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Abstract The amplitude modulation of three-dimensional

(3D) dust ion-acoustic wave (DIAW) packets is studied in

a collisionless magnetized plasma with inertial positive

ions, superthermal electrons and negatively charged

immobile dust grains. By using the reductive perturbation

technique, a 3D-nonlinear Schrödinger equation is derived,

which governs the slow modulation of DIAW packets. The

latter are found to be stable in the low-frequency ðx\xcÞ
regime, whereas they are unstable for x[xc, and the

modulational instability is related to the modulational

obliqueness ðhÞ. Here, xðxcÞ is the nondimensional wave

(ion-cyclotron) frequency. It is shown that the superthermal

parameter j, the frequency xc as well as the charged dust

impurity ð0\l\1Þ shift the MI domains around the x–h
plane, where l is the ratio of electron-to-ion number den-

sities. Furthermore, it is found that the decay rate of

instability is quenched by the superthermal parameter j
with cutoffs at lower wave number of modulation (K);

however, it can be higher (lower) with increasing values of

l (xc) having cutoffs at higher values of K.

Modulational instability � NLS equation � Superthermal

plasma � Dusty plasma � Solitary wave

Introduction

The nonlinear features of solitary waves in dusty plasmas

have been of great importance over the last many years due

to their wide range of applications in space, astrophysical

and laboratory environments [1–3]. Dust grains are typi-

cally micron or sub-micron sized particles and are ubiq-

uitous ingredients in our universe. The presence of charged

dust grains in an electron–ion plasmas not only alters the

characteristics of ion-acoustic solitary waves (IASWs), but

also modifies the ion-acoustic wave as well as generates a

new kind of mode, namely, the dust-acoustic (DA) wave.

More than three decades ago [4], reported theoretically the

existence of DIA waves in a dusty plasma. Later, in lab-

oratory experiments [5], confirmed the existence of these

waves. A large number of investigations on DIA waves in

multicomponent plasmas have been reported in the

framework of Sagdeev’s approach as well as reductive

perturbation technique.

Furthermore, in many observations it has been con-

firmed that superthermal particles exist in space plasmas

[6–9] and laboratory environments [10]. These superther-

mal particles are described by Lorentzian (kappa) distri-

bution which is more appropriate for analysis of data rather

than a Maxwellian distribution [9]. Furthermore, such

distribution has been widely used to investigate various

collective modes as well as nonlinear coherent structures

like solitons, shocks, envelope solitons through the

description of Korteweg–de Vries (KdV), Korteweg–de

Vries Burgers (KdVB) and nonlinear Schrödinger (NLS)

equations [11–18].

On the other hand, there has also been a growing interest

in investigating the nonlinear modulation of electrostatic

waves in plasmas owing to their importance not only in

space and astrophysical environments, but also in
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laboratory plasmas. The modulational instability (MI) of

nonlinear waves in plasmas has been a well-known

mechanism for the localization of wave energy, which

leads to the formation of bright envelope solitons. How-

ever, in the absence of instability, the evolution of the

system can be in the form of dark envelope solitons. Fur-

thermore, due to a small plane wave perturbation, MI can

have exponential growth which leads to the amplification

of the sidebands, and thus break up the uniform waves into

a train of oscillations. A large number of investigations on

MI of electrostatic or electromagnetic waves can be found

in the literature [14, 18–26]. To mention few, the MI of

obliquely propagating DIA waves in an unmagnetized

plasma containing positive ions, electrons and immobile

dust grains was reported by [19]. It was observed from the

stability analysis that the obliqueness in the modulation

direction has a profound effect on the condition of MI.

They also observed the influence of ion temperature on the

amplitude modulation of wave and noticed that wave sta-

bility profile may be strongly modified by ion temperature

[21]. Furthermore, the nonlinear propagation of wave

envelopes in an unmagnetized superthermal dusty plasma

was investigated by El-Labany [27] et al. They showed that

the electron superthermality and the dust grain charge

significantly modify the profiles of the wave envelope and

the associated regions of instability. Ahmadihojatabad

et al. [28] studied the influence of superthermal and trapped

electrons on the obliquely propagating ion-acoustic waves

(IAWs) in magnetized plasmas. Bains et al. [25] addressed

the MI of ion-acoustic wave envelopes in a multicompo-

nent magnetized plasma using a quantum fluid model. They

observed that the ion number density, the constant mag-

netic field and the quantum coupling parameter have strong

effects on the growth rate of MI. Also, the nonlinear

propagation of DIA wave envelopes in a three-dimensional

magnetized plasma containing nonthermal electrons fea-

turing Tsallis distribution, both positive and negative ions,

and immobile charged dust was investigated by [29].

