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Abstract Point reactor kinetics equations with one group

of delayed neutrons in the presence of the time-dependent

external neutron source are solved analytically during the

start-up of a nuclear reactor. Our model incorporates the

random nature of the source and linear reactivity variation.

We establish a general relationship between the expecta-

tion values of source intensity and the expectation values of

neutron density of the sub-critical reactor by ignoring the

term of the second derivative for neutron density in neutron

point kinetics equations. The results of the analytical

solution are in good agreement with the results obtained

with numerical solution.

Keywords Neutron source � Delayed neutron � Point

reactor kinetics � Start-up

Introduction

The neutron point kinetics (NPK) equations are a system of

coupled nonlinear and stiff equations [1–3]. This system

describes the nuclear parameters such as neutron density,

reactivity and the precursor concentrations of delayed

neutrons [4]. Calculations of these parameters are con-

cerned with the reactor dynamics. The neutron density is

one of the most important parameters in reactor dynamics

[5–7]. According to the importance of neutron density in

the cold start-up stage, the external neutron source makes a

significant contribution to the reactor power [8]. In most

reactors, the reactivity is introduced mainly by discontin-

uous transferring of control rods which is, in practice, a

linear function. Applying too much reactivity will cause a

high increase in reactor power and can result in an over-

pressure accident in the reactor core [9]. Therefore, one

should carefully study the influence of external neutron

source on the reactor power [10, 11]. So far, appropriate

mathematical models have already been developed to study

the sub-critical kinetics, such as including the constant

external neutron source [6], approximation models [12–14]

and prompt jump approximation (PJA) [9, 15, 16].

In this work we extend the analytical method to deter-

mine the effect of external source on the behavior of the

neutron density during the start-up of a nuclear power

reactor. The source of neutron is considered as a function

of time.

This paper is organized as follows. In Sect. ‘‘Start-up

process’’, a brief description of the start-up process is

presented. In Sect. ‘‘External neutron source contribution’’,

the mechanism of interaction between the control rod and

external source is reviewed, and finally the authors discuss

and interpret the results. The section is also followed by

two appendices.

Start-up process

The start-up process of a reactor deals with the variation of

reactivity in the system which occurs by raising the control

rods in a discontinuous way [12]. So, the rule of neutron

density variation is significant because it not only describes

the relationship between lifting speed of the control rod,

duration and speed of neutron density response, but also is
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helpful to the operator to control the reactor start-up from

any accident [9, 17, 18]. The authors modified the analyt-

ical expressions for the calculation of neutron density from

a set of physical and mathematical approximations [9, 12,

15]. Since the reactor is in sub-critical state in the cold

start-up stage, the external neutron source cannot be

ignored. Due to the low average temperature in the reactor

core, here, the effect of temperature feedback can be

ignored [9, 19]; consequently, the NPK equations with the

external neutron source term for one group of delayed

neutrons can be written as follows [8, 11, 12, 16]:

dnðtÞ
dt

¼ qðtÞ � b
l

nðtÞ þ kcðtÞ þ qðtÞ

dcðtÞ
dt

¼ b
l

nðtÞ � kcðtÞ
ð1Þ

where nðneutron cm�3Þ is the neutron density,

cðneutron cm�3Þ is the precursor concentrations, b is the

total fraction of delayed neutrons, kðs�1Þ is the decay

constant of delayed neutrons, lðsÞ is the prompt neutron

generation time, q is the reactivity as a function of time,

and qðneutron cm�3 s�1Þ is the external neutron source.

To have a general solution, the variation of external

neutron source with respect to time is considered. Let us

first consider the external neutron source defined as the

ratios of polynomials of degree N:

qðtÞ ¼
XN

n¼0

qntn

We denote their reactivity by:

qðtÞ ¼
q0 þ rt 0� t\t0

q0 þ rt0 t� t0

�
ð2Þ

where q0 is the initial subcritical reactivity, rðs�1Þ repre-

sents the ramp reactivity addition rates and t0ðsÞ is the time

for taking out the rods.

