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Abstract
Relativistic ion-acoustic waves are investigated in an electronegative plasma. The use of the reductive perturbation method 
summarizes the hydrodynamic model to a nonlinear Schrödinger equation which supports the occurrence of modulational 
instability (MI). From the MI criterion, we derive a critical value for the relativistic parameter �

1
 , below which MI may 

develop in the system. The MI analysis is then conducted considering the presence and absence of negative ions, coupled to 
effects of relativistic parameter and the electron-to-negative ion temperature ratio. Under high values of the latter, additional 
regions of instability are detected, and their spatial expansion is very sensitive to the change in �

1
 and may support the appear-

ance of rogue waves whose behaviors are discussed. The parametric analysis of super-rogue wave amplitude is performed, 
where its enhancement is debated relatively to changes in �

1
 , in the presence and absence of negative ions.

Keywords Relativistic electronegative plasma · Rogue waves · Modulational instability

Introduction

Envelope solitons, generic solutions of the nonlinear 
Schrödinger (NLS) equation, have been extensively studied 
during the past 30 years, due to their fundamental impor-
tance in nonlinear physics. Based on their localization prop-
erties, breather solitons have been used as models of rogue 
waves (RWs) whose behaviors and characteristics are not yet 
fully unmasked, mainly because they may appear suddenly, 
propagate within short times, destroy everything on their 
way and disappear without any trace [1, 2]. For instance, 

it has been well established that they may appear in physi-
cal systems as the consequence of the interplay between 
nonlinear and dispersive effects, under the activation of the 
so-called MI phenomenon [3–8]. Recently, interest in study-
ing RWs has gone beyond oceanography and hydrodynam-
ics [9, 10] to reach some other areas related to optics and 
photonics [11–14], Bose–Einstein condensation [15–17], 
biophysics [18–21], plasma physics [22, 23], just to name a 
few. Particularly, ion-acoustic super-RWs were found in an 
ultra-cold neutral plasma in the presence of ion-fluid and 
nonextensive electron distribution [24]. In the same direc-
tion, magnetosonic RWs, of first and second order, were 
investigated numerically in a magnetized plasma [25]. The 
occurrence of fundamental and second-order RWs was also 
investigated in a relativistically degenerate plasma using the 
NLS equation [23]. Comparison between experimental and 
theoretical occurrences of RWs was proposed recently and 
applied to multicomponent plasmas with negative ions [26]. 
A comprehensive analysis by El-Tantawy et al. [27] once 
more brought out the close relationship between the exist-
ence of ion-acoustic RWs and MI in electronegative plas-
mas (ENPs) in the presence of Maxwellian negative ions, 
where the dynamical behaviors of the Akhmediev breather 
(AB), Kuznetsov–Ma (KM) breather and super-RWs were 
compared.
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ENPs and their applications have become an active 
research direction, mainly due to their particular proper-
ties related to the simultaneous presence of positive and 
negative ions, and electrons. Many different processes 
have been used to experimentally produce ENPs, includ-
ing plasma processing reactors [28] and low-temperature 
experiments [29, 30]. Obviously, from recent contribu-
tions, when only positive ions are taken into considera-
tion, the nonlinear terms of the Korteweg–de Vries (KdV) 
equation are positive, and one may obtain only compres-
sive solitary waves [31], whereas in the presence of both 
positive and negative ions, soliton characteristics consider-
ably change, due to the nonlinear response of the system 
to the presence of negative ions [32, 33]. This is indu-
bitably related to the charge neutrality condition which 
changes, leading to a decrease in the number of electrons 
and a decrease in their subsequent shielding effect. Quite 
a limited number of works have been devoted to ENPs, 
including the contributions by Ghim and Hershkowitz [34] 
and Mamun et al. [35], where the existence of ion-acous-
tic waves (IAWs) and dust-acoustic waves (DAWs) was 
addressed in ENPs containing Boltzmann negative ions, 
Boltzmann electrons and cold mobile positive ions. The 
response of such waves, solutions of the KdV equation, 
to external magnetic fields was also studied  [32, 33]. 
Panguetna et al. [36] proposed a comprehensive study of 
IAWs and their dependence to electronegative parameters 
such as the negative ion concentration ratio (α) and the 
electron-to-negative ion temperature ratio ( �n ). In two-
space dimensions, beyond the study of MI, dromion solu-
tions and their collision scenario were also studied [37]. 
More recently, the ENP model was extended to its three-
dimensional version, giving Tabi et al. [38] the room to 
study the effect of the modulation angle on the onset of MI, 
with application to the three-dimensional Davey–Stewart-
son equations. Obviously, none of the above-cited works 
includes relativistic effects which should be considered 
in the emergence of IAWs when the speed a plasma par-
ticle approaches that of light. The nonlinear behaviors of 
plasma waves may importantly be modified by relativistic 
effects and lead to fascinating spectra of results, exploit-
able in the laboratory and in the space. IAWs in weakly 
relativistic plasmas were studied by Das et al. [39, 40], 
via the KdV equation, and applied to both nonisother-
mal and isothermal plasmas. El-Labany [41] reported on 
the existence of modulated weakly relativistic IAWs in a 
collisionless, unmagnetized, warm plasma with nonther-
mal electrons using a NLS equation. The latter was also 
derived recently by Abdikian [42], in three dimensions, to 
study the emergence of IAWs, under the activation of MI, 
in a magnetoplasma with pressure of relativistic electrons. 
Further confirmation was given on the effect of relativistic 