To the best of our knowledge the investigation of MI of

DIAWs in a magnetized dusty plasma containing

superthermal electrons has not yet been reported. Our

purpose in this investigation is to consider the propagation

of DIA wave envelopes in a magnetized dusty plasma

containing cold positive ions and superthermal electrons.

We have employed the standard multiple-scale perturba-

tion technique to derive the NLS equation. It was shown

that in earlier investigations [30] that MI of ion acoustic

waves is significantly influenced by the presence of

superthermal electrons and growth rate is larger in the

presence of more superthermal electrons. We have, how-

ever, investigated the combined effects of the external

magnetic field, dust concentration and the superthermality

of electrons on the MI of DIA wave packets. It is shown

that the superthermality of electrons (via j), the charged

dust impurity and the external magnetic field shift the MI

domains around the x� h plane, where x is the wave

frequency and h stands for modulational obliqueness.

Further, we have also studied the decay rate of MI by

different plasma parameters.

The paper is organized as follows: in Sect. 2, the basic

equations governing the nonlinear dynamics of DIA wave

envelopes in magnetized superthermal plasmas are pre-

sented and the three-dimensional NLS equation is derived.

The effects of various physical parameters on the existence

of stable/unstable regions for the modulation of DIA waves

are investigated in Sect. 3. Finally, Sect. 4 contains the

summary and conclusions of our results.

The model equations and derivation of the 3D-
NLSE

We consider the nonlinear propagation of DIA waves in a

magnetized plasma consisting of superthermal electrons,

cold positive ions and negatively charged immobile dust

grains. The plasma is immersed in the constant magnetic

field B0 ¼ B0ẑ. We adopt a fluid model for the dynamics of

DIA waves in a magnetized plasma which consists of the

continuity, momentum and the Poisson’s equations. Thus,

we have

on

ot
þr � ðnUÞ ¼ 0; ð1Þ

oU

ot
þ ðU � rÞU ¼ � e

M
r/þ eB0

M
ðU� ẑÞ; ð2Þ

r2/ ¼ 4peðne � nþ Zdnd0Þ; ð3Þ

where the superthermal electrons are given by the kappa

distribution [31]

ne ¼ ne0 1 � e/
ðj� 3=2ÞkBTe

� ��jþ1=2

: ð4Þ

The set of fluid Eqs. (1)–(3) in nondimensional forms are

written as

on

ot
þr � ðnUÞ ¼ 0; ð5Þ

oU

ot
þ ðU � rÞU ¼ r/þ xcðU� ẑÞ; ð6Þ

r2/ ¼ ne � nþ ð1 � lÞ; ð7Þ

where ne and n are the number densities of electrons and

ions normalized by the equilibrium number density of ions

n0, / is the electric potential normalized by kBTe=e, U �
ðu; v;wÞ is the ion fluid velocity normalized by the DIA

speed Csð¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBTe=M

p
). The space and time coordinates
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are normalized by the Debye length kD½¼
kBTe=4pn0e

2ð Þ1=2� and the inverse of ion plasma frequency

xpi½¼ 4pe2n0=Mð Þ1=2�; respectively. Furthermore, xc ¼
eB0=cM is the ion gyrofrequency normalized by xpi. The

charge neutrality condition yields 1 � l ¼ Zdnd0=n0, where

l ¼ ne0=n0 is the ratio of equilibrium number densities of

electrons and ions. Next, in the small-amplitude perturba-

tions, i.e., j/j � 1, and, in particular, j/=ðj� 3=2Þj � 1,

Eq. (4) reduces to

ne � lþ q1/þ q2/
2 þ q3/

3; ð8Þ

where the coefficients are given by

q1 ¼l
ðj� 1=2Þ
ðj� 3=2Þ ; q2 ¼ l

ðj2 � 1=4Þ
2ðj� 3=2Þ2

;

q3 ¼l
ðj2 � 1=4Þðjþ 3=2Þ

6ðj� 3=2Þ3
:

