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Abstract The basic properties and form factors of the
deuteron system are investigated for the different forms of
the Wood—-Saxon potential. We have used the Nikiforov-
Uvarov (NU) method for analytical solution of the radial
Schrodinger equation. A comparison of the calculated
values with experimental results are given. It is shown that
the obtained results for the modified form of the Wood—
Saxon potential are very close to the experimental results in
comparison with other forms of the potential.

Keywords Deuteron form factors - Wood—Saxon
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Introduction

The internal structure of the nucleon has been the subject of
intensive experimental and theoretical studies for several
decads. The internal structure is conveniently described in
terms of electromagnetic form factors (FFs). The form
factors are a measurable and physical manifestation of the
nature of the nucleons’ constituents and the dynamics that
binds them together. The elastic electron—deuteron scat-
tering is one of the processes that probe mentioned struc-
ture. The deuteron electromagnetic form factors allow us to
describe interaction between the deuteron and electro-
magnetic field [1]. Different aspects of the underlying
nuclear structure of the deuteron can be obtained through
analysis of scattering of various probes at different energy
scales. As a relevant example, consider elastic electron—
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deuteron scattering. The form factor describes the structure
and spatial extension of a nucleus, because in real life
nuclei are not point like. The deuteron form factor Fp(g?)
provides an ideal illustration of the continuality between
nuclear and particle physics at the microscopic level. At
low momentum transfer, where the nucleons can be treated
as point-like objects and are the essential degrees of free-
dom, the usual effective potential Schrodinger theory is
appropriate, and meson exchange effects provide the
framework for the nuclear interaction. The deuteron elec-
tromagnetic form factors allow us to describe quantifiable
an interaction between the deuteron and electromagnetic
field. Form factors can be calculated in terms of informa-
tion about electron elastic scattering by deuteron [2, 3]. Our
goal in this project is to study the properties and form
factors of deuteron system. So, this paper is organized as
follows: “Deuteron form factors” introduces deuteron form
factors. In “NU (Nikiforov-Uvarov) method”, the theo-
retical framework of the NU method is briefly discussed.
The solution of the Schrodinger equation for Standard,
Generalized, and modified Wood-Saxon potentials via
mentioned method are presented in “Calculations”. In
“Numerical results and applications”, we will apply our
results to calculate the statics properties and form factors of
deuteron, and finally we summarize the paper and discuss
future perspectives of the study in “Conclusion”.

Deuteron form factors

The elastic electron-deuteron cross-section in the one-
photon exchange approximation is given by [4—0]
do

0
0~ ™ A(Q%) + B(Q?) tanzi (1)
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with

A0 = GHO) +SPGH(O) + G(0) (@)

B(0) = (1 +1)Gy(Q) G)
QZ

where Q% = 4EF' sinzg is the four-momentum transfer
squared, E is the incoming electron energy, 0 is the elec-
tron scattering angle, E’ is the scattered electron energy in

the lab rest frame, n = % , and M, is the deuteron mass.

The expression oy = (§3)yoq 1S @ Scattering cross-sec-
tion by non-structure spin-free particle derived by Mott.
Three terms (G, Gq,Gym) are the form factors making
contribution to the full cross-section. They are due to
charge, quadrupole moment, and magnetic moment of the
deuteron.

Calculation of deuteron form factors and static proper-
ties require a deuteron wave function [7, 8]. The best non-
relativistic wave function are calculated from Schrodinger
equation. An analytical solution of radial Schrodinger
equation is of high importance in non-relativistic quantum
mechanics, because the wave function contains all neces-
sary information for full description of a quantum system.
There are only few potentials for which the radial Schro-
dinger equation can be solved explicitly for n and /. So far,
many methods were developed, such as supersymmetry
(SUSY) [9, 10], Nikiforov-Uvarov (NU) method [11] the
Pekeris approximation [12].