Eliminating the dependency of precursor concentration,

the differential equation that governs the neutron density

during the withdrawal of the control rods is given by [9,

12]:

l
d2nðtÞ

dt2
¼ ðq � b � klÞ dnðtÞ

dt
þ kq þ dqðtÞ

dt

� �
nðtÞ

þ l kqðtÞ þ dqðtÞ
dt

� � ð3Þ

Since l
d2nðtÞ

dt2
is much smaller than the other terms in Eq. (3),

we ‘‘Ignore the second term derivative’’ (ISD). So, the only

approximation which we used in the calculations is ISD [9,

12]. According to the ISD, one can write:

ðq � b � klÞ dnðtÞ
dt

þ kq þ dqðtÞ
dt

� �
nðtÞ ¼ �l kqðtÞ þ dqðtÞ

dt

� �
:

ð4Þ

According to the data of some thermal reactors, i.e.

k ¼ 0:001 s�1; b ¼ 0:0075; q0 ¼ �0:006; l ¼ 0:0015 s, the

assumption of b � q � kl for very small ramp rate reac-

tivities is valid [12]. To find the analytical solution, pro-

vided n ¼ n1, q1 ¼ q0 þ rt, k1 ¼ kq0þr
r

and k2 ¼ b�q0

r
, the

equivalent form of Eq. (4) is rearranged as follows:

dn1

dt
þ k1 þ kt

t � k2

� �
n1 ¼ � l

rðt � k2Þ
XN

n¼0

ðkqn þ ðn þ 1Þqnþ1Þtn:

ð5Þ

Considering (u ¼ t � k2, g ¼ k1 þ kk2 � 1) [12], Eq. (5)

reduces to:

n1ðtÞ ¼
e�ku

ugþ1
� l

r

Z
dt ugeku

XN

n¼0

Xn

m¼0

n

m

� �
km

2 ðkqn

 

þðn þ 1Þqnþ1Þun�m þ AÞ:

One can write (for more details see ‘‘Appendix A’’):

n1ðtÞ ¼
e�ku

ugþ1

XN

n¼0

Xn

m¼0

anmcðg þ n � m þ 1;�kuÞ þ A

 !

ð6Þ

anm ¼ � l

r

� �
� 1

k

� �nþg�mþ1

km
2 ðkqn þ ðn þ 1Þqnþ1Þ

 !
n

m

� �
:

It is possible to determine the integration constant ðAÞ by

using initial condition, ðn1ð0Þ ¼ n0Þ, and so we have:

A ¼ �
XN

n¼0

Xn

m¼0

anmcðg þ n � m þ 1;�kuÞ þ n0ð�k2Þgþ1

ekk2

 !
:

ð7Þ

For t ¼ t0, the reactivity will reach a constant value

ðq2 ¼ q0 þ rt0Þ. At this time, neutron density is equal to

n2ðtÞ ¼ n2. Therefore, in this stage of introducing reactiv-

ity, the differential equation is given by:

dn2

dt
þ sn2 ¼

XN

n¼0

bntn; ð8Þ

where s ¼ kðq0þrt0Þ
q0þrt0�b and bn ¼ � lðkqnþðnþ1Þqnþ1Þ

q0þrt0�b . Finally, the

solution of Eq. (8) can be obtained from the integrating

factor method (for more details see ‘‘Appendix B’’):
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n2ðtÞ ¼ e�st
XN

n¼0

bn � 1

s

� �nþ1

Cðn þ 1;�stÞ þ B

 ! !
:

ð9Þ

The integral constant can be calculated by applying the

continuity condition (n2ðt0Þ ¼ n1ðt0Þ):

B ¼ est0�kðt0�k2Þ

ðt0 � k2Þgþ1

XN

n¼0

Xn

m¼0

anm½cðg þ n � m þ 1;�kðt0 � k2ÞÞ
 

�cðg þ n � m þ 1; kk2Þ� �
XN

n¼0

bn � 1

s

� �nþ1

� Cðn þ 1;�st0Þ þ
n0ð�k2Þgþ1

ekk2

!
:

ð10Þ

In summary, utilizing Eqs. (6) and (9), the neutron density

was calculated when the core of the reactor was interpo-

lated by an external source at the start-up stage. In the

following, the neutron density was calculated for the case

of a sinusoidal source, which is very close to a real system.

In addition, the constant source was also considered to

examine the validity of the obtained results.

External neutron source contribution

The analytical solution is calculated with two terms: one as

a function of sinusoidal fluctuation in the external source,

and the other as a function of constant source. Using the

sinusoidal solution, the importance of the source term in

the reactor kinetics analysis is better manifest.