ð9Þ

In order to derive the evolution equation for weakly non-

linear DIA wave envelopes, we employ the standard mul-

tiple-scale technique [32, 33] in which the coordinates are

stretched as

n ¼ �x; g ¼ �y; f ¼ � z� Vgt
� �

; s ¼ �2t: ð10Þ

Consider A � ðn;w;/Þ and B � ðu; vÞ as the state vectors

which describe the state at a position z and time t. The

perturbations from the equilibrium state Að0Þ ¼ ð1; 0; 0ÞT

and Bð0Þ ¼ ð0; 0ÞT
0

are considered by assuming A ¼ Að0Þ þP1
m¼1 �

mAðmÞ and B ¼ Bð0Þ þ
P1

m¼1 �
mþ1BðmÞ. The slow-

scale dependence of all perturbed state enter via the l-th

harmonic amplitude A
ðmÞ
l and B

ðmÞ
l given as AðmÞ ¼Pm

l¼�m A
ðmÞ
l ðn; g; f; sÞeilðkz�xtÞ and BðmÞ ¼

Pm
l¼�m B

ðmÞ
l

ðn; g; f; sÞeilðkz�xtÞ, where x and k, respectively, represent

the carrier wave frequency and the wavenumber. In order

that n, U, /; etc. are all real, the state variables must satisfy

the reality condition with respect to its complex conjugate

parts. One should note that the transverse (to the magnetic

field) velocity components u and v appear at higher order in

� than the parallel component w. The anisotropy and higher

order effects are introduced via strong magnetic field and

gyro-motion of fluid, respectively, in the presence of weak

perturbations [34].

We substitute the stretched coordinates (10) and the

expansions given above into Eqs. (5)–(8), and collect terms

in different powers of � to obtain a set of reduced equa-

tions. Thus, equating the coefficients for m ¼ 1 and l ¼ 1,

we obtain the following first-order quantities in terms of

/ð1Þ
1

n
ð1Þ
1 ¼ k2

x2
/ð1Þ

1 ; ð11Þ

w
ð1Þ
1 ¼ k

x
/ð1Þ

1 ; ð12Þ

together with the linear dispersion relation

x2 ¼ k2

k2 þ q1

: ð13Þ

From the second-order reduced equations (m ¼ 2, l ¼ 1),

the following compatibility condition in terms of the group

velocity of waves is obtained as

Vg � ox
ok

¼ q1

x3

k3
: ð14Þ

We have depicted the variation of the carrier wave fre-

quency (Eq. 13) and the group velocity (Eq. 14) against the

carrier wave number k in Fig. 1. From the upper panel, we

find that as k increases, the frequency x increases and it

approaches a constant value at higher kð[ 1Þ. Further-

more, x (normalized by the ion plasma frequency xpi)

increases and approaches a constant value (close to 1) as

the wave number k increases. Also, the value of x
increases with increasing values of the spectral index j
(i.e., when the superthermality of electrons is somewhat

relaxed); however, it remains almost unaltered for j[ 8.

Nevertheless, a reduction of the wave frequency is noticed

with increasing values of the electron-to-ion number den-

sity ratio l. This implies that as the number density of

electrons increases, more electrons will flow out of the dust

grains, i.e., dust charge number decreases in order to

maintain the quasineutrality. Further increase of l may

eventually lead to the case similar to the dust-free electron–

ion plasma. Thus, negatively charged dust impurity in the

plasma with n0 [ ne0 effectively increases the wave fre-

quency. Such dust impurity has also a significant effect on

the group velocity of waves as shown in the lower panel of

Fig. 1 (see the solid and dashed lines). The group velocity

of waves (Vg) decreases with an increase in the wave

number (k) for different values of j and l. It is very

interesting to see that for smaller k\0:5 (i.e., for larger

wavelength), the group velocity reduces with an increase in

l; however, it increases with larger k. Furthermore, an

increase in the parameter j (e.g., from j ¼ 4 to j ¼ 8)

leads to an enhancement of Vg as k ! 0. Here, note that

further increase of jð[ 8Þ does not give any significant

change in Vg.

