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Abstract Recently we have proved the factorization of

NRQCD S-wave heavy quarkonium production at all orders

in coupling constant. In this paper we extend this to prove

the factorization of infrared divergences in vcJ production

from color singlet c�c pair in non-equilibrium QCD at RHIC

and LHC at all orders in coupling constant. This can be

relevant to study the quark–gluon plasma at RHIC and LHC.
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Introduction

The factorization of infrared divergences in nonrelativistic

QCD (NRQCD) color octet S-wave heavy quarkonium

production at high energy colliders at all orders in coupling

constant is recently proved in [1]. In this paper we extend

this formalism to non-equilibrium QCD by using the

closed-time path integral formulation to prove the factor-

ization of infrared divergences in vcJ production from the

color singlet c�c pair in non-equilibrium QCD at all orders

in coupling constant at RHIC and LHC. We also predict the

correct definition of the non-perturbative matrix element of

the vcJ production from color singlet c�c pair in non-equi-

librium QCD at RHIC and LHC. This can be relevant to

study the quark-gluon plasma (QGP) at RHIC and LHC.

At very high temperature (� 200 MeV) the normal

hadronic matter becomes a new state of matter known as the

QGP. About 10�12 s after the big bang our universe was filled

with the QGP which makes it important to produce it in the

laboratory at RHIC and LHC by colliding two heavy nuclei at

very high energy [2]. Since the confinement in QCD prevents

us to detect the QGP directly at RHIC and LHC, various

indirect signatures (such as the heavy quarkonium produc-

tion/suppression [3]) are proposed for its detection.

Since the center of mass energy
ffiffi

s
p

= 200 GeV (5.5

TeV) of Au–Au (Pb–Pb) collisions at RHIC (LHC) is very

high, the two nuclei at RHIC (LHC) travel almost at the

speed of light creating the non-equilibrium quark–gluon

plasma just after the heavy-ion collisions. Because of the

very small hadronization time scale in QCD (� 10�24 s)

there may not be enough secondary partonic collisions to

bring this non-equilibrium QGP to equilibrium. Hence the

QGP at RHIC (LHC) may be in non-equilibrium where one

cannot define a temperature.

The hard (high pT) parton production at RHIC and LHC

can be calculated by using pQCD but the soft parton pro-

duction calculation needs non-perturbative QCD which is

not solved yet. This implies that there remains uncertainty in

determining the soft partons production at RHIC and LHC.

Note that the soft partons play an important role in deter-

mining the bulk properties of the QGP at RHIC and LHC.

It should be mentioned here that the study of

hadronization from non-equilibrium QGP at RHIC and

LHC is one of the most difficult and important problems

because the confinement problem in QCD is not solved yet

due to the lack of our understanding of non-perturbative

QCD. This implies that the first principle calculation of

hadron production from non-equilibrium partons at RHIC

and LHC is not known.
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Because of these reasons one finds that in order to detect

the QGP at RHIC and LHC by using the first principle

calculation one needs to study the nonequilibrium–non-

perturbative QCD by using the closed-time path integral

formalism which is not easy [4–7]. If one does not perform

the exact first principle nonequilibrium–nonperturbative

QCD calculation then the comparison of the theoretical

calculation with the experimental data at RHIC and LHC

becomes questionable. For example, some of the limita-

tions of the present theoretical approaches are listed below.

The lattice QCD at finite temperature [8] is a common

tool to study the properties of the QGP. However, for the

reasons explained above, the actual QGP at RHIC and LHC

may be in non-equilibrium where one cannot define a tem-

perature. Hence the lattice QCD at finite temperature has no

application in non-equilibrium QGP at RHIC and LHC.

Similarly the hydrodynamics [9–14] is not applicable in

non-equilibrium QGP at RHIC and LHC. Another limita-

tion of the hydrodynamics [9–14] is that it does not answer

the question how the partons become hadrons from first

principle. As shown in [15] the parton to hadron frag-

mentation function in QCD in vacuum cannot be used to

study the hadrons production from partons from the quark–

gluon plasma at RHIC and LHC. It is important to observe

that even if the experimental data at RHIC and LHC is

explained by using the hydrodynamics [9–14] it does not

prove that the QGP is in equilibrium. In order to make sure

that the QGP is in equilibrium at RHIC and LHC one has to

prove that the same experimental data cannot be explained

by using the non-equilibrium QGP for which one has to

study the nonequilibrium-nonperturbative QCD by using

the closed-time path integral formalism.

As far as the actual physics at RHIC and LHC heavy-ion

collisions is concerned the AdS/CFT based studies [16, 17]

and the supersymmetric Yang–Mills plasma-based studies

[18] have nothing to do with it because of the lack of

experimental verification of the string theory and the

supersymmetry.

Regarding the initial condition for the QGP formation and

the color glass condensate (CGC) [19, 20], as discussed above,

the hard (high pT) parton production at RHIC and LHC can be

calculated by using the pQCD but the soft parton production

can only be correctly calculated from the first principle by

using the non-perturbative QCD which is yet to be solved.

The jet quenching study, see for example [21, 22, and

references therein], directly/indirectly uses the parton to

hadron fragmentation function in QCD in vacuum. This is not

possible because unlike the leading order perturbative gluon

propagator in non-equilibrium QCD the non-perturbative

fragmentation function in non-equilibrium QCD cannot be

decomposed into the vacuum part and the medium part [15].

Hence from the above discussions one finds that,

although a lot of experimental data are available at RHIC

and LHC heavy-ion colliders, there exists no exact first

principle theoretical calculation to explain these experi-

mental data. It is almost impossible to make an exact first

principle theoretical calculation at RHIC and LHC without

studying the nonequilibrium–nonperturbative QCD by

using the closed-time path integral formalism.

The first principle way to study non-equilibrium quan-

tum field theory is the Schwinger–Keldysh closed-time

path (CTP) formalism [4, 5]. Although the non-equilibrium

QED is usually studied by using the canonical quantization

formalism, the closed-time path integral formalism is

useful to study the nonequilibrium–nonperturbative QCD

due to the self-gluon interactions and the hadronization.

As mentioned earlier, the heavy quarkonium is one of

the indirect signatures for the detection of QGP [3]. Both

j=w and vcJ are measured by various collaborations at the

RHIC and LHC heavy-ion collider experiments. In order to

study heavy quarkonium production from the QGP at

RHIC and LHC one needs to prove factorization of infrared

divergences; otherwise, one will predict infinite cross

section for the heavy quarkonium production.

The infrared divergences issue in the case of P-wave

heavy quarkonium production is more complicated than

that of the j=w production. This is because there are no

uncanceled infrared divergences due to eikonal gluons

exchange in the case of S-wave heavy quarkonium (j=w)

production in the color singlet mechanism, whereas there

are uncanceled infrared divergences due to eikonal gluons

exchange in case of P-wave heavy quarkonium (vcJ ) pro-

duction in the color singlet mechanism [23–28].

Recently, we have shown that these uncanceled infrared

divergences can be factored into the correct definition of the

color singlet P-wave heavy quarkonium non-perturbative

matrix elementby supplying the eikonal lines or the gauge links

[29]. In this paper we will extend this to the non-equilibrium

QCD by using the closed-time path integral formalism. We will

prove the factorization of infrared divergences in the vcJ pro-

duction from the color singlet c�c pair in non-equilibrium QCD

at RHIC and LHC at all orders in coupling constant. We will

predict the correct definition of the non-perturbative matrix

element of the vcJ production from the color singlet c�c pair in

non-equilibrium QCD at RHIC and LHC. This can be relevant

to detect the QGP at RHIC and LHC.

The paper is organized as follows: In ‘‘Closed-time path

integral formalism and the generating functional in non-

equilibrium QCD’’ section a brief discussion on the generating

functional in non-equilibrium QCD is presented. In ‘‘Infrared

divergences in vcJ production from color singlet C �C pair’’

section we discuss the non-canceling infrared divergences in

color singlet vcJ production. In ‘‘Infrared divergence due to

eikonal gluon and the SU(3) pure gauge background field’’

section we show that the infrared divergences due to eikonal
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gluons exchange can be studied by using the SU(3) pure

gauge. In ‘‘Proof of factorization of vcJ production in non-

equilibrium QCD at RHIC and LHC in color singlet mecha-

nism’’ section we prove the factorization of infrared diver-

gences in the vcJ production from color singlet c�c pair in non-

equilibrium QCD at RHIC and LHC at all orders in coupling

constant. In ‘‘Correct definition of vcJ production in non-

equilibrium QCD at RHIC and LHC in color singlet mecha-

nism’’ section we predict the correct definition of the non-

perturbative matrix element of the vcJ production from color

singlet c�c pair in non-equilibrium QCD at RHIC and LHC. We

conclude in ‘‘Conclusion’’ section.

Closed-time path integral formalism
and the generating functional in non-equilibrium
QCD

Since we will use the background field method of QCD in

this paper we denote the gluon field by QkdðxÞ and the

background field by AkdðxÞ where k ¼ 0; 1; 2; 3 and

d ¼ 1; . . .; 8. The generating functional in non-equilibrium

QCD (without the background field) in the closed-time

path integral formalism is given by [6, 7]

Z q;Jþ;J�;g1þ; �g1þ;g1�; �g1�;g2þ; �g2þ;g2�; �g2�;
�

g3þ; �g3þ;g3�; �g3�;gIþ; �gIþ;gI�; �gI�
�

¼
Z

½dQþ�½dQ��P3
k¼1½d �wkþ�½d �wk��½dwkþ�½dwk��½d �Wþ�

� ½d �W��½dWþ�½dW��� det
dokQkd

þ
dxe

þ

� �

� det
dokQkd

�
dxe

�

� �

� exp½i
Z

d4xf� 1

4
Fd2

kd½Qþ�þ
1

4
Fd2

kd½Q��

� 1

2a
ðokQkd

þ Þ2 þ 1

2a
ðokQkd

� Þ2

þ
X

3

k¼1

�wkþ½ickok�mk þ gTdckQd
kþ�wkþ

�
X

3

k¼1

�wk�½ickok�mk þ gTdckQd
k��wk�

þ �Wþ½ickok�Mþ gTdckQd
kþ�Wþ

� �W�½ickok�Mþ gTdckQd
k��W� þ JþQþ � J�Q�

þ
X

3

k¼1

½ �wkþgkþ � �wk�gk� þ �gkþwkþ � �gk�wk��

þ �WþgIþ � �W�gI� þ �gIþWþ � �gI�W�g�
� \Qþ;w1þ;

�w1þ;w2þ;
�w2þ;w3þ;

�w3þ;Wþ; �Wþ;0jqj0;
� �w1�;w1�;

�w2�;w2�;
�w3�;w3�;

� �W�;W�;Q�[ ; ð1Þ

where d¼ 0;1;2;3 and we have included the heavy quark.