NU (Nikiforov-Uvarov) method

The NU method provides an exact solution of the non-
relativistic Schrodinger equation for certain kinds of
potentials [13, 14]. This method is based on the solution of
generalized second-order differential linear equation with
special orthogonal functions and for any given real or
complex potential, the one-dimensional Schrodinger
equation is reduced to a generalized equation of the
hypergeometric with an appropriate S = S(r) coordinate
transformation. Thus it can be written in the following
form [11]:

t(s)
F// F/
(5)+ i F0) +
where o(s) and &(s) are polynomials at most second
degree, and 1(s) is a first degree polynomials. We use the
following transformation:

a(s)

a*(s)

F(s) =0, (5)

o
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F(s) = ¢(s)y(s) (6)

This selection reduces the Schrodinger equation (5), to an
equation of the hypergeometric type:

a(s)y"(s) 4+ t(s)y'(s) + Ay(s) = 0 (7)

¢(s) satisfies “3)’((:)) = % and y(s) is the hypergeometric
type function whose polynomial solutions are given by
Rodrigues relation:

(s) B, d"
§) =——
In p(s)ds"
B, is the normalization constant and the weight function
p(s) must satisfy the condition:

(o)) = 610 (s) ©)

[0"(s)p(s)] (3)

The function n(s) and the parameter A are defined as

, ~ , ~ 2
n(s) = o(s) —s) ; #(s) + \/(Ls) ;T(S)> —6(s) + ko(s)
(10)

and
i=k+1(s) (11)

Here, 7(s) obviously is a polynomial depended on the
transformation function s(r). On the other hand, to find the
value of k, the expression under the square root must be
square of a polynomial. This is possible only if its dis-
criminant is zero. Hence, a new eigenvalue equation for the
Schrodinger equation becomes

o+ 17 (5) —I—wa”(s) =0 (n=0,1,2,..),

(12)
where
1(s) = 7(s) + 2n(s) . (13)
Calculations

Standard Wood—Saxon potential

Woods and Saxon [15] introduced a potential to study
elastic scattering of 20 MeV protons by medium and heavy
nuclei. The Wood—Saxon potential is a reasonable potential
for nuclear shell model and hence attracts lots of attention
in nuclear physics. The spherical Wood—Saxon potential
that was used as a major part of nuclear shell model, has
received a lot of attention in nuclear mean field model, and
plays an essential role in microscopic physics [16]. The
standard Wood—Saxon potential is given by [17]:
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V(r) = — e)‘:o =t (14) where
Pl 2o 2@ (E—yDo) g 2pa’(Vo —7Di)
where R,V and a are mean radius, wall depth potential, "2 ’ W2 (22)
and skin thickness, respectively. ,  2ua*yD, RA(I+1)
Let us consider the radial part of Schrodinger equation = 2 - 21R?

with mentioned potential:

d’R 2
G2+ e B+ V(MR =0 (15)

Vo R+ 1)

Vtotal(r) = 1 + exp(ﬂ) -

2urt (16)
where [ is the angular momentum number, y is the reduced
mass, E,; is the appropriate energy eigenvalue, and rlz is the
centrifugal term.

Now, we want to solve the Eq. (15) for the [ # 0 cases
using NU method and Pekeris approximation to the centrif-
ugal for [ states [15—18]. The approximation is based on the
expansion of the centrifugal barrier in the series of expo-
nentials depending on the internuclear distance, keeping terms
up to second order. We now replace the centrifugal term
according to the Pekeris approximation with expression:

Vi(x) = y(Do +Di(1+ exp(ocx)fl +Dy(1 4 exp(ocx))%),
(17)
(r—R) _ R

where x = o L= and D; is the coefficients

(i=0,1,2). In the x = 0, the expression of (16) can be

expanded up to the terms x>,

where
~ D2 D]OC DZO(
— D - P S
Vilx) = V<°+2+4 <4+4>
D,o? Dio? Do
2 2 3 1 2
+y<x(16>+x<48 +48>+...)
(18)
4 12 8 48 48
Dy=1-—-+—, Di=-——, Dr=— (19)
o o o o o

We now can take the potential V; instead of the centrifugal
term in the Vi, and solve the Schrodinger equation. We
substitute (17) into (15) and using a new variable of the form

S(r) = exp (’ — R) (20)

a

we obtain the following:

d®R(s)  (s+1) dR(s) 1
ds? s(s+1) ds s2(s + 1)2
+ [ (B —26%)s+ (B> — 17 —

are dimensionless parameters.
According to the NU method, we can obtain n(s) , A and
nt

n(s)i{;i;[\/&Jr(\/WJrz\/&)s]}
ky =277 = B2+ V(1 + 47

w9 = {3 {Va (VI - 203

ko =277 — B — Vol +42), (23)
where o = (2 + 2 — §°).