parameter to bring about new instability and dynamical 
regimes in the generation mechanism of modulated IAWs 
via MI.

The main purpose of the present work is to investigate 
IAWs properties in an ENP, under weak relativistic effects, in 
one dimension. One of our main results suggests that there is 
a critical value, �1,cr , of the relativistic parameter below which 
MI and its subsequent nonlinear regime (RWs) may appear in 
the system.

The layout of the paper goes as follows. In Sect. 2, the rela-
tivistic ENP model is presented and a reductive perturbation 
method (RPM) is employed to derive a NLS equation which 
describes the evolution of modulated wave packets. In Sect. 3, 
the criterion for MI is derived, from which we find a critical 
expression for the relativistic parameter. Importance is then 
given to the effect of negative ions on such instabilities. The 
response from RWs solutions to relativistic effects is investi-
gated in the same context, followed by a parametric analysis 
of the super-RW maximum amplitude when ENP and relativ-
istic parameters are varied. The paper ends with concluding 
remarks in Sect. 4.

Model and amplitude equation

In its original formulation, the model for ENPs is composed 
of Maxwellian electron and negative ions in addition to cold 
mobile positive ions [35–38, 43]. In the presence of weak 
relativistic effects, the dynamics of IAWs is governed by the 
following set of normalized fluid equations: 

 The relativistic character of the studied plasma system relies 
on the factor

which is the result of Lorentz transformations. The param-
eter �1 incorporates the relativistic effect, here manifested in 
terms of the plasma density, by the relationship �1 = c2

s
∕c2 . 

ni and ui are, respectively, the number density positive ions 
(normalized by the unperturbed value n0 ) and the ion-fluid 
velocity (normalized by the IA speed cs =

√
kBTe∕m ). � 

is the electrostatic wave potential normalized by mc2
s
∕e , 

(1a)
�ni

�t
+

�niui

�x
= 0,

(1b)
�(�ui)

�t
+ ui

�(�ui)

�x
+

��

�x
= 0,

(1c)�
2
�

�x2
= �n exp �n� + �e exp� − ni.

(2)
� =

1√
1 − �1u

2
i

≃ 1 +
�1

2
u2
i
,
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where e is the magnitude of the electron charge. The time 
and space variables are normalized by the ion Debye 
length �D =

√
kBTe∕4�e

2n and the ion plasma period 
�
−1 = 1∕

√
4�e2n0∕m , respectively. Here, �n = Te∕Tn is 

the electrons-to-negative ion temperature ratio, �e = ne0∕n0 
and �n = nn0∕n0 , where n0 , nn0 and ne0 , are the unperturbed 
densities of the positive ions, negative ions and electrons, 
respectively. At equilibrium, the neutrality condition of the 
plasma reads �e + �n = 1 , where �e = ne0∕n0 = 1∕(1 + �) , 
with � = nn0∕ne0 . Using the power series expansion of the 
exponential function around zero, Eq. (1c) becomes

where a1 = �e + �n�n , a2 =
�e+�n�

2
n

2
 and a3 =

�e+�n�
3
n

6
 . Modu-

lated IAWs appear in physical systems as the consequence 
of the interplay between nonlinearity and dispersion. 
Therefore, to explicitly include such effects, the RPM is 
commonly used [22, 24, 36, 37], which results in equations 
describing the development of the modulation of the ampli-
tude in the lowest order of an asymptotic expansion. To start, 
we introduce the stretched variables in space and time as 
� = �(x − vgt) and � = �

2t , where the group velocity vg will 
be determined later by the solvability condition of Eq. (1). � 
is a small real parameter ( 𝜖 << 1 ) that measures the strength 
of the perturbation. The dependent physical variables around 
their equilibrium values are assumed as

We note that the above series includes all overtones 
Al(n, t) = exp[il(kx − Ωt)] , up to order p. These are gener-
ated by the nonlinear terms, which means that the corre-
sponding coefficients are of maximum order �p . Then, the 
relations n(p)∗

l
= n

(p)

−l
 , u(p)∗

l
= u

(p)

−l
 and �(p)∗

l
= �

(p)

−l
 should be 

satisfied because of reality condition of physical variables. 
The asterisk denotes the complex conjugate. Substituting 
the trial solutions (4) into basic Eqs. (1a), (1b) and (3) and 
equating the quantities with equal power of � , one obtains 
several coupled equations in different orders of �.

At (�1)-order, we have the set of equations

which is solvable under the condition that the dispersion 
relation �2 =

k2

k2+a1
 be verified, leading to the first harmonic 

of perturbation

(3)�
2
�

�x2
= 1 + a1� + a2�

2 + a3�
3 − ni,

(4)
⎛⎜⎜⎝

ni(x, t)

ui(x, t)

�(x, t)

⎞⎟⎟⎠
=

⎛⎜⎜⎝

1

0

0

⎞⎟⎟⎠
+

∞�
p=1

�
p

+∞�
l=−∞

⎛⎜⎜⎝

n
(p)

l
(�, �)

u
(p)

l
(�, �)

�
(p)

l
(�, �)

⎞⎟⎟⎠
Al(n, t).

(5)
− i�n

(1)

1
+ iku

(1)

1
= 0, −i�u

(1)

1
+ ik�

(1)

1
= 0,

(k2 + a1)�
(1)

1
− n1

1
= 0,

We process the same way to obtain the second-order terms, 
namely the amplitudes of the second harmonics and constant 
terms as well as the nonvanishing contribution to the first 
harmonics. We obtain the following equation for p = 2 and 
l = 0:

The ( p = 2 , l = 1)-order provides the compatibility condi-
tion in terms of group velocity, vg = a1

�
3

k3
 . For l = 2 , the 

components of the second harmonic mode n(2)
2

 , v(2)
2

 and �(2)

2
 

are obtained in terms of �(1)

1
 as

with

The zeroth harmonic mode also appears due to the self-
interaction of the modulated carrier wave. Its expression 
cannot be completely expressed using the second order. We 
will have to consider the third-order equations. Therefore, 
the set of equations given by the ( l = 0)-components of the 
third-order part are given by

to which we have added Eq. (7) from ( n = 2 , l = 0 ). Along 
the same line, the following second-order quantities in the 
zeroth harmonic are found:

with

(6)n
(1)

1
=

k2

�
2
�
(1)

1
, and v

(1)

1
=

k

�

�
(1)

1
.

(7)a1�
(2)

0
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(2)

0
+ 2a2|�(1)

1
|2 = 0.

(8)
�
(2)

2
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�

(
�
(1)

1

)2
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(2)

2
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(
�
(1)

1
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,

v
(2)

2
=�v

(
�
(1)

1

)2

,

�
�
=
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2�2
−
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3k2
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�
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�

k
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�
3
.
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−vgn
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Finally, substituting the above derived expressions into the 
( n = 3 , l = 1)-components, we obtain the following nonlin-
ear Schrödinger equation:

for the slow evolution of the first-order amplitude of the 
plasma perturbation potential �(1)

1
= � . P and Q are the dis-

persion and nonlinearity coefficients, respectively, and their 
expressions are given by