In Eq. (1) the symbol k¼ 1;2;3 ¼ u;d; s stands for up,

down and strange quark with mass mk and field wk. The

heavy quark field is W and the heavy quark mass is M. The

initial density of states is denoted by q, the arbitrary gauge

fixing parameter is a, the j0; �w1�;w1�;
�w2�;w2�;

�w3�;w3�;
�W�;W�;Q�[ corresponds to the state at the initial time

and

Fd2

kd½Qþ� ¼ okQ
d
dþ � odQ

d
kþ þ gf dbaQb

kþQ
a
dþ

� �

� okQdd
þ � odQkd

þ þ gf dceQkc
þQde

þ
� �

;
ð2Þ

and similarly for the - index where þ;� stand for the

closed-time path indices. Note that we do not introduce

ghost fields as we directly work with the ghost determinant

detðdokQ
kd
þ

dxe
þ
Þ in Eq. (1).

The corresponding non-equilibrium QCD generating

functional in the closed-time path integral formalism of the

background field method of QCD is given by [6, 7, 30–32]

Z½A;q;Jþ;J�;g1þ; �g1þ;g1�; �g1�;g2þ; �g2þ;g2�; �g2�;

g3þ; �g3þ;g3�; �g3�;gIþ; �gIþ;gI�; �gI��

¼
Z

½dQþ�½dQ��P3
k¼1½d �wkþ�½d �wk��½dwkþ�½dwk��½d �Wþ�

½d �W��½dWþ�½dW��

� det
dGdðQþÞ
dxe

þ

� �

� det
dGdðQ�Þ
dxe

�

� �

� exp½i
Z

d4xf� 1

4
Fd2

kd½Qþ þAþ�þ
1

4
Fd2

kd½Q� þA��

� 1

2a
ðGdðQþÞÞ2 þ 1

2a
ðGdðQ�ÞÞ2

þ
X

3

k¼1

�wkþ½ickok�mk þ gTdckðQþAÞdkþ�wkþ

�
X

3

k¼1

�wk�½ickok�mk þ gTdckðQþAÞdk��wk�

þ �Wþ½ickok�Mþ gTdckðQþAÞdkþ�Wþ � �W�½ickok

�Mþ gTdckðQþAÞdk��W� þ
X

3

k¼1

½ �wkþgkþ

� �wk�gk� þ �gkþwkþ � �gk�wk��þ �WþgIþ � �W�gI�
þ �gIþWþ � �gI�W� þ JþQþ � J�Q�g�
�\Qþ þAþ;w1þ;

�w1þ;w2þ;
�w2þ;w3þ;

�w3þ;Wþ; �Wþ;

0jqj0; �w1�;w1�;
�w2�;w2�;

�w3�;w3�; �W�;W�;Q� þA�[

ð3Þ

where the background gauge fixing

GdðQþÞ ¼ okQ
kd
þ þ gf dbaAb

kþQ
ka
þ ð4Þ

depends on the background field AkdðxÞ. In Eq. (3)
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Fd2

kd Qþ þ Aþ½ � ¼ ok Ad
dþ þ Qd

dþ
� �

� od Ad
kþ þ Qd

kþ
� ��

þ gf dba Ab
kþ þ Qb

kþ
� �

Aa
dþ þ Qa

dþ
� ��

� ok Add
þ þ Qdd

þ
� �

� od Akd
þ þ Qkd

þ
� ��

þ gf dce Akc
þ þ Qkc

þ
� �

Ade
þ þ Qde

þ
� ��

ð5Þ

and we do not have any ghost fields because we directly

work with the ghost determinant detðdG
dðQþÞ
dxe

þ
Þ in Eq. (3).

For the type I gauge transformation we have [31, 32]

TdA0kd
þ ¼ UþT

dAkd
þ U�1

þ þ 1

ig
ðokUþÞU�1

þ ;

TdQ0kd
þ ¼ UþT

dQkd
þ U�1

þ ;

ð6Þ

where the light-like gauge link or the light-like eikonal line

in the fundamental representation of SU(3) is given by

[1, 33, 34]

UþðxÞ ¼ eigT
dxd

þðxÞ ¼ Pe�igTd
R1

0
dsl�Ad

þðxþslÞ
; l2 ¼ 0;

ð7Þ

where lk is the light-like four-velocity.

In this paper we will use the generating functionals from

Eqs. (1) and (3) in the path integral formulation to prove

the factorization of infrared divergences in the vcJ pro-

duction from the color singlet c�c pair in non-equilibrium

QCD at RHIC and LHC at all orders of coupling constant.

Infrared divergences in vcJ production from color
singlet C �C pair

The non-canceling infrared divergences were found in the

higher order pQCD calculation of the annihilation of heavy

quark–antiquark pair to light partons in the hadronic decay

of the color singlet P-wave heavy quarkonium [23–28]. For

example, in the partonic processes [23–28]

vcJ ! q�qg; hc ! ggg ð8Þ

of the hadronic decay of vcJ and hc, respectively, one finds

the non-canceling infrared divergences due to real soft

gluons (eikonal gluons) emission/absorption [23–28, 35,

36].