L=22— B +(1+M)( +m>

(24)

—n(l +n+2\ 2+ - +/1 +4XZ) (25)

Comparing (24) and (25), the exact energy eigenvalues of
the radial Schrodinger equation with WS potential are
obtained as follows:

An =

E, =D+ f* - 1
2

PP =27 +nm+1)  (2n+1)

2pa? (1—|—2n—|—\/1—|—4x2) 2

(26)

where substitute the values of y, Dy, Dy, D>, ﬁ2 and XZ from
(19) and (22). The corresponding eigenfunction as follows:

(1 1 sp(V/1552) e

R,Ll(s) = Cn
nl(1 4 s) VI 2V =4 (27)
& [ T T
dS"
where C, is the new normalization constant and it is

determined by the condition fo a(8)ds = 1.

Generalized Wood—Saxon potential
We consider the following potential which is a general-

ization of the Wood—Saxon potential and it is given by
[19]:

N
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exp(=(55)

o exp(—(5F)

exp(2(=2)
1+ exp(—2(=£))’
(28)

V(r)=-V

where r stands for the center-of-mass distance between the
projectile nucleus and the target nucleus. The other

parameters in the potential R = roAs are the radius of the
corresponding spherical nucleus or the width of the
potential, A is the target mass number, ry is the radius
parameter, V| is the potential depth of the Coulombic part
[i.e., the first term on the right-hand side of (28)], a is the
diffuseness of the nuclear surface, and finally V, is an
introduced parameter for the second part of (28) (trans-
forms like potential barrier).

Now, rewriting (15) by employing the convenient
transformation

S() = ——— (29)

r—R

1+ ef(T)
The radial Schrodinger equation for the generalized Wood-
Saxon potential is as follows:

d®R(s) (1 —2s)dR(s) 1

2 s(1—s) ds  2(1—s)° (30)
[—12s* + (207 — ﬁz)s + (ﬁ2 -7 —&)] =0,
where 2, /32, ¢ and 7 are dimensionless parameters.

According to the previous section, we calculate the 7(s),
E,;, R, and write briefly

n(s)::l:-\/sz—i—xz—ﬁz—i— (s—\/sz—l—xz—ﬂz)s-

ky = > =262 +26\/2 + 2 — B

n(s) = £ [\ + 22—+ <s—\/£2+;{2—ﬁ2>s

ko = p* =262 — 26\ + 42 — B

V, — vD
E,; =Dy — TS 2]V2 .
M+ 72+ (43 (1 £/1+45))

) <<n2+x2+(n+;)<1i 1+4x2))+ﬁ2x2>2

2y
(32)
(1—15)sV £=p+e
le(s) - Cn 5
nl(1 — s) =2V -F+7 (33)
< (;ll Sn+2\/62+127[32(1 . S)n+2¢
Sn
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Modified form of Wood—-Saxon potential

In order to modify this potential for [ # 0, it is necessary to
add two terms to generalized potential, so we have a
modified potential as follows [20]:

Y v
Cren(Z (1+ep(5)°

r—R »f(r—R
+ &coth| —— | + ncoth™ | ——
a a

the parameters V;, V,, ¢ and # are real constant values. It is
required to remind the third and fourth terms in Eq. (34), in
limit r — R < a reformed as 1 and 2, respectively. These
forms are corresponding to the coulombian repulsive
potential and its square. In this section, using the NU
method, we solve analytically the radial part of time-
independent Schrodinger equation with angular momentum
[ # 0, for this modified shape of generalized Wood-Saxon
potential.
By considering a new transformation as