The nonlinear Schrödinger (NLS) equation provides a 
canonical description for the envelope dynamics of a quasi-
monochromatic plane wave propagating in a weakly nonlin-
ear dispersive medium when dissipative processes are neg-
ligible  [44]. Later, it was found that NLS equation had 
applications in different subjects. In quantum mechanics, it 
is obtained in localizing the potential of the Hartree equa-
tion [45]. In chemistry, it appears as a continuous-limit 
model for mesoscopic molecular structures [46]. In protein 
folding and bending, in the propagation of Davydov’s soli-
tons, it is responsible for energy transport and storage along 
α-helix proteins [8, 47, 48], bubble propagation and energy 
localization for specific molecular processes such as DNA 
transcription and replication [49, 50]. In laser propagation, 
the NLS equation describes the propagation of a laser beam 
in a medium whose index of reflection is sensitive to the 
wave amplitude [51–53]. In hydrodynamics, it describes the 
interaction between short-wave and long-wave gravitational 
disturbances in the atmosphere [54–56]. Other applications 
appear in water waves at the free surface of an ideal fluid and 
in plasma physics (interaction between Langmuir and ion-
acoustic waves [22, 23, 27, 36, 42]). Applications of the 
NLS equation in fiber optics have stimulated further studies 
in optical communications  [57–60]. NLS equation also 
appears in the description of the Bose–Einstein condensate 
(BEC), a context where it is often called the Gross–Pitaevs-
kii equation [61–64]. Despite the NLS equation support for 
spatially localized envelope solitons such as the bright- and 
dark-type solitons, there is a hierarchy of freak (rational) 
solutions to the self-focusing NLS equation. In the present 
work, these solutions represent excitations due to the MI of 
plasma and known as the RWs  [66, 67]. They have been 
described as waves which appear from nowhere and disap-
pear without a trace. There is also an extensive literature 

(11)i
��

��

+ P
�
2
�

��
2
+ Q|�|2� = 0,

(12)

P =
�
3

2k2

[
3�1k

4

2�2
−

2k

�

(k2 + a1)(�u + �u)

−(k2 + a1)(�n + �n) + 2a2(�� + �
�
) − 3a3

]
,

Q = −
3a1�

5

2k4
.

studying various types of solitons on finite background 
(SFB) consisting of a localized nonlinear structure evolving 
upon a nonzero background plane wave. In fact, Akhmediev 
et al. [65, 68, 69], based on the fact the simplest solution of 
the NLS equation could be a plane wave � ∼ ei� , proposed 
that the emergence of SFB solitons may be a consequence 
of the instability of the plane wave, through a perturbed 
solution � ∼

�
1 +

∑n

j=1
aj(�) cos j�(� − �0j)

�
 , where aj(�) 

are Fourier coefficients of the periodic perturbation, � is the 
external modulation frequency, n is the number of harmonics 
of the fundamental frequency and �0j is the initial phase of 
the jth harmonic. This, after linearizing around the unper-
turbed wave, leads to coefficients aj of the form 
aj(�) = Aje

(i�j+�i�) + Bje
(−i�j−�i�) , where tan �j = 2�j∕(j�)

2 , 
with �j = j�

√
1 − j2�2∕4 being the growth rate of the jth 

harmonic of the perturbation which remains positive for fre-
quencies in the range 0 < j𝜁 < 2 . For the first harmonic case, 
the MI is established and the instability growth rate has a 
maximum at � =

√
2 . However, for arbitrary values of � , 

different cases of RWs were proposed and extensively stud-
ied, among which the generalized form  [12, 13, 27, 69–71]

obtained for � = 2∕
√
5 . Here, the single governing param-

eter a determines the physical behavior of the solution 
through the function arguments b =

√
8a(1 − 2a) and 

c =
2�

L
= 2

√
1 − 2a , with L being the periodicity length of 

the solution [69, 70]. We should stress that solution (13) 
can describe three different kinds of breather solutions, 
depending on the value of a. The super-RW solutions of the 
focusing NLS equation (11) are localized in both time and 
space. There are, in fact, two such solutions, the Peregrine 
soliton and the second-order rogue wave soliton, which are 
obtained from the general theory of Akhmediev et al. [68, 
69] when � → 0

where j is the order of the solution and 𝜏 = 2P𝜏 . The 
functions Gj(𝜉, 𝜏) , Hj(𝜉, 𝜏) and Fj(𝜉, 𝜏) are polynomials in 
variables of 𝜏 and � , with Fj(𝜉, 𝜏) not having no real zero. 
We should, however, stress that the Peregrine RW can be 
derived as a limiting case of the KM breather, especially 

(13)

�(�, �) =

�
2P

Q

×

�
(1 − 4a) cosh(2bP�) +

√
2a cos(c�) + i sinh(2bP�)√

2a cos(c�) − cosh(2bP�)

�

× exp(2iP�),

(14)

𝜓j(𝜉, 𝜏) =

√
2P

Q

×

{
(−1)j +

Gj(𝜉, 𝜏) + 2iP𝜏Hj(𝜉, 𝜏)

Fj(𝜉, 𝜏)

}
exp(2iP𝜏),
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when a → 1∕2 [72]. In order to get the two solutions, we 
will restrict our study to the cases j ≤ 2.