Constant external neutron source

By calculating the neutron density for constant source,

ðq ¼ q0Þ, we have tried to show that the obtained result

reduces to Palma et al.’s result [12]. From density equation

definition of Eq. (6), we can write:

n1ðtÞ ¼
e�ku

ugþ1
ða00cðg þ 1;�kuÞ þ AÞ

� �
ð11Þ

where constants a00 and A are defined by:

a00 ¼ lq0

rð�kÞg ; A ¼ �lq0

rð�kÞg cðg þ 1; kk2Þ þ
n0ð�k2Þgþ1

ekk2

 !
:

The complete solution of Eq. (8) with external constant

source is given by:

n2ðtÞ ¼ e�st � b0

s

� �
Cð1;�stÞ þ B

� �� �
ð12Þ

In deriving n2ðtÞ, we used the continuity condition. In

Eq. (12), B is the integration constant given in terms of the

incomplete gamma function as:

B ¼ est0�kðt0�k2Þ

ðt0 � k2Þgþ1
ða00cðg þ 1; kðk2 � t0ÞÞ

 

þAÞ þ b0

s

� �
Cð1; st0Þ

�
:

Therefore, Eqs. (11) and (12) are in agreement with pre-

vious results [Eqs. (16), (24) [12]]. These solutions are

expressed in terms of incomplete gamma function and

related to the probability integral of the chi-squared dis-

tribution, as discussed and tabulated by Abramowitz and

Stegun [20].

Sinusoidal fluctuation

Due to fluctuation of neutron source around a constant

value, the source is time dependent. Accounting for the

sinusoidal external neutron source, qðtÞ ¼ q0sinxt (x ¼ 2p
T

,

where xðs�1Þ and TðsÞ are angular frequency and period of

Table 1 The neutron densities

and the relative errors for two-

stage insertion of reactivity in

the presence of a constant

external neutron source

Time Numerical solution without ISD (n1) Numerical solution with

ISD (n2)

Analytical solution with

ISD (n3)

tðsÞ n1ðtÞ � 108 n2ðtÞ � 108 ðRPEsÞ12 n3ðtÞ � 108 ðRPEsÞ13

2 2.53546 2.53761 0.04 2.53470 0.03

4 2.57417 2.57642 0.09 2.57051 0.14

6 2.61411 2.61648 0.91 2.60748 0.25

8 2.65536 2.65784 0.93 2.64566 0.36

10 2.69797 2.70058 0.97 2.68513 0.47

20 2.70175 2.70178 0.01 2.68638 0.57

30 2.70291 2.70436 0.05 2.68763 0.56

40 2.70415 2.70542 0.05 2.68881 0.57

50 2.70526 2.70649 0.04 2.69051 0.54
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source, respectively) can be useful for indicating the

environment effects in neutron density [16]. Let us recall

Eq. (6) for neutron density coefficients:

anm ¼ � 1

k

� �gþ2n�mþ1
lq0

r

� �
ð�1Þn

km
2 x2nþ1

m!ð2n � m þ 1Þ!

� �

2nþ1�m

ð13Þ

bnm ¼ � 1

k

� �gþ2n�mþ1

� lq0

r

� �
ð�1Þn

km
2 x2nþ1

m!ð2n � mÞ!

� �

2n�m

: ð14Þ

Neutron density can be presented as:

n1ðtÞ ¼
e�ku

ugþ1

XN

n¼0

X2nþ1

m¼0

armnmcðg þ 2n � m þ 2;�kuÞ
 

þ
XN

n¼0

X2n

m¼0

bnmcðg þ 2n � m þ 1;�kuÞ þ A

!
:

ð15Þ

After imposing the initial condition, n1ð0Þ ¼ n0, one can

determine the constant A from Eq. (15). So, we have:

A ¼ n0ð�k2Þgþ1

ekk2
�

XN

n¼0

X2nþ1

m¼0

anmcðg þ 2n � m þ 2; kk2Þ
 

þ
XN

n¼0

X2n

m¼0

bnmcðg þ 2n � m þ 1; kk2Þ
!
:

The solution of Eq. (8), in the second stage from insertion

of reactivity, can be calculated from the integration factor

method:

n2ðtÞ ¼ e�st
XN

n¼0

ðcnCð2n þ 2;�stÞ þ dnCð2n þ 1;�stÞÞ þ B

 !

ð16Þ

where

0 5 10 15 20 25 30 35 40 45 50
2.5

2.55

2.6

2.65

2.7

2.75
x 10

8

t [s]

n(
t)

[N
eu

tr
on

.c
m

−
3 ]

3.5 4 4.5 5 5.5 6 6.5
2.58

2.585

2.59

2.595

2.6

2.605

x 10
8

Analytical solution with ISD

Numerical solution with ISD

Numerical solution without ISD

Fig. 1 Comparison of the analytical solution with the numerical

solutions for r ¼ 0:0001 s�1, q0 ¼ �0:006, q ¼ 109 neutron
cm3 s

and t0 ¼
10 s in the presence of a constant external neutron source

Fig. 2 Multiplication factor as

a function of time and initial

reactivity for very small ramp

rate reactivity

ðr ¼ 0:00001 s�1Þ
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cn ¼ � lq0k
q0 þ rt0 � b

� �
ð�1Þnx2nþ1

ð2n þ 1Þ!

� �
1

s

� �2nþ2

dn ¼ lq0k
q0 þ rt0 � b

� �
ð�1Þnx2nþ2

ð2nÞ!

� �
1

s

� �2nþ1

:

In Eq. (16), B is the integration constant given in terms of

the incomplete gamma functions, which can be obtained

from continuity condition ðn1ðt0Þ ¼ n2ðt0ÞÞ:

B ¼ est0�kðt0�k2Þ

ðt0 � k2Þgþ1

XN

n¼0

X2nþ1

m¼0

anmcðg þ 2n � m þ 2; kðk2 � t0ÞÞ
 

þ
XN

n¼0

X2n

m¼0

bnmcðg þ 2n � m þ 1; kðk2 � t0ÞÞ þ A

!

� ðcnCð2n þ 2;�st0Þ þ dnCð2n þ 1;�st0ÞÞ:

Equations (15) and (16) represent the complete solutions of

Eqs. (15) and (8) in the presence of the sinusoidal external

neutron source.

Results and discussions

Neutron external source play an important role during the

start-up of a nuclear reactor. Therefore, the analytical

solutions of neutron point kinetics equations in the presence

of an external source are important in predicting the vari-

ation of neutron population during the start-up of a nuclear

reactor. Here, the analyses are presented for the thermal

reactor with the following parameters [9, 12]:

k ¼ 0:001s�1, l ¼ 0:0015s, b ¼ 0:0075, r ¼ 0:0001s�1,

q0 ¼ �0:006, and t0 ¼ 10s. Equations (6) and (9) are the

solutions of the neutron point kinetics equations with one-

group delayed neutron during the start-up of the thermal

reactor in a two-stage insertion of reactivity. They are valid

for any function that can be expressed by a power series.

Due to fluctuation of the neutron source around a mean

value, the source is actually time dependent. The general

solutions of NPK equations can well describe neutron

density response to any external neutron source, both

quantitatively and qualitatively. To verify the validity of the

analytical solutions, the variation of neutron density with

constant and sinusoidal external neutron source was cal-

culated. Specially, for n ¼ 0 and m ¼ 0; the neutron density

was obtained in the presence of a constant source [see Eqs.

(11), (12)]. This result is in line with Palma et al.’s work

[12]. In this work, numerical calculations were carried out

with generalized Runge–Kutta (GRK) method. The relative

percentage errors (RPEs) of the neutron density using

analytical and numerical solutions are defined as follows:

ðRPEsÞ12 ¼ j n1ðtÞ � n2ðtÞ
n1ðtÞ

j � 100

ðRPEsÞ13 ¼ j n1ðtÞ � n3ðtÞ
n1ðtÞ

j � 100;

Table 2 The neutron densities

and the relative errors for the

insertion of ramp reactivity in

the presence of a constant

external neutron source very

close to criticality

Time Numerical solution without ISD (n1) Numerical solution with

ISD (n2)

Analytical solution with

ISD (n3)

q0 n1ðtÞ � 108 n2ðtÞ � 108 ðRPEsÞ12 n3ðtÞ � 108 ðRPEsÞ13

�0.006 2.51850 2.51871 0.01 2.50754 0.43

�0.005 3.02397 3.02427 0.01 3.01219 0.39

�0.004 3.78256 3.78300 0.01 3.76987 0.33

�0.003 5.04754 5.04825 0.01 5.03385 0.27

�0.002 7.57880 7.58010 0.02 7.56416 0.19

�0.001 15.1761 15.1793 0.02 15.1615 0.10

0 1 2 3 4 5 6 7 8 9 10
5

5.005

5.01

5.015

5.02

5.025

5.03

5.035

5.04

5.045

5.05
x 10

8

t [s]

n(
t)

 [
N

eu
tr

on
.c

m
−

3 ]

Numericall soluotion without ISD
Numerical soluotion with ISD
Annlytical soluotion with ISD

r = 0.00001 s−1

ρ
0
 = −0.003

k
eff

 = 0.997

Fig. 3 Multiplication factor as a function of time and initial reactivity

for very small ramp rate reactivity ðr ¼ 0:00001 s�1Þ
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wherethe neutron densities of n1; n2 and n3 are the solutions

of numerical calculations without ISD, with ISD and ana-

lytical calculation with ISD, respectively. According to

Table 1, the RPEs are smaller than 1 %, and the resultant

RPEs are acceptable for engineering applications. So, the

results of the analytical calculations are in a good agree-

ment with the numerical results (see Fig. 1). Studying

neutron density with conditions close to the critical state

and small ramp rate reactivities ðr 	 1Þ is important for

reactor control and safety. Effective multiplication factor

ðkeffÞ values, close to the critical state is shown in Fig. 2.

As an example, Fig. 3 shows the numerical and analytical

solution results for r ¼ 10�5s�1; q0 ¼ �0:003 and

keff ¼ 0:9965, which are in good agreement with each

other. Data in Table 2 show that the RPEs of the numerical

and analytical solution are less than 0.5 % and also the

RPEs decrease for keff �! 1 and r 	 1. So, the ISD

approximation is valid for neutronic calculations very close

to criticality and r 	 1.

For n ¼ 2k þ 1 and k ¼ 0; 1; 2; ::: the power series

external source is:

qðtÞ ¼
XN

n¼0

antn

 !



XN

k¼0

a2kþ1t2kþ1

 !
¼ q0sinðxtÞ:

ð17Þ

Such a phenomenon is also explained by Hetrick [16]. As a

result, in the case of sinusoidal source with a small

amplitude of oscillations, the constant source approxima-

tion is applicable at the start-up process [21, 22].

As an example, the neutron density using analytical

solution for n ¼ 20, m ¼ 0; ::9, T ¼ 50 s and q0 ¼ 108 (blue

dashed-dotted line) was compared with numerical results,

with ISD and without ISD in Fig. 4. After raising the control

rods and during sturt-up, 10 s� t� 200 s, the neutron den-

sity increases with time, as shown in Fig. 5. Regarding

Table 3, the RPEs do not reach 1 %. Therefore, the results

of numerical and analytical methods are the same.

Conclusion

Since the external neutron source term is very important at

the start-up stage, it cannot be ignored. Due to the random

nature of the external neutron source, we can take a time-

dependent source. Therefore, in this work, an analytical

solution is presented for any neutron external source that

can be found in terms of a power series. Analytical solutions

in a general form are as in Eqs. (6) and (9). In particular,

analytical solutions are obtained for the constant [12] and

sinusoidal sources [16]. Numerical and analytical results in

both cases are in a good agreement with each other.

Open Access This article is distributed under the terms of the

Creative Commons Attribution License which permits any use, dis-

tribution, and reproduction in any medium, provided the original

author(s) and the source are credited.

Appendix A

Using transformation of variable u ¼ t � k2 and replacing

in Eq. (5), we have:

0 5 10 15 20 25 30 35 40 45
2.5

2.55

2.6

2.65

2.7

2.75

2.8

2.85
x 10

8

t (s)

n(
t)

[N
eu

tr
on

.c
m

−
3 ]

5 5.5 6 6.5 7 7.5

2.69

2.7

2.71

2.72

2.73

x 10
8

Numerical solution without ISD
Analytical solution with ISD
Numerical solution with ISD

Fig. 4 Comparison of the analytical solution with the numerical

solutions for r ¼ 0:0001 s�1, q0 ¼ �0:006, q0 ¼ 108 neutron
cm3 s

, T ¼ 50 s

and t0 ¼ 10 s in the presence of a sinusoidal external neutron source

0 20 40 60 80 100 120 140 160 180 200
2.5

2.55

2.6

2.65

2.7

2.75

2.8

2.85
x 10

8

t [s]

n(
t)[

N
ut

ro
n.