Now let us discuss the hadroproduction of vcJ from color

singlet c�c pair at high-energy colliders. If the factorization

theorem is valid [1, 33, 34, 37–46] then the vcJ production

from the color singlet c�c pair at high energy colliders is

given by

drpp!vcJþXðpTÞ ¼
X

k;j

Z

dx1dx2fk=pðx1;QÞfj=p

� ðx2;QÞdr̂kj!C �C½3PJ �þXðpTÞ\0jOvcJ
j0[ ;

ð9Þ

where dr̂kj!C �C½3PJ �þXðpTÞ is the partonic level cross section

for the c�c production in 3PJ state. This partonic level cross

section can be calculated by using pQCD where

k; j ¼ q; �q; g. The parton distribution function fk=pðx;QÞ of

the parton k inside the proton p is a non-perturbative

quantity in QCD. The non-perturbative matrix element of

vcJ production from the color singlet c�c pair is denoted by

\0jOvcJ
j0[ .

As mentioned above the non-canceling infrared diver-

gences were found in the hadronic decay of the color sin-

glet P-wave heavy quarkonium [23–28, 35, 36]. Similarly,

the non-canceling infrared divergences were also found in

the hadroproduction of the color singlet P-wave heavy

quarkonium [36].

Note that for S-wave and P-wave color singlet heavy

quarkonium the infrared divergences occur due to coulomb

gluon and eikonal gluon exchanges. The infrared diver-

gence due to Coulomb gluon exchange is analogous to the

infrared divergence due to the Coulomb photon exchange

in QED, see [47]. This Coulomb gluon infrared divergence

is also known as the 1
v
! 1 divergence where v is the

relative velocity of the heavy quark–antiquark which is

normally absorbed into the normalization of the bound

state wave function [23–28] similar to that in QED [47].

In case of j=w production the infrared divergences due to

the eikonal gluons interacting with charm quark exactly

cancel with the corresponding infrared divergences asso-

ciated with the charm antiquark [23–28]. Hence there is no

uncanceled infrared divergences due to eikonal gluons

exchange in case of j=w production. That is why there are

no gauge links in the definition of the j=w wave function

[29].

However, in case of vcJ production the non-canceling

infrared divergences occur due to the eikonal gluons

[23–28]. At NLO in coupling constant the non-canceling

infrared divergence due to the eikonal gluons exchange is

found in the quark–antiquark fusion process [36]

q�q ! vcJg: ð10Þ

Because of the existence of these non-canceling infrared

divergences, we have shown in [29] that the gauge links are

necessary in the definition of the color singlet P-wave non-

perturbative matrix element of the heavy quarkonium

production. These gauge links make the non-perturbative
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matrix element gauge invariant and cancel these non-

canceling infrared divergences.

Hence the correct definition of the non-perturbative

matrix element of the vc0 production from color singlet c�c

pair at high-energy colliders which is consistent with the

factorization of infrared divergences at all orders in cou-

pling constant in QCD is given by [29]

\0jOvc0
j0[ ¼ \0jfyU �rUynayvc0

� avc0
nyU �rUyfj0[ ;

ð11Þ

where f (n) is the two-component Dirac spinor field that

creates (annihilates) a heavy quark and

fyU �rUyn ¼ fyUðrUynÞ � ðrUyfÞyUyn: ð12Þ

In Eq. (11), the ayvc0
is the creation operator of the vc0, the

\0jOvc0
j0[ is evaluated at the origin and

UðxÞ ¼ Pe�igTd
R1

0
dsl�AdðxþslÞ

; l2 ¼ 0 ð13Þ

is the light-like gauge link or the light-like eikonal line in

the fundamental representation of SU(3).

Infrared divergence due to eikonal gluon
and the SU(3) pure gauge background field

As mentioned earlier the real gluon emission/absorption is

the source of the non-canceling infrared divergences in

case of P-wave heavy quarkonium production/deacy

[23–28, 35, 36]. In this section we will briefly discuss the

infrared divergence due to real gluon emission/absorption

which can be described by eikonal Feynman rules in QCD.

Let us first discuss the eikonal Feynman rules in QED

before proceeding to QCD as the eikonal Feynman rules in

QCD is similar to that in QED.

In QED the Feynman diagram contribution for an

electron emitting a real photon is given by [48]

1

6 r � 6 k � m
6 �ðkÞuðrÞ ¼ � r � �ðkÞ

r � k uðrÞ þ 6 k 6 �ðkÞ
2r � k uðrÞ;

ð14Þ

where rk (kk) is the momentum of electron (photon).

Eq. (14) has both eikonal part

r � �ðkÞ
r � k uðrÞ ! 1 when kk ! 0 ð15Þ

and the non-eikonal part

6 k 6 �ðkÞ
2r � k uðrÞ ! finite when kk ! 0: ð16Þ

The eikonal part is the source of the infrared divergence as

Eq. (15) diverges in the infrared limit kk ! 0. The non-

eikonal part in Eq. (16) does not diverge in the infrared

limit kk ! 0. This implies that the infrared divergence due

to the emission of real photon from the electron can be

studied by using only the eikonal term
r��ðkÞ
r�k uðrÞ without

taking into account the non-eikonal term
6k 6�ðkÞ
2r�k uðrÞ in the

Feynman diagram contribution in Eq. (14).