1
T

Vmod(r>
(34)

(35)

and according to the previous section the E,;, R,; are
calculated and write briefly:

Vi — D
E,; = yDo — T

( O(2_‘_32_)(2

2
—(?+ 22— )
VI+422+42 +2n—1
(36)
where

2 —2ua*(E — yDy) g = 2ua*(Vi — yD1)

"2 ’ "2
2 _2ud’(Va+yDs) (A1)
x pe DTS TR
2ua*é 2ua’y
2 2
o = h2 s ;\’ = hz (37)

R,.i(5)

(1 =)V (1 gt /i
nl(s(1 — 5))2VF ST () g Vi

w &[0 = )RV () g iE

ds”

(38)

The S and D state wave functions determined from these of
three potentials are shown in Figs. 1, 2 and 3,
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standard,generalized, and modified forms of the potential,
respectively. Also S and D states of the deuteron for the
wave function obtained from experimental data are shown
in Fig. 4. In the next section, we will apply these results to
calculate the statis properties and form factors of deuteron.

Numerical results and applications

In the non-relativistic impulse approximation, the charge
monopole, Gc(g), charge quadrupole, Gg(g), and magnetic
dipole, Gpm(g), form factors of the deuteron that may be
expressed in terms of the deuteron wave function and
nucleon isoscalar form factor as follows [21, 26, 27]:

Gela) =2Gi [ [12) -+ w1 i (% ) (39)

Gola) = 4G: [ [utwn) == (T)ar w0

M
Gu(q) = M—“ (2Gy,Cs + GeCL) (41)
P

ZGMO = GMP + GM,.v 2Gg = GEP + GEn, (44)

where u(r) and w(r) are the radial wave functions of the
bound state, while jj, j, are spherical Bessel functions.

The charge form factor for the neutron was assumed to
be zero, while the charge form factor for the proton was
parameterized as

1
Gy, = , 45
57 (14 0.05484442 ) (45)

where ¢ is the momentum transfer in fm~' units and the
magnetic form factors for the nucleon were determined on
the basic of the scaling law, Gm, = ,quEp and
Gwm, = 1,Gg,- Now, substituting the obtained wave func-
tions (Egs. 27, 33, and 38) into Egs. (39), (40), and (41)
leads to the form factors of the deuteron. The mentioned
form factors of the deuteron as a function of g for various
of the Wood-Saxon potential are calculated and the
obtained results are shown in Figs. 5, 6 and 7.

One can evaluate the electric quadropole moment using
the obtained wave functions which is expressed as

0=~ [ (utwin -2 e (46)

The obtained results are given in Table 1.

The deuteron magnetic moment can be expressed in
terms of the nucleon moments and the D-state probability
Pp [22], as follows:

3 1
ud=un+up—§<un+up—§)PD

Po= [ W)

With use of the obtained wave functions, the deuteron
magnetic moment is determined (see Table 1).

(47)

u(r)

15 4 w(r)
o
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Fig. 1 S and D states of the deuteron wave function for the standard
Wood—Saxon potential
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Fig. 2 S and D states of the deuteron wave function for the
generalized Wood—Saxon potential
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Fig. 3 S and D states of the deuteron wave function for the modified
Wood-Saxon potential
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Fig. 4 S and D states of the deuteron wave function from

experimental data [23]
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Fig. 5 Charge monopole form factor of the deuteron, G¢, as a
function of ¢ for the various versions of the WS potential
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Fig. 6 Charge quadrupole form factor of the deuteron, Gg, as a
function of g for the various versions of the WS potential
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Fig. 7 Magnetic dipole form factor of the deuteron, Gy, as a function
of g for the various versions of the WS potential

Finally, in the non-relativistic form the deuteron size
maybe characterized by a charge reduced ry, and by a
matter radius rp,. The rms charge radius r, is related to the
matter rms-radius r, by [22]

3K\
rfh = rfn + Arrzn + rg + rