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Abstract We show that after a quantum quench of the

parameter controlling the number of particles in a Fermi–

Hubbard model on scale-free graphs, the distribution of

energy modes follows a power-law dependent on the

quenched parameter and the connectivity of the graph. This

paper contributes to the literature of quantum quenches on

lattices, in which, for many integrable lattice models the

distribution of modes after a quench thermalizes to a

generalized Gibbs ensemble; this paper provides another

example of distribution which can arise after relaxation.

We argue that the main role is played by the symmetry of

the underlying lattice which, in the case we study, is scale

free, and to the distortion in the density of modes.

Keywords Quantum quenches � Scale free � Spectrum

density � Generalized Gibbs ensemble

Introduction

There has been recent interest in the effective thermal

dynamics following a quantum quench in spin chains [1]. The

dynamics out of equilibrium of quantum systems [2] has

received a great amount of attention [3, 4]. It became clear

that after a quantum quench, many observables at equilibrium

after a quantum quench are distributed according to a Gen-

eralized Gibbs Ensemble (GGE) [1, 4–8] or a Gibbs ensem-

ble. In addition to these theoretical understandings of the

thermalization in quantum systems, these results are

supported by recent experiments in trapped cold atomic gases

[9–12]. Many of these experiments focused on the role played

by dimensionality and conservation laws, which in turn ini-

tiated a vigorous effort in understanding the role of the inte-

grability of the system under scrutiny at late times. In fact, the

easiest way of driving a quantum system out of equilibrium is

indeed a quantum quench (see for instance [13] for a com-

prehensive summary), i.e. a sudden change in the parameters

of a Hamiltonian, and its subsequent relaxation at long times.

It has been argued that for integrable models many observable

are distributed according to a generalized Gibbs ensemble,

meanwhile an effective Gibbs distribution arises in generic

systems. Recent studies suggest that the behavior is indeed

more complicated, showing a dependence on the initial

conditions (state) [14].

In a previous work, we studied quantum quenches in a

Fermi–Hubbard model which does not conserve the num-

ber of particles [15]. We studied the energy of the excita-

tions, which are invariant under time evolution after the

quench, and found that these are distributed according to a

GGE. There, the temperature is associated with the gap in

the spectrum, which is due to the coupling of non-con-

serving number of particles term. A similar phenomenon

happens in quantum liquids [16].

In this paper we explore a similar approach on a different

type of underlying interaction network. Several classical

statistical models have been studied on complex networks

[17]. Complex networks have become an area of tremendous

recent interest since the discoveries of the small world and

scale-free properties in many realistic networks. A small-

world network is characterized by short network distance a

high clustering coefficient. Several reviews of the subjects are

now available [18, 19]. Important applications of these

techniques are spreading of diseases [20] and syncronization

[21] on complex networks. Watts and Strogatz demonstrated
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that the two small-world characteristics can be obtained from

a regular network by rewiring or adding a few long-range

links shortcuts, which connect otherwise distant nodes [22].

A regular network intrinsically already has a high clustering

coefficient, and has a diameter which is logarithmic in the

number of nodes. However, few shortcuts can reduce the

distance exponentially unaffecting the clustering coefficient,

but dramatically reducing the average diameter of the graph.

The scale-free property is characterized by an algebraic

degree distribution: where the degree variable k measures the

number of links of node in the network, Pðd � 1Þ � dc, and

where c is the algebraic scaling exponent. Barabási and

Albert discovered the scale-free property and also proposed

growth and preferential attachment as the two basic mecha-

nisms responsible for the scale-free property. Here, growth

requires that the numbers of nodes and links increase with

time and preferential attachment means that when a new node

is added to the network, the probability that it connects to an

existing node is proportional to the number of links that this

node has already had. In this paper, we consider the properties

of quantum quenches on Barabási–Albert type of graphs. It is

important to understand what kind of distributions can arise in

a quantum quench. Although per se the study of quantum

phenomena on complex networks might not be physically

relevant, it is important from the theoretical point of view.

While GGE is a quite common example of distribution aris-

ing, here we show that another type of distribution arises. This

paper is organized as follows. In second section we introduce

Quantum Quenches, Scale-Free graphs and ‘‘The model’’. In

next section we describe the ‘‘Results’’, meanwhile ‘‘Con-

clusions’’ follow in last section.

The model

Quantum quenches and GGE

In this section we provide a more detailed introduction to

thermalization after a quantum quench, and introduce the

generalized Gibbs ensemble which we will later discuss of.

Ergodicity in a classical statistical physics setting accounts

for the independence of the asymptotic state distribution

from the initial condition: that is, at large times thermal

equilibrium is approached. Meanwhile in classical

mechanics thermalization occurs thanks to ergodicity, in

quantum mechanics of isolated systems the unitary

dynamics is an obstruction to obtaining an analogous

result: if the system is initially prepared in a pure state it

will remain in a pure state, as the evolution is period or

quasiperiodic, which means that after a sufficient long time

it will return to the initial state. However, one can focus on

certain expectation values only or trace out some part of

the system, i.e. subsystems of the whole are not isolated,

and thus the reduced density matrix is not pure anymore. In

general, the type of question one asks in thermalization of

quantum system is: how close is expectation value in a

subsystem, to those of the same degrees of freedom aver-

aged with a Gibbs ensemble? In general, one does not get

exactly a Gibbs ensemble, but a generalized Gibbs

ensemble:

qGGE � e
�
P

j
kjIj ð1Þ

in which one introduced a Lagrange multiplier kj and Ij is

the integral of motion, which generalizes the standard

Gibbs distribution. The GGE-conjecture states that the

stationary expectation value of any local observable is

equal to the ensemble expectation values or equivalently

that of the reduced density matrix of local observables. The

subtlety is that one does not have a recipe for choosing the

integrals of motion in eq. (1). The general approach to

study thermalization is through the device of quantum

quenches: you change suddenly a parameter and observe

how the system thermalizes. The GGE hypothesis has been

tested extensively for many systems, and has turned out to

be valid for many quantum quench problems studied

recently. In general, this is true for non-interacting models,

or models that can be casted into a non-interactive one

(quadratic). In general, the mathematical device used to

prove that the GGE is valid is the Wick theorem, and that

the initial state overlap with the post-quench quasi-particle

modes is gaussian. An underlying assumption is thus that

different modes are orthogonal, which is crucial to prove

Wick’s theorem. In fact, if the underlying lattice is trans-

lational invariant, one obtains that two different modes, in

general of the form eikx, are orthogonal, e.g.

h/k1
ðxÞ;/k2

ðxÞi ¼
R

eiðk1�k2Þxdx ¼ dðk1 � k2Þ: In this work

we consider the case in which the expansion does not have

such a clear interpretation in terms of momentum, which

occurs in the case in which translational invariance is not

explicit in the underlying lattice. However, we consider the

case in which the graph has an overall symmetry, i.e. the
Fig. 1 An example of Barabási–Albert graph
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distribution of the degree is well approximated by a power-

law for large values, and thus is scale invariant in its tail,

which will be introduced in the following section. In

addition to this, the density of energy modes is, differently

from the case of translational invariant graphs, distributed

according to a power-law.

Scale-free graphs

We now recall the growth algorithm used in the pref-

erential attachment model introduced by Barabási and

Albert [23]. The growth algorithm (preferential attach-

ment) is parameterized by a single parameter, M. The

starting graph is a single node, with no edges. Then, at

each step, a new node is added, with M edges. The

edges are attached at random to the previous existing

nodes, with a probability proportional to the degree of

the node. If di is the degree of the vertex i, at each edge

is attached to a node i with probability pi ¼ diP
i
di

. As it

is well known, these graphs are scale free, i.e. for

N � 1, the degree distribution is a power-law,

Pðd � 1Þ � da, with a exponent of the power-law

(Fig. 1). Another property, here important to mention, is

that scale-free graphs are ultra-small: the average dis-

tance between two nodes goes as � logðlogðNÞÞ, where

N is the number of nodes in the network. Notably,

Bose–Einstein condensation appears in growing net-

works if preferential attachment growth is generalized

with fitness [24].