Modulational instability and rogue waves

The relative sign of P and Q determines the stability of 
plane-wave solutions to small periodic perturbations. This 
also implies that any solution whose amplitude is governed 
by Eq. (11) depends on the sign of PQ, which, in most of 
plasma systems, depends on system parameters. To this 
effect, let us assume plane solutions for Eq. (11) to be of 
the form �(�, �) = �0(�)e

iQ�2
0
� that is subjected to a small 

perturbation ��(�, �) = (U0 + iV0)e
i(K�−Ω�) , with K and Ω 

being, respectively, the wave number and frequency of the 
perturbation. Following the standard calculations of MI, one 
obtains the nonlinear dispersion relation

with the critical wave number of the perturbation being 
Kcr = �0

√
2Q

P
 . For the plane wave to be unstable under 

modulation, the condition Ω2
< 0 should be satisfied, i.e.,

which clearly shows that for PQ > 0 , the amplitude-mod-
ulated envelope is unstable. This includes several factors 
related to the ENP system, including the electron-to-negative 
ion temperature ratio, the negative ion concentration ratio 
and the newly introduced relativistic parameter �1.

The relativistic character of the studied plasma system 
clearly appears in the expression of the dispersion coefficient 
P, which can be rewritten in the form

P0 being the nonrelativistic expression that was obtained in 
Ref. [36] in the form

The above expression was found to be negative, so that the 
analysis of MI was found to be controlled by the expression 
of Q that was positive or negative for some values of the 
wave number k. We should stress that coefficient of nonlin-
earity in the present study keeps the same expression and 
therefore keeps the same features as in Ref. [36]. For its 
part, the relativistic contribution in the expression of P is 
such that

(15)Ω2 = (K2P)2

(
1 −

K2
cr

K2

)
,

(16)K < Kcr = 𝜓0

√
2Q

P
,

(17)P = Prel + P0,

(18)
P0 =

�
3

2k2

[
−
2k

�

(k2 + a1)(�u + �u)

−(k2 + a1)(�n + �n) + 2a2(�� + �
�
) − 3a3

]
.

and the MI criterion PQ > 0 is given by (Prel + P0) × Q > 0 . 
Indeed, this criterion can be expanded to get

where the right-hand side is what was obtained for the non-
relativistic electronegative model. Therefore, the relativistic 
contribution is a perturbation to the case of Ref. [36], which, 
to the best of our knowledge, has not been discussed exten-
sively. In the meantime, knowing P0Q , it is possible to find 
the range of �1 that gives rise to MI through the inequality

 
Obviously, the critical value of the relativistic parameter 

depends on the plasma parameter, and its value is sensitive 
to the change of the negative ion concentration ratio, for 
example, as shown in Fig. 1. We should stress that in any 
of the cases, �1 should remain positive for MI to occur. Fig-
ure 1a is plotted for �n = 11.5 and displays the response of 
�1 to the absence of negative ions ( � = 0 ) and its comport-
ment when the plasma contains negative ions ( � = 0.1 ). In 
the first case, there are two regions where �1 is positive, and 
such regions, labeled MI, are likely to support the formation 
of envelope bright solitons, this in the presence of negative 
ions. However, the absence of negative ions is characterized 
with only one region where �1 is positive or region of MI. 
In Fig. 1b, the value of the electron-to-negative ion ratio is 
increased to 21. One observes that in the absence of nega-
tive ions, there is still one region where �1 is positive, but 
the two regions brought by the presence of negative ions 
in Fig. 1a merge to form only one large region. Therefore, 
the electron-to-negative ion temperature ratio enlarges the 
domain of k and �1 that may lead to the formation of bright, 
or NLS, envelope solitons as the consequence of MI. One 
should remember that for intervals of k where 𝛼1 < 0 , no MI 
should be expected. Such regions in Fig. 1 are indicated by 
the label (MS). Some of the values of �1 appearing in those 
areas have been chosen to plot the product PQ in Fig. 2. 
Figure 2a is obtained for the value �n = 5 of the electron-to-
negative ion temperature ratio. There, the instability domain 
is very sensitive to the change in �1 , and there exists only one 
region of instability for a value k > kcr of the wave number. 
However, the region of stability expands with increasing �1.