For l ¼ 0, 1 and 2, we can determine the second-order

harmonic modes in terms of /ð1Þ
1 . So, for m ¼ 2, l ¼ 1, we

have the reduced equations
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ixnð2Þ1 þ ikw
ð2Þ
1 ¼ Vg

on
ð1Þ
1

of
; ð15Þ

ixwð2Þ
1 þ ik/ð2Þ

1 ¼ Vg

ow
ð1Þ
1

of
� o/ð1Þ

1

of
; ð16Þ

with

u
ð1Þ
1 ¼

xc
o/ð1Þ

1

og � ix
o/ð1Þ

1

on

x2 � x2
c

; ð17Þ

v
ð1Þ
1 ¼ �

ix
o/ð1Þ

1

og þ xc
o/ð1Þ

1

on

x2 � x2
c

2
4

3
5: ð18Þ

The second-order harmonic modes with m ¼ 2 and l ¼ 2

are given by

�xnð2Þ2 þ kw
ð2Þ
2 þ kn

ð1Þ
1 w

ð1Þ
1 ¼ 0; ð19Þ

�2xwð2Þ
2 þ kðwð1Þ

1 Þ2 þ k/ð2Þ
2 ¼ 0: ð20Þ

Thus, we obtain

n
ð2Þ
2 ¼ C

ð22Þ
1 ð/ð1Þ

1 Þ2; u
ð2Þ
2 ¼ C

ð22Þ
2 ð/ð1Þ

1 Þ2; ð21Þ

/ð2Þ
2 ¼ C

ð22Þ
3 ð/ð1Þ

1 Þ2; ð22Þ

where the coefficients are

C
ð22Þ
1 ¼ ð4k2 þ q1ÞCð22Þ

3 þ q2; ð23Þ

C
ð22Þ
2 ¼ x

k
C
ð22Þ
1 � ðk2 þ q1Þ2

h i
; ð24Þ

C
ð22Þ
3 ¼ q2

3k2
þ k2

2x4
: ð25Þ

We note that the first-order zeroth harmonics (n
ð1Þ
0 , w

ð1Þ
0 ,

/ð1Þ
0 ) vanish [35], which gives u

ð1Þ
0 ¼ v

ð1Þ
0 ¼ 0. For m ¼ 2,

l ¼ 0, we obtain the second-order and zeroth-order har-

monic modes in the following forms:

n
ð2Þ
0 ¼ C

ð20Þ
1 /ð1Þ

1

� �2

; u
ð2Þ
0 ¼ C

ð20Þ
2 /ð1Þ

1

� �2

; ð26Þ

/ð2Þ
0 ¼ C

ð20Þ
3 /ð1Þ

1

� �2

; ð27Þ

where the coefficients are

C
ð20Þ
1 ¼ q1C

ð20Þ
3 þ 2q2; ð28Þ

C
ð20Þ
2 ¼ VgC

ð20Þ
1 � 2

x
k
ðk2 þ q1Þ2; ð29Þ

C
ð20Þ
3 ¼

2q2V
2
g � ðk2 þ 3q1Þ
1 � q1V2

g

: ð30Þ

Proceeding to the next order (m ¼ 3) and solving for the

first harmonic equations (l ¼ 1), an explicit compatibility

condition is determined, from which we obtain the fol-

lowing NLS equation for U � /ð1Þ
1 :

i
oU
os

þ P
o2U

of2
þ QjUj2U� S

o2U

on2
þ o2U

og2

	 

¼ 0: ð31Þ

The coefficient of dispersion P and the nonlinearity Q are

given by

P � x00ðkÞ ¼ � 3

2
q1

x5

k4
; ð32Þ

Q ¼x3

k2

3

2
q3 þ q2fCð20Þ

3 þ C
ð22Þ
3 g

� �

� x
2
fCð20Þ

1 þ C
ð22Þ
1 g � kfCð22Þ

2 þ C
ð20Þ
2 g:

ð33Þ

The coefficient S which accounts for the combined effects

of transverse perturbations and the external magnetic field

is given by

S ¼ x3

2k2ðx2
c � x2Þ : ð34Þ

0 0.5 1 1.5
0
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1

k

ω
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μ=0.4, κ=4
μ=0.2, κ=8
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μ=0.4, κ=4
μ=0.2, κ=8