Hamiltonian and quantum quench

Here we want to recollect the formalism introduced in [15].

The Hamiltonian we will consider in the present paper is

the following Fermi–Hubbard model:

HðCM; kÞ ¼ � J
XNv

i;j¼1

A
ðCMÞ
ij a

y
i aj

þ k
2

XNv

i;j¼1

B
ðCMÞ
ij a

y
i a

y
j þ h:c:

� �
;

ð2Þ

where ai ðay
i Þ is the annihilation (creation) fermionic

operator that annihilates (create) a particle in the vertex i of

the background graph CM . The matrices A
ðCMÞ
ij and B

ðCMÞ
ij

are, respectively, the adjacency matrix of CM and its anti-

symmetrized form. In the present paper, the adjacency

matrix will be the one of a scale-free graph built using the

Barabási–Albert growth algorithm. The sum runs over all

the N nodes of the graph CM , where M is the connectivity

parameter introduced previously. The coupling J is the

tunneling of the particles between two connected sites and

k controls the strength of the Hamiltonian terms that do not

conserve the number of particles. The physical properties

are independent from time scaling if we perform a sudden

quantum quench, thus we can measure excitations in units

of J.1

In particular, we introduced a notion of particle [with an

associated discrete labeling k, �ðkÞ] given in terms of lad-

der operators gk. Once the notion of particle that the

detector measures is established, we can determine the

energy distribution (number of particles with momentum k)

of the ground state of the system

nðkÞ ¼ hGSjgykgkjGSi: ð3Þ

For graphs with discrete translational invariance, this is

associated with the Fourier transform vectors eikx, but for

graphs without particular symmetry this identification is

lost.

The notion of particle gk, together with its dispersion

relation �ðkÞ will be defined in terms of a test Hamiltonian

Htest ¼
X

k

�ðkÞgykgk : ð4Þ

The momentum distribution (3) that the detector measures

is given by the overlap between the ground state of the

system and the eigen states of the test Hamiltonian Htest.

The quantum quench we are going to perform is given

by

HðCM; kÞ ! HðCM; 0Þ;

from the ground state of HðCM; kÞ, jGSi, after the quench.

The system HðCM; 0Þ will see the ground state jGSi as an

excited state, and thus it makes sense to calculate the

spectrum density nð�ðkÞÞ. The hopping Hamiltonian can be

written as

Htest ¼
XNv

i;j¼1

A
ðCMÞ
ij a

y
i aj ¼

XNv

k¼1

�ðkÞgykgk: ð5Þ

The eigenmodes of Htest, labeled by an integer k, and with

energy �ðkÞ, define our notion of particle. These are created

and annihilated by the operators gyk and gk, and are the

excitations that the detector measures, and that we will

calculate. Therefore, we need to compute

nðkÞ ¼ hGSjgykgkjGSi ; ð6Þ

and calculate the distribution. As we will see, nðkÞ � �ðkÞc,
where c is the exponent we will study. The two Hamilto-

nians have the same number of nodes, thus their Hilbert

1 Since now on we set J ¼ 1 and measure k in units of J.
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states overlap (coincident).2 If the system was at equilib-

rium with an external bath at temperature T , we would

have nðkÞ ¼ e�
�ðkÞ

T . In the case of an n-dimensional tori, we

found in [15] for the same model we study here, that

nðkÞ ¼ e�
2�ðkÞ

k , where k=2 plays the role of the temperature.

The spectrum of the adjacency matrix of a scale-free

network was studied in [25]. It is known that eigenvalues

are distributed according to a power-law, while for the

eigenvectors an analytical form is still lacking. However,

the components of the eigenvectors are strongly localized

at the hubs.