In Fig. 2b, there is only one interval of instability for the 
nonrelativistic case, while for �1 = 5 , two regions of insta-
bility appear. However, when �n = 10 , the emerging small 
region of instability disappears. This behavior becomes more 

(19)Prel =
3k2�

4
�1,

(20)P0Q >

9𝛼1𝜔
6a1

8k2
,

(21)𝛼1 <
8k2

9𝜔6a1
P0Q = 𝛼1,cr.
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obvious in Fig. 2c, where �n = 21 . For �1 = 0 , the nonrela-
tivistic system presents one large region of instability, which 
breaks into two regions under relativistic effects.

Based on all the above calculations, it is clear that critical 
wave number of perturbation given by Eq. (16) can also be 
rewritten in a way we perceive clearly the relativistic con-
tribution in the form

where Kcr,0 = �0

√
2Q∕P is the critical value of K obtained 

for the nonrelativistic case [36]. Equation (22) suggests that 
if P0 → ∞ , the nonrelativistic problem will be retried. Oth-
erwise, relativistic effects will be present in the system and 

(22)Kcr =
Kcr,0√
1 +

Prel

P0

,

Fig. 1  The panels show plots 
of the critical value of the 
relativistic parameter �1 , versus 
the wave number k, for differ-
ent values of the electron-to-
negative ion temperature ratio. 
The blue corresponds to � = 0 
and the red line corresponds to 
� = 0.1 , with: a �n = 11.5 and 
b �n = 21 . Regions of modula-
tional instability are denoted by 
MI, while regions of modula-
tional stability are indicated as 
MS
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Fig. 2  Panels show how the product PQ responds to the change in �1 . a corresponds to �n = 5 , b to �n = 11.5 and c to �n = 21 . The blue line 
corresponds to the nonrelativistic case, while the red and color lines picture the correction brought by the relativistic parameter �1 , with � = 0.3
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influence the features of Kcr as shown in Fig. 3, where the 
two curves give information both in the absence and pres-
ence of negative ions. In general, Kcr is an increasing func-
tion of �1 , but the range for instability to occur is larger when 
negative ions are absent. In such intervals, one may expect 
the appearance of RWs.

The growth of periodic perturbations on a plane-wave 
background arising in many nonlinear dispersive systems 
is the consequence of the fundamental property of MI, this 
in the narrow band approximation. Beyond this context, 
the nonlinear stage of MI is described by the exact breather 
solution of the NLS equation, which has been considered 

as prototypes of RWs  [73–76], that can be analytically 
studied under the conditions that allow MI to emerge in 
the NLS equation. For example, Figs. 4 and 5 give plots of 
the Akhmediev breather (AB) [69] and the Kuznetsov–Ma 
breather (KMB) [74, 77], respectively. The AB from solu-
tion (13) is obtained for 0 < a < 1∕2 , and the largest modu-
lation occurs for � = 0 , with the maximum of the envelope 
at � = 0 . For its part, the KMB is obtained for 1∕2 < a < ∞ . 
Its explicit expression has been proposed in the form [74, 77]

where b1 = −ib =
√
8a(2a − 1) and c1 = −ic =

√
4(2a − 1) . 

This waveform is localized in space, but periodic in time. 
Interestingly, one can recover the Peregrine solution in the 
limit of infinite temporal period. It was reported recently 
by Tantawy et al. [27] that these breather solutions are very 
sensitive to the change in ENP parameters such as � and �n . 
However, the MI in the improved model has also shown big 
changes in the features of MI due the presence of the rela-
tivistic parameter �1 . This is also ostensible in the panels of 
Fig. 4, where the time and spatial expansion of the breather 
get modified with increasing �1 ; this because it appears in 
the exponential growth rate of the MI through P = P0 + Prel . 
For the KMB, the relativistic parameter has the effect of 
increasing the temporal separation between the adjoining 
solitonic objects and decreasing their amplitude, which 

(23)

�KM(�, �) =

�
2P

Q

×

�
1 +

2(1 − 2a) cos(2b1P�) − ib1 sin(2b1P�)√
2a cosh(c1�) − cos(2b1P�)

�

× exp(2iP�),
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Fig. 3  Panel shows plots of the critical Kcr versus the relativistic 
parameter �1 , in the absence ( � = 0 ) and presence ( � = 0.1 ) of nega-
tive ions, with �n = 21

Fig. 4  The panels show the surface and contour plots of the Akhmediev breather, with their corresponding density plots, for different values of 
the relativistic parameter: a �1 = 0.1 , b �1 = 0.2 and c �1 = 0.3 . Values for the rest of parameters are � = 0.1, �n = 11.5 and k = 1.8
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implies reduction in nonlinear effects, causing energy loss 
and wave amplitude drop. The observed effects, discussed by 
El-Tanatawy et al.  [27], have also been highlighted by Sun 
et al. [13], this in the absence of relativistic effects. 