cm
−3

]

10

20

30

40

50

60

Nmerical solution without ISD

Fig. 5 The variation of neutron density during start-up for

r ¼ 0:0001 s�1, q0 ¼ �0:006, q0 ¼ 108 neutron
cm3 s

, T ¼ 50 s and

0� t � 200 s in the presence of a sinusoidal external neutron source,

which shows an increase in the neutron density with time, as expected
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dn1

dt
þ g þ 1

u
þ k

� �
n1

¼ � l

ru

XN

n¼0

ðkqn þ ðn þ 1Þqnþ1Þðu þ k2Þn;

ð18Þ

where g ¼ k1 þ kk2 � 1. Also using binomial expansion as

follows:

ðu þ k2Þn ¼
Xn

m¼0

n

m

� �
km

2 un�m

 !
;

one can write:

dn1ðtÞ
dt

þ g þ 1

u
þ k

� �
n1

¼ � l

r

XN

n¼0

Xn

m¼0

n

m

� �
km

2 ðkqn þ ðn þ 1Þqnþ1Þun�m�1

 !
;

where constant dnm are defined as follows:

dnm ¼ � l

r

n

m

� �
km

2 ðkqn þ ðn þ 1Þqnþ1Þ
� �

dn1ðtÞ
dt

þ g þ 1

u
þ k

� �
n1 ¼

XN

n¼0

Xn

m¼0

dnmun�m�1: ð19Þ

Equation (19) can be solved through the use of the inte-

grating factor method. Therefore, we get:

n1ðtÞ ¼
e�ku

ugþ1

XN

n¼0

Xn

m¼0

dnm

Z
du ekuugþn�m þ A

 !
: ð20Þ

Using the transformation of variable y ¼ �ku and

a ¼ g þ n � m þ 1, we have:

n1ðtÞ ¼
e�ku

ugþ1

XN

n¼0

Xn

m¼0

dnm � 1

k

� �gþn�mþ1Z t

0

dy e�yya�1 þ A

 !

ð21Þ

anm ¼ dnm � 1

k

� �gþn�mþ1

;

where

cða; tÞ ¼
Z t

0

dye�yya�1: ð22Þ

The solution of Eq. (21) can be written as:

n1ðtÞ ¼
e�ku

ugþ1

XN

n¼0

Xn

m¼0

anmcðg þ n � m þ 1;�kuÞ þ A

 !
:

ð23Þ

Appendix B

Incomplete gamma function is defined as:

Cða; tÞ ¼
Z 1

t

dye�yya�1: ð24Þ

Equation (9) can be solved through the use of the inte-

grating factor method. Therefore we get:

n2ðtÞ ¼ e�st
XN

n¼0

bn

Z
dt esttn þ B

 !
: ð25Þ

Using y ¼ �st, one can write:

n2ðtÞ ¼ e�st
XN

n¼0

bn � 1

s

� �nþ1Z
dy e�yyn þ B

 !
ð26Þ

, so we have:

n2ðtÞ ¼ e�st
XN

n¼0

bn � 1

s

� �nþ1

Cðn þ 1;�stÞ þ B

 !
: ð27Þ

Table 3 The neutron densities

and the relative errors for two-

stage insertion of reactivity in

the presence of a sinusoidal

external neutron source

Time Numerical solution without ISD (n1) Numerical solution with

ISD (n2)

Analytical solution with

ISD (n3)

tðsÞ n1ðtÞ � 108 n2ðtÞ � 108 ðRPEsÞ12 n3ðtÞ � 108 ðRPEsÞ13

2 2.56183 2.56537 0.14 2.56851 0.67

4 2.62788 2.63130 0.13 2.63726 0.36

6 2.69257 2.69612 0.13 2.70427 0.43

8 2.75431 2.75779 0.13 2.76780 0.49

10 2.81185 2.81538 0.12 2.82623 0.51

20 2.77479 2.77338 0.05 2.78378 0.32

30 2.63492 2.63345 0.06 2.64347 0.32

40 2.58991 2.59042 0.02 2.60039 0.40

50 2.70350 2.70533 0.08 2.71532 0.44
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