As a matter of fact, in our numerical calculation we will

neglect the role of the shape of the Fermi surface,

approximating it with a sphere. This implies that a small

error is made on the temperature, that can become more

and more relevant for k � 1. Thus, our result is valid in the

limit jkj � 1.

Results

Here we show that the distribution of the modes in the

ground state follows a power-law. Since analytical tech-

niques are lacking, we evaluated Eq. (6) numerically. All

the numerical results are obtained with a number of nodes

N ¼ 700. We can tackle such a big quantum system, due to

the Bogoliubov transformation which diagonalizes this

model; the quantum dynamics of this system is in fact

restricted to a Hilbert space of size 2N, instead of the 2N of

an ordinary spin system. In Fig. 2 we plot logðnðkÞÞ against

logð�ðkÞÞ. The functional dependence appears, numerically,

to be of the form:

nðkÞ� f ðM; kÞ�ðkÞc ð9Þ

where c is weakly dependent on k, in the range k 2 ½0; 0:2�
and takes value c 2 ½�0:85;�0:95�. Tables 1 and 2 show

the values obtained numerically by fixing M and k and

fitting the power-law, together with the error, of the

parameters f and c. In Figs. 4 and 5, we plot the functional

dependence of the constant in front of the Zipf’s law, by

fixing the values of M and k. These appear to be both

convex functions of the parameters. The power-law is

rather stable over several order of magnitudes,

logð�ðkÞÞ 2 ½�2; 2�, although the density of points is higher

in logð�ðkÞÞJ0. For k 2 ½0:2; 1�, the distribution changes

shape in logð�ðkÞÞ\0. Thus, restoring the units, the power-

law for density of excitations is valid only in the limit
k
J
� 1. It is clear from this analysis that the power-law

exponent, in its domain of validity, is independent from the

connectivity parameter M (Fig. 3).

One can give a rough explanation of the results above,

by considering the exact expression of nð�Þ ¼
k2ð1��2Þ

k2ð1��2Þþ�2þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ð1��2Þþ�2

p [15]. For k � 1, one has that

nð�Þ � k
2
ð 1
�2 � 1Þ. However, if the density of eigenvalue

qð�Þ is distributed according to a power-law, one has to

smear the effective distribution considering the deformed

Fig. 2 Log–Log plot of the distribution nð�ðkÞÞ, evaluated for

N ¼ 700, M ¼ 10, c ¼ 0:1. logðnÞ on the y-axis, logð�Þ on the x-axis

Fig. 3 Log–Log plot of the distribution nðkÞ for M ¼ 10., k ¼ 0:8
and N ¼ 700

2 The Hamiltonian (2) is a quadratic model, hence, it can be

diagonalized as

H ¼
XNv

q¼0

xðqÞwy
qwq; ð7Þ

by means of a Bogoliubov transformation of the fundamental particle

operators, a
y
i ; aj. In turn, these are related by another Bogoliubov

transformation to the operators g; gy. Then, the operators g; gy will be

connected to the w;wy by the Bogoliubov transformation that is the

composition of the Bogoliubov transformations that relate w;wy to

a; ay and a; ay to g; gy. It can be written formally as

gk ¼
XNv

q¼0

akqwq þ bkqw
y
q

� �
; ð8Þ

where akq and bkq are the Bogoliubov coefficents.
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density. In fact, if we consider hnð�Þi ¼
R

nð�Þqð�Þd� �
1

�1þa, depending on the right functional, asymptotic expres-

sion of qð�Þ, and considering that usually the function qð�Þ
is peaked at logð�Þ � 0, which is what we observe

numerically. This should explain why we observe a power-

law for small values of k.