From Eq.  (14), the Peregrine  soliton is obtained for 
j = 1 , with the polynomials H1 , G1 and F1 being such that 
H1(𝜉, 𝜏) = 2G1(𝜉, 𝜏) = 8 and F1(𝜉, 𝜏) = 1 + 4𝜉2 + 16(P𝜏)2 . 
The corresponding solution is written in the form [72, 78, 79]

It should be noted that it is also the limiting case of the 
Akhmediev solution when the spatial period tends to infinity. 

(24)
�P(�, �) =

√
2P

Q

{
1 −

4(1 + 4iP�)

1 + 4�2 + 16(P�)2

}

× exp(2iP�).

This solution has the form of a single-peaked structure that 
decays to a plane-wave asymptotic background at either 
large � or � , but exhibits non-trivial behaviors over a small 
region in (�, �) as shown in Fig. 6, within the MI region. The 
second-order/super-RW is obtained from Eq. (14) if j = 2 , 
and the polynomials that build the corresponding solution 
are given by

(25)

G =
3

8
− 3𝜉2 − 2𝜉4 − 9𝜏2 − 10𝜏4 − 12𝜉2𝜏2,

H =
15

4
+ 6𝜉2 − 4𝜉4 − 2𝜏2 − 4𝜏4 − 8𝜉2𝜏2,

D =
3

24
+

9

8
𝜉
2 +

1

2
𝜉
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2

3
𝜉
6 +

33

8
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9
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+
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3
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Fig. 5  The panels show the evolution and contour plots of the Kuznetsov–Ma breathers, for different values of the relativistic parameter: a 
�1 = 0.1 , b �1 = 0.2 and c �1 = 0.3 . Values for the rest of parameters are � = 0.1, �n = 11.5 and k = 1

Fig. 6  The panels show the evolution and the corresponding contour plots of the fundamental/Peregrine soliton for different values of the relativ-
istic parameter: a �1 = 0.1 , b �1 = 0.2 and c �1 = 0.3 . Values for the rest of parameters are � = 0.1, �n = 10 and k = 1.2
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with 𝜏 = 2P𝜏 . This leads to the simplified expression

which is in fact a nonlinear superposition of simple solu-
tions. This implies that two or more Peregrine solitons can 
be combined into a more complicated doubly localized struc-
tures with a higher amplitude. One of the interesting features 
of such solutions is that the higher-order excitations are of 
higher amplitudes and more focused ones compared to the 
principal solution; i.e., their maximum amplitude can reach 
many times that of the background level. The corresponding 
solutions are shown in Fig. 7. The two solutions are very 
sensitive to the change in the relativistic parameter �1 . Their 
amplitude decreases with increasing the latter, as already 
seen in the previous cases, i.e., for the breather solutions. 
For example, Abdelwahed et al. [80] studied the effects of 
superthermal electron on the features of nonlinear acoustic 
waves in unmagnetized collisionless ion pair plasma with 
superthermal electrons with application to electronegative 
plasmas. They found that the relativistic parameter and the 
wave number have the same effect of causing the amplitude 
to decrease for ion pairs (H+,H−) , which implies lowering 
the dispersion, and  nonlinearity with strong impact on the 
amount of rogue energy.

Experimental observation of second-order RWs has been 
reported recently by Pathak et al. [23] in a multicomponent 
plasma containing negative ions, where it was reported that 
super-RWs were more possible to observe experimentally 
than ordinary RWs. They considered different cases, includ-
ing plasmas in the presence and absence of negative ions. 
As already discussed here, the presence of negative ions 

(26)�2(�, �) =

√
2P

Q

{
1 +

G + 2iP�H

D

}
exp(2i|P|�),

can indeed modify the instability features and disturb the 
appearance of coherent structures in plasma. Coupled with 
relativistic effects, new behaviors may appear, either in the 
amplitude or in the width, or in both, of the emerging RWs.

