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Abstract
Resonant third harmonic generation of super-Gaussian laser beam in rippled density plasma is studied. Both the relativistic 
and ponderomotive nonlinearities are included in the analysis, and the study is done for self-guided laser beam. The quasi-
static component of ponderomotive force creates electron density depression in the beam region while the second harmonic 
component leads to second harmonic density oscillations, leading to third harmonic generation. The relativistic mass vari-
ation supplements these processes with same order of contributions. The ripple provides the phase matching and requisite 
ripple wave number decreases with the frequency of the laser.
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Introduction and motivation

The generation of harmonics by the interaction of intense 
short pulse laser with plasma is a topic of continued interest 
because of its potential for producing coherent ultraviolet 
radiation to X-ray pulses [1–6]. Since plasma is a dispersive 
medium, the wave number of the nth harmonic does not 
match with n times the wave number of the fundamental 
laser beam and so, the harmonic generation is a non-resonant 
process. However, one may turn it into a resonant process 
by introducing a density ripple of wave number q equal to 
the wave number mismatch [7–9]. The ripple acts as virtual 
photons of zero energy and finite momentum and compen-
sates for the momentum mismatch in the harmonic emission 
process.

Lin et al. [10] successfully fabricated the spatial struc-
tures with the help of laser machining beam in a hydrogen 
jet using spatial light modulator. Third harmonic generation 
employing such a density ripple was observed experimen-
tally by Kuo et al. [11]. They found an order of magnitude 
enhancement in third harmonic efficiency. The formation 
of density bunches by the interaction of microwave in a 

plasma-filled waveguide has been analytically analyzed by 
Malik [12]. Liu and Tripathi [13] developed an analytical 
theory for third harmonic generation of a plane uniform laser 
beam in a plasma density ripple. Dahiya et al. [14] carried 
out particle-in-cell (PIC) simulation of harmonic generation 
in ripple density plasma and observed similar results. Kaur 
and Sharma [15] studied third harmonic generation (THG) 
from a high-density inhomogeneous plasma produced 
by laser irradiation of a thin metallic film and observed 
enhancement in the efficiency of THG with the increase in 
the density scale length of the plasma. The self-focusing of 
Gaussian laser beam has also been found to enhance the effi-
ciency in third harmonic generation [16]. Singh and Walia 
[17] carried similar studies on second harmonic generation.

This is evident that most of the studies have been car-
ried out for Gaussian laser beam, cosh-Gaussian (ChG) laser 
beam, and hollow Gaussian laser beam (HGB) [18–22]. Cur-
rently, there is significant interest in super-Gaussian laser 
beams [23–25], as these have fairly uniform intensity in the 
central spot and a sharp fall at the margins. In laser-driven 
ion acceleration, a super-Gaussian laser beam would cause 
much less divergence of the ion beam than that due to a 
Gaussian beam. In harmonic generation too, super-Gaussian 
beam should produce much wider radial intensity profile of 
the harmonic, leading to suppression of diffraction diver-
gence. Keeping in mind all these points, we study in the 
present work a resonant third harmonic generation of super-
Gaussian (sG) laser beam in a rippled density plasma on 
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the time scale where ions are treated immobile. The laser 
is assumed to be plane polarized and to propagate along 
the periodicity of the ripples. It modifies the electron mass 
due to the relativistic effect and exerts quasi-static and sec-
ond harmonic ponderomotive forces on the electrons. The 
quasi-static ponderomotive force pushes the electrons radi-
ally out, leaving behind an ion space charge. A steady state 
is realized when the ponderomotive force is balanced by the 
space charge force and a depressed electron density chan-
nel is created. The second harmonic ponderomotive force 
induces electron density oscillations, which in conjunction 
with relativistic mass oscillations beat with the electron 
velocity due to the pump to produce third harmonic cur-
rent and hence, the third harmonic radiation. The process 
becomes resonant when the wave number of the density rip-
ple matches the difference between the third harmonic wave 
number and 3 times the wave number of the laser pump.