Now we will show that the study of the infrared diver-

gences due to the eikonal photons at all order in coupling

constant in QED can be enormously simplified when the

electron is light-like (r2 ¼ 0). The effective lagrangian

density of the photon in the presence of current density

KkðxÞ in quantum field theory is given by [1]
Z

d4xLeff ðxÞ ¼ �i ln\0j0[ K ¼ �i ln½Z½K�
Z½0� �

¼ � 1

2

Z

d4xKkðxÞ 1

o2
KkðxÞ;

ð17Þ

where the generating functional Z[K] in the path integral

formulation involving the photon field QkðxÞ is given by

Z½K� ¼
Z

½dQ�ei
R

d4x½�1
4
½odQkðxÞ�okQdðxÞ�½odQkðxÞ�okQdðxÞ�� 1

2aðokQkÞ2þKkðxÞQkðxÞ�:

ð18Þ

From Eq. (15) the eikonal contribution

e

Z

d4k

ð2pÞ4

lkQ
kðkÞ

l � k þ i�
¼ �i

Z

d4xQkðxÞKkðxÞ ð19Þ

gives the eikonal current density

KkðxÞ ¼ e

Z 1

0

dslkdð4Þðx� lsÞ; ð20Þ

where lk is the light-like four-velocity (l2 ¼ 0) of the

electron.

Using eq. (20) in (17) we find that

Leff ðxÞ ¼
½el2�2

½
ffiffiffi

2
p

ðl � xÞ2�2
¼ 0; when l � x 6¼ 0; l2 ¼ 0:

ð21Þ

From Eq. (21) we find that the light-like eikonal current

produces pure gauge field in quantum field theory at all

space–time points except at the positions perpendicular to

the direction of motion of the charge at the time of closest

approach, a result which agrees with the classical

mechanics [41, 49, 50].

Hence we find from Eq. (21) that the calculation of

infrared divergences due to the real photons’ emission from

the light-like electron can be simplified by using the pure

gauge field in QED. This can also be seen from Grammer–

Yennie approximation [48] as follows: We write the pho-

ton polarization as the sum of the transverse (physical)
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polarization plus the longitudinal (pure gauge) polarization

to find [48]

�kðkÞ ¼ �kphysicalðkÞ þ �kpure gaugeðkÞ; ð22Þ

where

�kphysicalðkÞ ¼ �kðkÞ � kk
r � �ðkÞ
r � k

� �

; ð23Þ

which contributes to the physical (finite) cross section and

�kpure gaugeðkÞ ¼ kk
r � �ðkÞ
r � k ; ð24Þ

which does not contribute to the physical (finite) cross

section but contributes to the infrared divergence. This can

be explicitly seen by using Eq. (22) in the eikonal part in

Eq. (14) to find

r � �ðkÞ
r � k uðrÞ ¼ r � �pure gaugeðkÞ

r � k uðrÞ ! 1 when kk ! 0;

ð25Þ
r � �physicalðkÞ

r � k uðrÞ ¼ 0; ð26Þ

and in the non-eikonal part in Eq. (14) to find

6 k 6 �ðkÞ
2r � k uðrÞ ¼

6 k 6 �physicalðkÞ
2r � k uðrÞ ! finite when kk ! 0

ð27Þ

and

6 k 6 �pure gaugeðkÞ
2r � k uðrÞ ¼ 0: ð28Þ

From Eq. (16) the non-eikonal contribution

e

Z

d4k

ð2pÞ4

6 k 6 QðkÞ
2r � k þ i�

¼
Z

d4xKðxÞ � QðxÞ ð29Þ

gives the non-eikonal current density

KkðxÞ ¼ e

2
cdck

Z

dw
o

oxd
dð4Þðx� rwÞ; ð30Þ

where rk is light-like (r2 ¼ 0) or non-light-like (r2 6¼ 0)

momentum of the electron. Using Eqs. (20) and (30) in

Eq. (17) we find that the interaction between the (light-like

or non-light-like) non-eikonal line with four-momentum rk

and the gauge field generated by the light-like eikonal line

with four-velocity lk (l2 ¼ 0) gives the interaction (effec-

tive) lagrangian density

Linteraction
eff ðxÞ ¼ l2e2½ðr � lÞðr � xÞ � r2l � x�

2ðl � xÞ3½ðr � xÞ2 � r2x2�
3
2

¼ 0;

when l � x 6¼ 0; r � x 6¼ 0:

ð31Þ

From Eq. (31) we find that, in quantum field theory, the

interaction between the non-eikonal line and the gauge

field generated by the light-like eikonal line does not

contribute to the interaction (effective) lagrangian density.

Since the light-like eikonal line produces pure gauge field

in quantum field theory (see Eq. (21)) we find from

Eqs. (31) and (28) that the light-like eikonal line does not

modify the finite physical cross section.

Hence we find from Eqs. (21), (31), (25), (26), (27) and

(28) that the study of infrared divergences in QED due to

real photon emission from the light-like electron can be

enormously simplified by using the pure gauge field

without modifying the finite value of the cross section.

We have shown in Eqs. (21) and (31) that the light-like

electron produces pure gauge field in QED. This result in

QED agrees with classical mechanics [41, 49, 50]. Hence

we find that the infrared divergences at all orders in cou-

pling constant due to the real photons’’ emission from the

light-like electron in quantum field theory can be studied

by using the path integral formulation of the background

field method of quantum field theory in the presence of

pure gauge background field [1, 33, 34, 51, 52].

In QED the U(1) pure gauge field AkðxÞ is given by

AkðxÞ ¼ okxðxÞ and in QCD the SU(3) pure gauge field

AkdðxÞ is given by [1, 33, 34]

TdAkdðxÞ ¼ 1

ig
½okUðxÞ�U�1ðxÞ; ð32Þ

where UðxÞ is the light-like gauge link or the light-like

eikonal line in the fundamental representation of SU(3)

given by Eq. (13).