More interestingly, such waves appear in regions of 
parameters where modulated IAWs are expected as the 
result of the interplay between nonlinear and dispersive 
effects; this because they have in common the term 

√
2P

Q
 

which should be positive. It is for example shown in Fig. 8 
that the negative ion concentration ratio � has influence on 
the RW amplitude, where the different panels correspond, 
respectively, to � = 0.1 , 0.5 and 0.85. Depending on such 
values, the regions of instability, related to the RW appear-
ance, display different features. For � = 0 , it is obvious 
from Fig. 8a that the RW solutions exist in regions of high 
�n  ,  i . e . ,  25 ≤ �n ≤ 50  ,  w h e r e  t h e  h i g h e s t 
|�S,max| = |�S(0, 0)| = 4

√
2P

Q
 belongs to k = 2 , while high-

amplitude RWs are expected for k = 1.8 in the case of 
� = 0.5 as depicted in Fig. 8b. Of course, � = 0 corre-
sponds to the case where there are no negative ions. The 
result is therefore not surprising because Fig. 1 reveals the 
appearance of modulated waves even in the absence of 
negative ions, where 0 < 𝛼1 < 𝛼1,cr . Comparing these two 
cases, one clearly sees that the wave amplitude in Fig. 8b 
has decreased and the zone of instability gets delocalized, 
with the highest MI growth rate appearing in the interval 
30 ≤ �n ≤ 45 . For � = 0.85 , |�S,max| is shown in Fig. 8c. 
Obviously, |�S,max| has increased and regions of instability 
are expanded, compared to what is observed in Fig. 8b. It 
should be noted that the calculations of Fig. 8 have been 
made for a relativistic parameter �1 = 0.1 . The same cal-
culations are repeated in Fig. 9, but for �1 = 0.3 , with � 

Fig. 7  The panels show the evolution of the second-order super-rogue waves for different values of the relativistic parameter: a �1 = 0.1 ,  
b �1 = 0.2 and c �1 = 0.3 . Values for the rest of parameters are � = 0.1, �n = 10 and k = 1.2



246 Journal of Theoretical and Applied Physics (2019) 13:237–249

1 3

keeping the same values as previously. Although the 
detected regions of instability display the same behaviors 
as in Fig. 8, it is nevertheless obvious that the wave ampli-
tude is lower which shows that against �1 , � can influence 
the appearance and formation of RW in the studied weakly 
relativistic plasma system. The dynamical behaviors of 
RWs were discussed in the nonrelativistic model of ENPs, 
and a critical value for � was proposed [25], below which 
the wave amplitude decreases or increases, depending on 
the other plasma parameter values. However, in our con-
text, it is highly ostensible that the relativistic character of 
the studied system contributes to change such behaviors, 
therefore leading to much richer comportments.

Concluding remarks

In conclusion, a weakly relativistic model of ENP has 
been proposed in this work, and we have addressed the 
dynamics of ion-acoustic waves. In fact, after reducing 
the proposed model to a NLS equation, we have studied 
the MI, through its growth rate, and its response to plasma 
parameters such as � , �n and �1 . One of the main results 
was the determination of the critical value of the relativ-
istic parameter �1 under which MI may take place. Based 
on this, we have characterized the appearance of MI both 
in the presence ( � ≠ 0 ) and absence ( � = 0 ) of negative 

Fig. 8  The panels show the maximum RW amplitude |�S,max| versus k and �n , for �1 = 0.1 and a � = 0, b � = 0.5 and c � = 0.85. The lines 
delimitate areas of parameters where P∕Q > 0 , while the dark-blue region is where P∕Q < 0

Fig. 9  The panels show the maximum RW amplitude |�S,max| versus k and �n , for �1 = 0.3 and a � = 0, b � = 0.5 and c � = 0.85. The lines 
delimitate areas of parameters where P∕Q > 0 , while the dark-blue region is where P∕Q < 0
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ions. The influence of the electron-to-negative ion tem-
perature ratio on MI has also been discussed, where addi-
tional regions of instability have been detected due to the 
interplay between �1 and �n . Moreover, the link between 
instability and the appearance of RWs has been discussed 
along with their response to both negative ion concentra-
tion and relativistic effects. The parametric analysis of the 
RW amplitude has been performed, showing that it may be 
enhanced or reduced, depending on the balance between 
ENP parameters and the introduced relativistic effects.
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