Plasma channel equilibrium

Consider a collisionless plasma channel of electron density 
n = n0 + nq together with density ripple nq = nq0e

iqz . A lin-
early polarized laser beam propagates through it with the 
electric and magnetic fields as

where E0 = E00exp
(
−r4∕2r4

0

)
 and r0 represents the width of 

the laser beam, � is the refractive index. The density ripples 
can be created by laser machining beam in gas jet experi-
ments. The machining laser pulse propagating in y-direction 
can be used to create density ripples, where the laser pulse 
propagating after a delay of the order of ns in the z-direction 
is taken to be the main pulse. The machining laser pulse has 
periodic intensity variation in z-direction and the maximum 
intensity that is greater than the threshold for optical field 
ionization of the neutral gas jet target is projected trans-
versely on the neutral gas target. The plasma is formed on 
the positions of intensity maxima. After the machining laser 
pulse is gone, we achieve interlacing layers of high-density 
neutral gas and low-density plasma. Lin et al. [10] have suc-
cessfully fabricated these types of density ripples by laser 
machining beam in a hydrogen jet using spatial light modu-
lator. The ripples in density may also be produced using 
techniques, which involve transmissive ring grating and a 
patterned mask where the control of ripple parameters might 
be possible by changing the groove structure, groove period, 
and duty cycle in such a grating and by adjusting the period 
and size of the mask [12, 21].

(1)
E⃗ = �xE0(r)e

−i𝜔t,

B⃗ = �y𝜂E0(r)e
−i𝜔t,

The pulse duration of the laser is considered to be larger 
than the inverse electron plasma frequency but much shorter 
than the inverse ion plasma frequency. The ions move under 
the influence of electromagnetic field of the laser on the time 
scale greater than inverse ion plasma frequency. Hence, their 
response (density oscillation, velocity perturbation) is much 
smaller than the electron perturbation due to their heavy mass. 
It means the ion motion can be ignored. The electrons acquire 
an oscillatory velocity due to the laser’s field given by

and experience a quasi-static ponderomotive force given by

T h i s  i s  o b t a i n e d  f r o m  t h e  r e l a t i o n 
F⃗P = −

m

2
Re

(
v⃗∗ ⋅ ∇

(
𝛾 v⃗
))

−
e

2
Re

(
v⃗∗ × B⃗

)
 along with the use 

of the velocity v⃗ . The ponderomotive force pushes the elec-
trons radially outward, creating a space charge field but ion 
motion is unimportant due to long pulses. Due to this space 
charge imbalance, an electrostatic field Es is created given 
by Es = −∇�s . In the quasi-static state �s = −�P . From 
Poisson’s equation, the modified electron density is given by

Using Eq. (3), we can rewrite above expression in terms of 
normalized laser field amplitude a =

e|E|
m�c

 as

Solving the above expression, we can write

a2 = a2
0
e−x and x = r4

r4
0

, a0 =
eE00

m�0c
 is the normalized field 

amplitude of laser at r = 0.
Since super-Gaussian beams have less intensity variation 

from 0 to r0 , when it travels in a nonlinear medium, we can 
define the permittivity to average permittivity as

(2)v⃗ =
eE⃗

mi𝜔𝛾

(3)

���⃗FP = e∇𝛷P, where 𝛷P = −
mc2

e
(𝛾 − 1) and 𝛾 =

(
1 +

a2

2

) 1

2

(4)
ne

n0
= 1 −

∇. ���⃗FP

4𝜋n0e
2

(5)
ne

n0
= 1 +

c2

�2
p

∇2

(
1 +

a2

2

) 1

2

(6)

ne

n0
= 1 −

c2

�2
p
r2
0

[
a4
(
1 +

a2

2

)−
3

2

x
3

2 + 4a2x
1

2

(
1 +

a2

2

)−
1

2

(1 − x)

]

(7)�̄� =
∫ ∞

0
𝜀e

−
r4

r4
0 rdr

∫ ∞

0
e
−

r4

r4
0 rdr
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where

Using Eqs. (6) and (7), the average permittivity can be writ-
ten as

where

The wave number is written as

Self-guided beams are the parallel beams which propagate 
in the medium as a balance between diffraction divergence 
and nonlinear refraction. The beam making an angle �D with 
the axis will suffer total internal reflection when this angle 
of diffraction �D is less than the critical angle �c . At an angle 
�D = �c , the nonlinear refraction just balances the diffraction 
effects and beam propagates as a self-guided beam. Since here 
we are considering the beam to be self-guided, angle of dif-
fraction �D should be equal to critical angle �c (Fig. 1).

The angle of diffraction is given by

From Fig. 1, the angle of diffraction in terms of critical 
angle can be written as

(8)� = 1 −
�2
P0

�2

ne

n0�
.