Proof of factorization of vcJ production in non-
equilibrium QCD at RHIC and LHC in color
singlet mechanism

As discussed in ‘‘Infrared divergence due to eikonal gluon

and the SU(3) pure gauge background field’’ section the

infrared divergences due to the exchange of eikonal gluons

with the light-like parton in QCD can be studied by using

the path integral formulation of the background field

method of QCD in the presence of SU(3) pure gauge

background field as given by Eq. (32) [1, 33, 34]. Note that

the path integral technique is suitable to study the proper-

ties of the non-perturbative quantities in QCD. It should be

mentioned here that the properties of a non-perturbative

function may not always be correctly studied by using the

perturbative method no matter how many orders of per-

turbation theory is used. Take, for example, a non-pertur-

bative function
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f ðgÞ ¼ e
� 1

g2 : ð33Þ

The Taylor series at g ¼ 0 gives f ðgÞ ¼ 0 to all orders in

perturbation theory but f ðgÞ 6¼ 0 for g 6¼ 0.

Having considered the points mentioned above, one

should note that perturbative QCD entered a new phase when

the cancelation of the leading-order (LO) renormalons

between the QCD potential and the pole masses of quark and

antiquark was discovered (see for example [53, 54]). Con-

vergence of the perturbative series improved dramatically

and much more accurate perturbative predictions became

available. Hence, in some later works (see, for example,

[55, 56]) it was shown that perturbative predictions in QCD

agree well with phenomenological QCD results (determined

from heavy quarkonium spectroscopy) and lattice QCD

calculations. For recent developments on color potential

produced by the color charge of the quark, see [49, 50].

In this paper we will use the path integral formulation of

the background field method of QCD to predict the correct

definition of the non-perturbative matrix element of the vcJ

production from color singlet c�c pair in non-equilibrium

QCD which is gauge invariant and is consistent with the

factorization of infrared divergences at all orders in cou-

pling constant.

In the closed-time path integral formulation the gener-

ating functional in non-equilibrium QCD is given by

Eq. (1). Hence from Eq. (1) we find that the heavy quark–

antiquark non-perturbative correlation function of the type

\inj �Wrðx0ÞWrðx0Þ �Wsðx00ÞWsðx00Þjin[ in non-equilibrium

QCD is given by [6, 7, 32, 57]

\inj �Wrðx0Þ �rx0Wrðx0Þ � �Wsðx00Þ �rx00Wsðx00Þjin[

¼
Z

½dQþ�½dQ��P3
k¼1½d �wkþ�½d �wk��½dwkþ�½dwk��

½d �Wþ�½d �W��½dWþ�½dW��

� �Wrðx0Þ �rx0Wrðx0Þ � �Wsðx00Þ �rx00Wsðx00Þ� det
dokQkd

þ
dxe

þ

� �

� det
dokQkd

�
dxe

�

� �

exp½i
Z

d4xf� 1

4
Fd2

kd½Qþ�þ
1

4
Fd2

kd½Q���
1

2a
ðokQkd

þ Þ2 þ 1

2a
ðokQkd

� Þ2

þ
X

3

k¼1

�wkþ½ickok�mk þ gTdckQd
kþ�wkþ

�
X

3

k¼1

�wk�½ickok�mk þ gTdckQd
k��wk�

þ �Wþ½ickok�Mþ gTdckQd
kþ�Wþ

� �W�½ickok�Mþ gTdckQd
k��W�g�

�\Qþ;w1þ;
�w1þ;w2þ;

�w2þ;w3þ;
�w3þ;Wþ; �Wþ;

� 0jqj0; �w1�;w1�;
�w2�;w2�;

�w3�;w3�; �W�;W�;Q�[ ;

ð34Þ

where r; s ¼ þ;� are the closed-time path indices in non-

equilibrium QCD (the repeated closed-time path indices

r, s in Eq. (34) are not summed) and jin[ is the ground

state in non-equilibrium QCD.

In the closed-time path integral formulation in non-

equilibrium the generating functional in the background

field method of QCD is given by Eq. (3). Hence from

Eq. (3) we find that the heavy quark–antiquark nonequi-

librium–nonperturbative correlation function of the type

\inj �Wrðx0ÞWrðx0Þ �Wsðx00ÞWsðx00Þjin[ A in the background

field method of QCD is given by [6, 7, 30–32]

\inj �Wrðx0Þ �rx0Wrðx0Þ � �Wsðx00Þ �rx00Wsðx00Þjin[A

¼
Z

½dQþ�½dQ��P3
k¼1½d �wkþ�½d �wk��½dwkþ�½dwk��½d �Wþ�

½d �W��½dWþ�½dW��

� �Wrðx0Þ �rx0Wrðx0Þ � �Wsðx00Þ �rx00Wsðx00Þ�det
dGdðQþÞ
dxe

þ

� �

�det
dGdðQ�Þ
dxe

�

� �

exp½i
Z

d4xf�1

4
Fd2

kd½QþþAþ�

þ1

4
Fd2

kd½Q�þA���
1

2a
ðGdðQþÞÞ2þ 1

2a
ðGdðQ�ÞÞ2

þ
X

3

k¼1

�wkþ½ickok�mkþgTdckðQþAÞdkþ�wkþ

�
X

3

k¼1

�wk�½ickok�mkþgTdckðQþAÞdk��wk�

þ �Wþ½ickok�MþgTdckðQþAÞdkþ�Wþ� �W�½ickok
�MþgTdckðQþAÞdk��W�g�

\QþþAþ;w1þ;
�w1þ;w2þ;

