�n; 2ln‘ þ 1; 2ym‘Þ; ð36Þ

where N
0

is a constant and ln‘ is given by Eq. (32).

Inserting f‘ðyÞ from Eq. (36) into (28) and then (10), leads

to

wn‘ðyÞ ¼ Nn‘

ffiffiffiffiffiffiffiffiffiffi
mðyÞ

p
yln‘e�m‘yFð�n; 2ln‘ þ 1; 2ym‘Þ: ð37Þ

Here Nn‘ is the normalization constant and m(y) is given by

Eq. (22). The parameter ln‘ from Eq. (32) is given as

ln‘ ¼
v2
‘

2m‘
� n� 1

2
; ð38Þ

where m‘ and v‘ are given by Eq. (27), while the parameters

D0, D1 and D2 depending on the first set or the second set,

are given, respectively, by Eqs. (24) and (25).

Discussions and results

This study has introduced a procedure to find the bound

states of the Morse like potentials via the Laplace trans-

formation method. Our main strategy is to find an appro-

priate mass function for which one could establish the
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condition Eq. (23). In this way, the parameters of the model

should be chosen in such a way that the condition would be

satisfied. Our result is applicable for any kind of the mass

function for which one can set the condition Eq. (23). We

have examined two different set of appropriate parameters.

The first one corresponds to the constant mass case and the

second one relates to a more general mass function namely,

Eq. (22).

To find the energy eigenvalues, we substitute ln‘ from

Eq. (38) into (27) and find D0. Then, science from Eqs. (24)

and (25) D0 ¼ �sb2, the energy spectrum can be found by

inserting D0 into (21). In this way, the energy spectrum,

yields:

En‘¼� a2�h2

2m0r2
0

‘ð‘þ1Þ
a2

C0� nþ1

2
� 1

2m‘

‘ð‘þ1Þ
a2k

C1�D1

� �� �2
( )

:

ð39Þ

where

m‘ ¼ �D2 þ
‘ð‘þ 1Þ
a2k2

C2

� �1
2

: ð40Þ

For the first set specified with Eq. (24), we obtain:

D1 ¼ k=2;

D2 ¼ �1=4;

�
ð41Þ

For the second set with Eq. (25), we have:

D1 : arbitrary;

D2 ¼ 2B2=ðak2Þ;

�
ð42Þ

Figures 1 and 2 shows the energy spectrum of the first and

second cases, respectively. In these diagrams, the required

parameters are supposed as a ¼ 1:440, k ¼ 34:9, and

�h2=ð2m0r2
0Þ ¼ 60:83 cm -1 which are appropriate for the

hydrogen atoms. Fig. 1a, exactly coincides with the diagram

has already been obtained for the constant mass problem

[43]. Fig. 1b demonstrates an example of the energy spec-

trum for the considered dependent mass profile. In this dia-

gram, the free parameter D1 is considered as D1 ¼ 0:1k=2

and the other parameters are the same as for Fig. 1a.

According to Fig. 1b, the energy spectrum for the considered

mass profile is not so sensitive to the quantum number n,

science the diagrams for n ¼ 0 and n ¼ 7 are not so different

and are very close together. Fig. 2 presents the considered

mass profile which has a maximum value at r ¼ 0.
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