(9)�̄� = 1 −
𝜔2
P0

𝜔2
𝛼

(10)� =
1√
�

∞

∫
0

dxe−xx
1

2

�
1 +

a2

2

�−
1

2

�
1 −

c2

�2
P0
r2
0

�
a4
�
1 +

a2

2

�−
3

2

x
3

2 + 4a2x
1

2

�
1 +

a2

2

�−
1

2

(1 − x)

��

(11)k =
𝜔

c
𝜂 =

𝜔

c

√
�̄� =

𝜔

c

�
1 −

𝜔2
P0

𝜔2
𝛼

�

(12)�D = 1.22
�

2r0
≅

�

2r0

(13)�D =
�

2
− �c =

�

2r0

The critical angle is given by

Using Eq. (13), considering small angle of diffraction 
Eq. (14) can be written as

Substituting the value of �̄� and �0 , we can write

� is a function of �
2
P0
r2
0

c2
 and a0 . The points where L.H.S and 

R.H.S. of Eq. (16) are equal corresponding to the values of 
�P0r0

c
 and a0 gives the permissible values of a0 for which the 

self-guiding takes place.
Figure 2 essentially depicts a technique to solve graph-

ically algebraic Eq. (16). It shows the plot of L.H.S and 
R.H.S of Eq. (16) versus �P0r0

c
 for different a0 . The points of 

intersection of L.H.S. of Eq. (16) for different a0 and R.H.S 

(14)sin 𝜃c =
𝜀0

�̄�
, where 𝜀0 = 1 −

𝜔2
P0

𝜔2

(15)
𝜆2

4r2
0

=
2
(
�̄� − 𝜀0

)
𝜀0

(16)� = 1 −
�2

(
1 −

�2
P0

�2

)

2
�2
P0
r2
0

c2

Fig. 1  Schematic of propagation of laser beam through plasma chan-
nel for super-Gaussian beam
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give the particular values of �P0r0

c
 and a0 for which the self-

guiding of the laser beam takes place.
The values of �P0r0

c
 and a0 for which L.H.S and R.H.S. of 

Eq. (16) are equal are tabulated in Table 1.
Figure 3 shows the variation of normalized laser field 

amplitude a0 versus normalized spot size �P0r0

c
 for which self-

guiding of the laser beam takes place. As we increase the spot 
size, the requisite amplitude (hence, the intensity) of the laser 
beam for self-guiding decreases. This is due to the fact that 
diffraction divergence decreases with the spot size and hence 
weaker nonlinear refraction or self-convergence is required 
to compensate for it. At lower spot size saturating nature of 
relativistic nonlinearity becomes significant.

Third harmonic generation

The laser also exerts second harmonic ponderomotive force 
on the electrons at 2ω, 2k, given by

(17)
F⃗2𝜔,2k = −

e

2c

(
v⃗ × B⃗

)
= −

e2E2
0
𝜂

2cmi𝜔𝛾
e−2i(𝜔t−kz)�z

The force gives rise to v⃗2𝜔,2k through the following equa-
tion of motion

Here E⃗2𝜔 is the self-consistent field at 2� frequency. Using 
Poisson’s equation and equation of continuity, we can write

where �2� = 1 −
�2
P0

4�2

ne

n0�

Oscillatory velocity v⃗2𝜔,2k couples with nq through the 
equation of continuity to produce density perturbation at 
2�, 2k + q,

This perturbation beats with v⃗𝜔,k to give rise to third har-
monic nonlinear current density,

The linear current density can be written as

The wave equation for the third harmonic field is

T a k i n g  E⃗3𝜔 = �xA3𝜔(z, r)e
−i(3𝜔t−k3z)  w h e r e 

k3 =
3�

c

(
1 −

�2
P0

9�2
�
)1∕2

 in Eq. (23), it can be written as

Here this can be noticed that the source term on the right-
hand side contains exponential factor which is a function of (
k3 − (3k + q)

)
z . The response of third harmonic field E3� is 

maximum only when k3 = (3k + q) which is phase matching 
condition. For phase matching k3 = (3k + q) which gives 
q =

4�

3c

�2
P0

�2
� . Taking A3� = e

−
3r4

2r4
0 F3(z) and multiplying the 

(18)m
𝜕

𝜕t

(
𝛾 v⃗2𝜔,2k

)
= F⃗2𝜔,2k − eE⃗2𝜔

(19)v⃗2𝜔,2k = −
e2E2

0
𝜂

4c𝜀2𝜔m
2𝜔2𝛾2

e−2i(𝜔t−kz)�z

𝜕

𝜕t

(
n2𝜔,2k+q

)
+ ∇.