�w2þ;w3þ;
�w3þ;Wþ; �Wþ;0j

qj0; �w1�;w1�;
�w2�;w2�;

�w3�;w3�; �W�;W�;Q�þA�[ :

ð35Þ

From Eq. (35) we find

\inj �Wrðx0ÞUrðx0Þ �rx0U
y
rðx0ÞWrðx0Þ � �Wsðx00ÞUsðx00Þ �rx00U

y
sðx00Þ

Wsðx00Þjin[ A

¼
Z

½dQþ�½dQ��P3
k¼1½d �wkþ�½d �wk��½dwkþ�½dwk��½d �Wþ�

½d �W��½dWþ�½W��
� �Wrðx0ÞUrðx0Þ �rx0U

y
rðx0ÞWrðx0Þ � �Wsðx00ÞUsðx00Þ �rx00U

y
sðx00ÞWsðx00Þ

� det
dGdðQþÞ
dxe

þ

� �

� det
dGdðQ�Þ
dxe

�

� �

� exp½i
Z

d4xf � 1

4
Fd2

kd½Qþ þ Aþ� þ
1

4
Fd2

kd½Q� þ A��

� 1

2a
ðGdðQþÞÞ2 þ 1

2a
ðGdðQ�ÞÞ2

þ
X

3

k¼1

�wkþ½ickok �mk þ gTdckðQþ AÞdkþ�wkþ

�
X

3

k¼1

�wk�½ickok �mk þ gTdckðQþ AÞdk��wk�

þ �Wþ½ickok �M þ gTdckðQþ AÞdkþ�Wþ

� �W�½ickok �M þ gTdckðQþ AÞdk��W�g�
� \Qþ þ Aþ;w1þ;

�w1þ;w2þ;
�w2þ;w3þ;

�w3þ;Wþ; �Wþ;

0jqj0; �w1�;w1�;
�w2�;w2�;

�w3�;w3�;
�W�;W�;Q� þ A�[ ;

ð36Þ
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where UðxÞ is the light-like gauge link or the light-like

eikonal line in the fundamental representation of SU(3)

given by Eq. (13).

Since Q is the integration variable inside the path inte-

gration we change the integration variable Q ! Q� A in

Eq. (36) to find

\inj �Wrðx0ÞUrðx0Þ �rx0U
y
rðx0ÞWrðx0Þ � �Wsðx00ÞUsðx00Þ

�rx00U
y
sðx00ÞWsðx00Þjin[ A

¼
Z

½dQþ�½dQ��P3
k¼1½d �wkþ�½d �wk��½dwkþ�½dwk��½d �Wþ�

� ½d �W��½dWþ�½dW��
� �Wrðx0ÞUrðx0Þ �rx0U

y
rðx0ÞWrðx0Þ � �Wsðx00ÞUsðx00Þ

�rx00U
y
sðx00ÞWsðx00Þ � det

dGd
f ðQþÞ
dxe

þ

 !

� det
dGd

f ðQ�Þ
dxe

�

 !

� exp½i
Z

d4xf � 1

4
Fd2

kd½Qþ� þ
1

4
Fd2

kd½Q��

� 1

2a
ðGd

f ðQþÞÞ2 þ 1

2a
ðGd

f ðQ�ÞÞ2 þ
X

3

k¼1

�wkþ½ickok

� mk þ gTdckQd
kþ�wkþ �

X

3

k¼1

�wk�½ickok � mk þ gTdckQd
k��wk�

þ �Wþ½ickok �M þ gTdckQd
kþ�Wþ � �W�½ickok �M

þ gTdckQd
k��W�g�

�\Qþ;w1þ;
�w1þ;w2þ;

�w2þ;w3þ;
�w3þ;Wþ; �Wþ;

0jqj0; �w1�;w1�;
�w2�;w2�;

�w3�;w3�; �W�;W�;Q� [ ;

ð37Þ

where from Eqs. (4) and (6) we have

Gd
f ðQþÞ ¼ okQ

kd
þ þ gf dbaAb

kþQ
ka
þ � okA

kd
þ ;

TdQ0kd
þ ¼ UþT

dQkd
þ U�1

þ þ 1

ig
ðokUþÞU�1

þ :
ð38Þ

Since Q, w, �w, W and �W are integration variables inside

the path integration we can change the unprimed inte-

gration variables to primed integration variables in

Eq. (37) to find

\inj �Wrðx0ÞUrðx0Þ �rx0U
y
rðx0ÞWrðx0Þ � �Wsðx00ÞUsðx00Þ

�rx00U
y
sðx00ÞWsðx00Þjin[ A

¼
Z

½dQ0
þ�½dQ0

��P3
k¼1½d �w

0
kþ�½d �w

0
k��½dw

0
kþ�½dw

0
k��½d �W

0
þ�

� ½d �W
0
��½dW0

þ�½dW0
�� �W

0
rðx0ÞUrðx0Þ �rx0U

y
rðx0ÞW0

rðx0Þ�

�W
0
sðx00ÞUsðx00Þ �rx00U

y
sðx00ÞW0

sðx00Þ � detð
dGd

f ðQ0
þÞ

dxe
þ

Þ

� detð
dGd

f ðQ0
�Þ

dxe
�

Þ � exp½i
Z

d4xf � 1

4
Fd2

kd½Q0
þ� þ

1

4
Fd2

kd½Q0
��

� 1

2a
ðGd

f ðQ0
þÞÞ

2 þ 1

2a
ðGd

f ðQ0
�ÞÞ

2

þ
X

3

k¼1

�w
0
kþ½ickok � mk þ gTdckQ0d

kþ�w
0
kþ

�
X

3

k¼1

�w
0
k�½ickok � mk þ gTdckQ0d

k��w
0
k�

þ �W
0
þ½ickok �M þ gTdckQ0d

kþ�W0
þ

� �W
0
�½ickok �M þ gTdckQ0d

k��W0
�g�

�\Q0
þ;w

0
1þ;