Conclusions

In this paper we discussed quantum quenches of a Fermi–

Hubbard model on scale-free graphs, motivated by the

search to alternative distributions from those of the gen-

eralized Gibbs ensemble hypothesis, relevant in particular

in the case of integrable lattice models. A previous analysis

of the quench protocol discussed in the present paper was

done in [15], and solved analytically for the case of n-

dimensional torii, showing that the generalized Gibbs

ensemble emerges (GGE). The quenched parameter, k,

controls the conservation of the particle number and, in

particular, introduces a gap in the spectrum. For non-inte-

grable systems, it is a known fact that the expectation value

of several observables after a quantum quench, is similar to

those calculated on a thermal state, i.e. a GGE. The

observables we considered were the density of eigenmodes

calculated over the ground state of the unquenched Ham-

iltonian. In this work, we have shown that the spectrum of

the excitations for scale-free graphs can be well approxi-

mated by a power-law for the case in which the quenched

parameter is small. In particular, we have analyzed the

functional dependence of the two parameters of the power-

law on the topological properties of the scale-free graph,

the connectivity, and the quenched parameter. We found

that while for small values of k this distribution is scale

free, meanwhile for higher values of the quenched

parameter (k [ 0:2), the distribution changes shape and the

power-law behavior is lost.

The outcome of our analysis shows that the underlying

symmetry of the graph does indeed contribute to the shape of

the distribution of modes. While GGE naturally emerges in

the case of translational invariant lattices, we have given

evidences for a counter example, in which a power-law

distribution for the modes spectral density arises. Due to the

lack of analytical understanding of the eigenmodes for scale-

free graphs, we have reached these conclusions using a

numerical approach. We have focused on a Fermi–Hubbard

model for a quite simple, technical reason. The scale-free

properties of graphs generated using a preferential attach-

ment become evident for large graphs, e.g. for the case

N ! 1. We thus had to focus on a model which can be

diagonalized numerically for large graphs. For the Fermi–

Hubbard model considered in the present paper, we could

take advantage of a Bogoliubov transformation which allows

to tackle the diagonalization process on a matrix of size

proportional to the number of nodes, and not exponentially

increasing, as standard in quantum mechanics.

We have tried to show in a numerically treatable model the

relevance of the symmetry of the underlying lattice for the GGE

hypothesis. Although striking evidences have been put for-

ward, both analytically and numerically, of the universality of

the GGE for integrable models [4], these results rely on the

underlying symmetry of the graph, in particular on the prop-

erties of the eigenvectors of the adjacency matrix of the lattice.

These properties are indeed lost when translational invariance

is not present, which is the case for the scale-free graphs.

However, we have shown that the distribution does indeed

retain some properties of the underlying lattice, which for the

case of scale-free graphs is the scale-freeness of the spectrum

distribution. We have provided a rough, analytical explanation

of why, in the case in which the density of modes is not uniform,

one has to consider a smeared version of the spectral density.
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Appendix A

See Tables 1, 2; Figs. 4, 5.

Table 1 Table of c and f as function of M, for fixed k ¼ 0:05 and

N ¼ 700

M f Df c Dc

4 -7.760 0.006 -0.809 0.006

5 -7.591 0.007 -0.843 0.007

6 -7.528 0.007 -0.837 0.006

7 -7.404 0.007 -0.852 0.005

8 -7.332 0.008 -0.857 0.006

9 -7.255 0.008 -0.859 0.006

10 -7.140 0.008 -0.905 0.006

11 -7.036 0.009 -0.942 0.006

12 -7.071 0.008 0.884 0.006

13 -6.982 0.008 -0.924 0.006

14 -6.978 0.008 -0.888 0.006

15 -6.882 0.009 -0.927 0.006

16 -6.871 0.009 -0.917 0.006

17 -6.909 0.009 -0.891 0.006

18 -6.820 0.009 -0.919 0.005

19 -6.801 0.009 -0.911 0.005

20 -6.83 0.01 -0.877 0.006
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Fig. 4 Plot of the f as a function of c for M ¼ 10 and N ¼ 700

Fig. 5 Plot of f as a function of M, for k ¼ 0:05 and N ¼ 700
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