(
1

2
nqv⃗2𝜔,2k

)
= 0, which gives

(20)n2�,2k+q = −nq0
e2E2

0
�(2k + q)

16c�2�m
2�2�2

e−i(2�t−(2k+q)z)

(21)
j⃗NL
3𝜔

= −nq0
e2E2

0
𝜂(2k + q)

16c𝜀2𝜔m
2𝜔2𝛾3

e−i(3𝜔t−(3k+q)z)�x

(22)j⃗L
3𝜔

=
n0e

2E⃗3𝜔

3mi𝜔𝛾

(23)∇2
⊥
E⃗3𝜔 +

𝜕2E⃗3𝜔

𝜕z2
−

1

c2

𝜕2E⃗3𝜔

𝜕t2
−

4𝜋

c2

𝜕j⃗L
3𝜔

𝜕t
=

4𝜋

c2

𝜕j⃗NL
3𝜔

𝜕t

(24)

�2A
3�

�r2
+

1

r

�A
3�

�r
+ 2ik

3

�A
3�

�z
− k2

3
A
3� +

9�2

c2
A
3�

−
�2

p0

c2�
0

A
3� =

12�nq0ec
2a3�(2k + q)

16c2�3
0
�
2�

e−i(k3−(3k+q))z

Table 1  Values of �P0r0

c
 and a

0
 

for which self-guiding of laser 
beam takes place

�P0r0

c
a
0

3.94 1.6
4.55 1.3
5.93 0.9
6.82 0.8
8.46 0.6
13.1 0.4
18.3 0.3
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resulting equation by 
e
−

3r4

2r4
0 rdr

 and integrating from 0 to ∞ , 

we get the following equation

w h e r e  �3 =
∞∫
0

rdr

⎡⎢⎢⎣
� −

�
1 +

a2
0

2
e
−

r4

r4
0

�−
1

2 ⎤⎥⎥⎦
e
−

3r4

r4
0  a n d 

�4 =
∞∫
0

rdr

(
1 +

a2
0

2
e
−

r4

r4
0

)−
3

2

e
−

3r4

r4
0 .

Results and discussion

The differential Eq. (25) for the third harmonic field ampli-
tude has been solved numerically using initial conditions 
F3 = 0 at � = 0.

Figure 4 shows the variation of normalized third har-
monic field amplitude |F3/E00| with normalized distance of 
propagation �. From Fig. 4, it can be seen that the amplitude 
of third harmonic power increases linearly with distance. 
This is due to the reason that for a self-guided beam, the 
amplitude of the laser remains constant with distance of 
propagation hence phase matching condition is satisfied for 

(25)

dF3

d�
= −i

k0

√
3

k3
√
�

�
F3 +

�2
p0

c2�0
F3�3 +

3�2
p0
�E00(2k + q)

16c�

nq0

n0
a2
0
�4

�

all z and therefore phase matched third harmonic field ampli-
tude scales linearly with z. This can be further justified based 
on Eq. (25). From this, one obtains the phase mismatch as 

q = k3 − 3k − Δk where Δk = i
k0

√
3

k3
√
�

�
1 +

�2
p0

c2�0
�3

�
 is very 

small and hence, F is linear function of z. As we increase the 
amplitude of the laser beam, the harmonic yield increases. 
The harmonic spectrum for the case of a super-Gaussian 
laser beam is much broader than that of Gaussian beam. 
Kaur et al. [16] have studied the resonant third harmonic 
generation in ripple density plasma for a Gaussian laser 
beam for  t he  fo l lowing  se t  o f  pa ramete rs 
�r0∕c = 70, a0 = 0.1,

�2
p

�2
= 0.11 at normalized propagation 

distance of 1.5 and obtained conversion efficiency of 
0.006%.

Figure 5 shows the variation of qc∕�p0 with �∕�p0 . It is 
seen that phase mismatch decreases with increase in laser 
frequency. This can be explained based on the refractive 
index which is a function of laser frequency in plasma. At 
higher laser frequency, the refractive index reaches nearly 
unity; hence, the dispersion effects and phase mismatch 
decrease. The phase mismatch decreases with the increase 
in the amplitude of the laser beam.
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Conclusions

The depressed electron density channel created by a super-
Gaussian laser beam facilitates self-guiding of the beam. 
The axial intensity of the self-guided beam increases on 
reducing its spot size. At sufficiently smaller spot size, nor-
malized laser amplitude becomes large and complete elec-
tron evacuation occurs from the axial region. For harmonic 
generation, one must limit laser amplitude below this value. 
The density ripple plays a crucial role in phase matching. 
At higher laser intensity, one requires ripple with smaller 
wave amplitude to account for phase mismatch between the 
laser and third harmonic. Under phase matched condition, 
third harmonic field increases linearly with distance. For a 
super-Gaussian beam of larger spot size (hence smaller axial 
intensity), the third harmonic amplitude goes as the cube of 
the amplitude of the laser. However, with beams of smaller 
spot size (and larger intensity), the electron density in the 
channel decreases substantially. Hence, the third harmonic 
power goes slower than the cube of laser intensity.
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