�w
0
1þ;w

0
2þ;

�w
0
2þ;w

0
3þ;

�w
0
3þ;W

0
þ;

�W
0
þ; 0jqj0; �w0

1�;w
0
1�;

�w
0
2�;w

0
2�;

�w
0
3�;w

0
3�;

�W
0
�;W

0
�;Q

0
� [ :

ð39Þ

The SU(3) pure gauge background field AkdðxÞ given by

Eq. (32). Using the background field AkdðxÞ as the SU(3)

pure gauge background field given by Eq. (32) we find

from

w0
þðxÞ ¼ UþðxÞwþðxÞ ð40Þ

and from Eq. (38) that [1, 33, 34]

½d �w0
kþ�½dw0

kþ� ¼ ½d �wkþ�½dwkþ�; ½dQ0
þ� ¼ ½dQþ�;

½d �W
0
þ�½dW0

þ� ¼ ½d �Wþ�½dWþ�;

ðGd
f ðQ0

þÞÞ
2 ¼ ðokQkd

þ ðxÞÞ2; det
dGd

f ðQ0
þÞ

dxe
þ

" #

¼ det
dðokQkd

þ ðxÞÞ
dxe

þ

� �

�w
0
kþ½ickok�mk þ gTdckQ0d

kþ�w0
kþ ¼ �wkþ½ickok�mk þ gTdckQd

kþ�wkþ;

�W
0
þ½ickok�Mþ gTdckQ0d

kþ�W0
þ ¼ �Wþ½ickok�Mþ gTdckQd

kþ�Wþ:

ð41Þ

At the initial time we are working in the frozen ghost

formalism for the non-equilibrium QCD at the initial time

[6, 7]. This implies from Eqs. (38) and (40) that at the

initial time the \Qþ;w1þ;
�w1þ;w2þ;

�w2þ;w3þ;
�w3þ;Wþ;

�Wþ;0jqj0; �w1�;w1�;
�w2�;w2�;

�w3�;w3�; �W�;W�;Q�[ in

non-equilibrium QCD at the initial time is gauge invariant

by definition, i. e., [34]
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\Q0
þ;w

0
1þ;

�w
0
1þ;w

0
2þ;

�w
0
2þ;w

0
3þ;

�w
0
3þ;W

0
þ;

� �W
0
þ; 0jqj0; �w0

1�;w
0
1�;

�w
0
2�;w

0
2�;

�w
0
3�;w

0
3�;

�W
0
�;W

0
�;Q

0
� [

¼ \Qþ;w1þ;
�w1þ;w2þ;

�w2þ;w3þ;
�w3þ;Wþ;

� �Wþ; 0jqj0; �w1�;w1�;
�w2�;w2�;

�w3�;w3�;
�W�;W�;Q� [ :

ð42Þ

From Eqs. (41), (40), (42), (39) and (34) we finally obtain

\inj �Wrðx0Þ �rx0Wrðx0ÞayH � aH �WsðxÞ �rxWsðxÞjin[
¼ \inj �Wrðx0ÞUrðx0Þ �rx0U

y
rðx0ÞWrðx0ÞayH � aH �WsðxÞ

� UsðxÞ �rxU
y
sðxÞWsðxÞjin[ A;

ð43Þ

which proves the factorization of infrared divergences in

vcJ production from color singlet c�c pair in non-equilibrium

QCD at all order in coupling constant where the light-like

gauge link or the light-like eikonal line UþðxÞ in the fun-

damental representation of SU(3) is given by

UþðxÞ ¼ Pe�igTd
R1

0
dsl�Ad

þðxþslÞ
: ð44Þ

Correct definition of vcJ production in non-
equilibrium QCD at RHIC and LHC in color
singlet mechanism

From Eq. (43) we find that the correct definition of the

gauge invariant non-perturbative matrix element of the vc0

production from the color singlet c�c pair in non-equilib-

rium QCD which is consistent with factorization of infra-

red divergences at all orders in coupling constant is given

by

\injOvc0
jin[ ¼ \injfyU �rUynayvc0

� avc0
nyU �rUyfjin[ :

ð45Þ

Since the left-hand side of Eq. (43) is independent of the

light-like four-velocity lk we find that the long-distance

behavior of the vc0 non-perturbative matrix element

\injOvc0
jin[ ¼ \injfyU �rUynayvc0

� avc0
nyU �rUyfjin[

in Eq. (45) in non-equilibrium QCD is independent of the

light-like vector lk used to define the light-like gauge link

or the light-like eikonal line in Eq. (44) at all orders in

coupling constant.

Conclusions

Recently we have proved the factorization of NRQCD

S-wave heavy quarkonium production at all orders in

coupling constant. In this paper we have extended this to

prove the factorization of infrared divergences in vcJ pro-

duction from color singlet c�c pair in non-equilibrium QCD

at RHIC and LHC at all orders in coupling constant. This

can be relevant to study the quark–gluon plasma at RHIC

and LHC.
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