Fig. 1 Carrier wave frequency

x (upper panel) and the group

velocity of the wave packet Vg

(lower panel) are plotted against

the wave number k for different

values of j and l as shown in

the legends
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Stability analysis

We note that the amplitude modulation of DIA wave

envelopes typically depend on the coefficients of the NLS

equation (31), which parametrically depend on the density

ratio l, the superthermality of electrons (via j) as well as

the intensity of the magnetic field (via xc). Inspecting the

coefficients P, Q and S, we find that

P ¼ �ð3=2Þq1
x5

k4 � �ð3=2Þ x3

k2 ð1 � x2Þ, i.e., P is always

negative for j[ 3=2 (for which q1 [ 0) and x\1. How-

ever, Q can be positive or negative depending on the values

of k; l and j. Also, S[ 0ðS\0Þ according to when

x\xcðx[xcÞ. We will find that the key elements

responsible for the MI are the ratios P/Q and S/P together

with their signs and magnitudes. Considering a harmonic

wave solution of Eq. (31) of the form U ¼
U0 expðiQjU0j2sÞ with U0 denoting the constant amplitude,

one can obtain the following dispersion relation for the

modulated DIA wave packets [25]:

X2 ¼K4 Pa2 � S

1 þ a2

	 
2

� 1 � 2ð1 þ a2ÞjU0j2

K2

Q=P

a2 � S=P

 !
;

ð35Þ

where X and K �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2
n þ K2

g þ K2
f

q
, respectively, denote

the wave frequency and the wave number of modulation.

The parameter a � Kf=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2
n þ K2

g

q
is related to the modu-

lational obliqueness h which the wave vector K makes with

the resultant of Knx̂ and Kgŷ, i.e., h ¼ arctanðaÞ. From

Eq. (35), we find that there exists a critical wave number Kc

such that K2\K2
c � 2jU0j2ð1 þ a2ÞðQ=PÞ=ða2 � S=PÞ, the

MI sets in either for PQ[ 0, a2
1 � S=P[ 0 or for PQ\0,

a2
1 � S=P\0 [25]. It is further found that a critical value of

h, i.e., hc � arctanð
ffiffiffiffiffiffiffiffi
S=P

p
Þ also exists for the occurrence of

MI. Thus, the MI may occur either for PQ[ 0, h[ hc or

PQ\0, h\hc, i.e., we have two possible cases:

– Case I: when x\xc, the MI sets in for Q\0 and for

any value of h in 0	 h.p=2.

– Case II: when x[xc, the MI sets in either for Q\0

and h[ hc or Q[ 0 and h\hc.

From the subsequent analysis and Fig. 2, it will be clear

that the Case I is not admissible to the present study as

there is no common region for which x\xc and Q\0 are

satisfied. So, we will focus only on Case II. It turns out that

when the DIA wave frequency is larger than the ion-cy-

clotron frequency xc, the MI is related to the obliqueness

parameter h; however, the instability disappears for x\xc.

We numerically investigate different stable and unsta-

ble regions in the x� h plane as shown in Fig. 2. We find

that the charged dust impurity (represented by the param-

eter l with 0\l\1), the superthermal parameter j and the

gyrofrequency xc shift the stable/unstable regions around

the x� h plane. From panels (a, b) it is clear that as l
increases, i.e., as the number of charged dust grains

decreases, a part of the instability region (with h\hc) shifts

to a stable one and the region of stability in the x� h plane

increases. However, the instability region with h[ hc

increases slightly with increasing values of l. This implies

that when the obliqueness parameter h is below its critical

value hc, the presence of charged dust impurity in the

plasma favors the instability of modulated wave packets.

Comparing panel (c) with panel (a) we find that the

superthermality of electrons (with lower values of j) also

favors the instability in the region with h\hc. The insta-

bility region with h[ hc remains almost unchanged. From

panels (a) and (d) it is also evident that the external mag-

netic field significantly reduces the regions of instability

both in the cases of h\hc and h[ hc.

The maximum growth/decay rate Cmax = Im Xð Þmax can

be obtained from Eq. (35) as Cmax ¼ Qj/0j2 provided

PK2
f � SðK2

n þ K2
gÞ ¼ Qj/0j2 is satisfied. The decay rate of

MI is depicted in Fig. 3 for different values of j, l and xc.

Clearly, the effects of higher values of j (less superther-

mality) suppresses the instability decay rate with cutoffs at

significantly lower wave numbers of modulation (see the

solid and dotted lines). However, the decay rate becomes

higher with increasing values of the electron concentration

(or decreasing the dust concentration) with cutoffs at

higher K (see the solid and dashed lines). We find that in

contrast to the unmagnetized plasmas, the effect of xc is to

increase the cutoffs at higher wave numbers of modulation;

however, the decay rate is slightly reduced (see the solid

and dash-dotted lines).

Summary and conclusion

We have investigated the amplitude modulation of DIA

wave packets in a magnetized multicomponent plasma

consisting of singly charged positive ions, superthermal

electrons featuring kappa distribution and negatively

charged immobile dust grains. Using the multiple-scale

technique, an NLS equation is derived which governs the

evolution of DIA wave envelopes. It is shown that both the

dispersive and the nonlinear coefficients of the NLS

equation are significantly modified by the effects of

charged dust impurity, the external magnetic field as well

as the superthermality of electrons. Different stable and

unstable regions under modulation are obtained in the

plane of the carrier wave frequency (x) and the oblique-

ness (h) of modulation. It is found that the parameters j, l,
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xc and h remarkably shift the stable/unstable regions

around the x–h plane. The growth/decay rate of instability

is also examined numerically with these plasma parame-

ters. The main results are summarized as follows:

• Starting from a set of fluid equations, the dynamics of

weakly nonlinear, slowly varying DIA wave packets is

shown to be governed by a three-dimensional NLS

equation in which the additional dispersive terms

(leading to two more space dimensions in the equation)

appear due to the combined effects of the transverse

perturbations and the external magnetic field. The fluid

model with j-distributed electrons and stationary

charged dust particles is valid for the plasma param-

eters satisfying 0\l\1 and j[ 3=2.

• The carrier wave frequency is seen to assume a constant

value at large k[ 1, and approaches the ion plasma

frequency with increasing values of j. The wave

frequency x and hence the group velocity Vg get

significantly reduced with higher values of l.

• The group velocity dispersion P of the NLS equation is

always negative irrespective of the values of k and the

plasma parameters. The nonlinear coefficient Q is

always negative for kJ1; however, it can be either

positive or negative in the range 0\k\1 depending on

the values of j and l. For propagation below the ion

cyclotron frequency, the DIA wave packet is always

stable. However, for x[xc, it is unstable and the MI

is related to the obliqueness parameter h. The param-

eters j, l and xc are found to shift the instability

regions around the x� h plane significantly.

• The decay rate of MI is found to be significantly

suppressed by the effects of j, i.e., when j increases

with cutoffs at lower wave numbers of modulation.

However, it can be higher with increasing values of the

density ratio l. The effect of the external magnetic field

ω
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Fig. 2 The stable and unstable regions of wave modulation are shown

by the contour plots of Q ¼ 0;x ¼ xc and h ¼ hc in the x� h plane

for different values of the parameters: a j ¼ 4;xc ¼ 0:1 and l ¼ 0:2,

b j ¼ 4;xc ¼ 0:1 and l ¼ 0:3, c j ¼ 6;xc ¼ 0:1 and l ¼ 0:2, and d
j ¼ 4;xc ¼ 0:3 and l ¼ 0:2. The shaded or gray (blank or white)

region stands for Q[ 0ðQ\0Þ. When x[xc, the MI occurs either

for Q[ 0; h\hc, or for Q\0; h[ hc. No instability occurs in the

regime x\xc. In some other regions the modulated wave becomes

stable
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is to decrease the decay rate with cutoffs at higher

values of the wave number of modulation.

The findings of the present investigation may be useful for

the modulation of dust–ion acoustic wave envelopes in

dusty superthermal plasmas such as those in laboratory

[36], space [37–39] and astrophysical [40] environments.

Acknowledgements This work was supported by DRS-II(SAP) no. F

530/17/DRS-II/2015(SAP-I) UGC, New Delhi. A. P. M. acknowl-

edges support from UGC-SAP (DRS, Phase III) with Sanction order

no. F.510/3/DRS-III/2015(SAPI) dated 25/03/2015, and UGC-MRP

with F. no. 43-539/2014 (SR) and FD Diary no. 3668 dated

17.09.2015.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://crea

tivecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

References

1. Shukla, P.K., Mendis, D.A., Desai, T.: Advances in dusty plas-

mas. World Scientific, Singapore (1999)

2. Shukla, P.K., Mamun, A.A.: Introduction to dusty plasma phy-

sics. Institute of Physics, Bristol (2002)

3. Boufendi, L., Mikikian, M., Shukla, P.K.: New vistas in dusty

plasmas. In: AIP Proceeding, AIP, New York (2005)

4. Shukla, P.K., Silin, V.P.: Dust ion-acoustic wave. Phys. Scrip. 45,

508 (1992)

5. Barkan, A., D’Angelo, N., Merlino, R.: Experiments on ion-

acoustic waves in dusty plasmas. Planet. Space. Sci. 44, 239

(1996)

6. Summers, D., Thorne, R.M.: The modified plasma dispersion

function. Phys. Fluids B 3, 1835 (1991)

7. Sittler Jr., E.C., Ogilvie, K.W., Scudder, J.D.: Survey of low-

energy plasma electrons in Saturn’s magnetosphere: Voyagers 1

and 2. J. Geophys. Res. 88, 8847 (1983)

8. Mace, R.L., Hellberg, M.A.: A dispersion function for plasmas

containing superthermal particles. Phys. Plasmas 2, 2098 (1995)

9. Vasyliunas, V.M.: A survey of low-energy electrons in the eve-

ning sector of the magnetosphere with OGO 1 and OGO 3.

J. Geophys. Res. 73, 2839 (1968)

10. Hellberg, M.A., Mace, R.L., Armstrong, R.J., Karlstad, G.:

Electron-acoustic waves in the laboratory: an experiment revis-

ited. J. Plasma Phys. 64, 433 (2000)

11. Saini, N.S., Kourakis, I., Hellberg, M.A.: Arbitrary amplitude

ion-acoustic solitary excitations in the presence of excess

superthermal electrons. Phys. Plasmas 16, 062903 (2009)

12. Shah, A., Mahmood, S., Haque, Q.: Propagation of solitary waves

in relativistic electron-positron-ion plasmas with kappa dis-

tributed electrons and positrons. Phys. Plasmas 18, 114501 (2011)

13. El-Tantawy, S.A., El-Bedwehy, N.A., Moslem, W.M.: Nonlinear

ion-acoustic structures in dusty plasma with superthermal elec-

trons and positrons. Phys. Plasmas 18, 052113 (2011)

14. Sultana, S., Kourakis, I.: Electrostatic solitary waves in the

presence of excess superthermal electrons: modulational insta-

bility and envelope soliton modes. Plasma Phys. Control. Fusion

53, 045003 (2011)

15. Shahmansouri, M., Tribeche, M.: Propagation properties of ion

acoustic waves in a magnetized superthermal bi-ion plasma.

Astrophys. Space Sci. 350, 623 (2014)

16. Adnan, M., Mahmood, S., Qamar, A.: Small amplitude ion

acoustic solitons in a weakly magnetized plasma with anisotropic

ion pressure and kappa distributed electrons. Adv. Sp. Res. 53,

845 (2014)

17. Shahmansouri, M., Astaraki, E.: Transverse perturbation on

three-dimensional ion acoustic waves in electron–positron–ion

plasma with high-energy tail electron and positron distribution.

J. Theor. Appl. Phys. 8, 189 (2014)

18. Shalini K, Saini N.S., Misra A.P.: Modulation of ion-acoustic

waves in a nonextensive plasma with two-temperature electrons.

Phys. Plasmas. 22, 092124 (2015)

19. Kourakis, I., Shukla, P.K.: Ion-acoustic waves in a two-electron-

temperature plasma: oblique modulation and envelope excita-

tions. J. Phys. A Math. Gen. 36, 11901 (2003)

20. Kourakis, I., Shukla, P.K.: Electron-acoustic plasma waves:

oblique modulation and envelope solitons. Phys. Rev. E. 69,

036411 (2004)

21. Kourakis, I., Shukla, P.K.: Finite ion temperature effects on

oblique modulational stability and envelope excitations of dust-

ion acoustic waves. Euro. Phys. J. D. 28, 109 (2004)

22. Kourakis, I., Shukla, P.K.: Oblique amplitude modulation of dust-

acoustic plasma waves. Phys. Scr. 69, 316 (2004)

23. Misra, A.P., Bhowmik, C.: Nonlinear wave modulation in a

quantum magnetoplasma. Phys. Plasmas 14, 012309 (2007)

24. Saini, N.S., Kourakis, I.: Dust-acoustic wave modulation in the

presence of superthermal ions. Phys. Plasmas 15, 123701 (2008)

25. Bains, A.S., Misra, A.P., Saini, N.S., Gill, T.S.: Modulational

instability of ion-acoustic wave envelopes in magnetized quan-

tum electron-positron-ion plasmas. Phys. Plasmas 17, 012103

(2010)

26. El-Taibany, W.F., Kourakis, I.: Modulational instability of dust

acoustic waves in dusty plasmas: modulation obliqueness, back-

ground ion nonthermality, and dust charging effects. Phys.

Plasmas 13, 062302 (2006)

27. El-Labany, S.K., El-Shewy, E.K., Abd El-Razek, H.N., El-Rah-

man, A.A.: Wave propagation in strongly dispersive superthermal

dusty plasma. Adv. Sp. Res. 59, 1962 (2017)

28. Ahmadihojatabad, N., Abbasi, H., Pajouh, H.H.: Influence of

superthermal and trapped electrons on oblique propagation of

ion-acoustic waves in magnetized plasma. Phys. Plasmas 17,

112305 (2010)

29. Guo, S., Mei, L.: Three-dimensional dust-ion-acoustic rogue

waves in a magnetized dusty pair-ion plasma with nonthermal

nonextensive electrons and opposite polarity dust grains. Phys.

Plasmas 21, 82303 (2014)

30. Gharaee, H., Afghah, S., Abbasi, H.: Modulational instability of

ion-acoustic waves in plasmas with superthermal electrons. Phys.

Plasmas 18, 032116 (2011)

31. Hellberg, M.A., Mace, R.L., Baluku, T.K., Kourakis, I., Saini,

N.S.: Comment on ‘‘Mathematical and physical aspects of Kappa

velocity distribution’’. Phys. Plasmas 16, 094701 (2009)

32. Taniuti, T., Yajima, N.: Perturbation method for a nonlinear wave

modulation. J. Math. Phys. 10, 1369 (1969)

33. Asano, N., Taniuti, T., Yajima, N.: Perturbation method for a

nonlinear wave modulation. J. Math. Phys. 10, 2020 (1969)

34. Xue, J-K: Modulation of magnetized multidimensional waves in

dusty plasma. Phys. Plasmas 12, 062313 (2005)

35. Taniuti, T.: Reductive perturbation method and far fields of wave

equations. Progress Theoret. Phys. Suppl. 55, 1 (1974)

36. Liu, J.M., DeGroot, J.S., Matte, J.P., Johnston, T.W., Drake, R.P.:

Measurements of inverse bremsstrahlung absorption and non-

maxwellian electron velocity distributions. Phys. Rev. Lett. 72,

2717 (1994)

J Theor Appl Phys (2017) 11:217–224 223

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


37. Montgomery, M.D., Bame, S.J., Hundhausen, A.J.: Solar wind

electrons: vela 4 measurements. J. Geophys. Res. 73, 4999 (1968)

38. Maksimovic, M., Pierrard, V., Riley, P.: A kinetic model of the

solar wind with Kappa distribution functions in the corona.

Geophys. Res. Lett. 24, 1151 (1997)

39. Zouganelis, I.: Measuring suprathermal electron parameters in

space plasmas: implementation of the quasi-thermal noise

spectroscopy with kappa distributions using in situ Ulysses/

URAP radio measurements in the solar wind. J. Geophys. Res.

113, A08111 (2008)

40. Pierrard, V., Lazar, M.: Kappa distributions: theory and appli-

cations in space plasmas. Solar Phys. 267, 153 (2010). (and ref-

erences therein)

224 J Theor Appl Phys (2017) 11:217–224

123


	Amplitude modulation of three-dimensional low-frequency solitary waves in a magnetized dusty superthermal plasma
	Abstract
	Introduction
	The model equations and derivation of the 3D-NLSE
	Stability analysis
	Summary and conclusion
	Acknowledgements
	References




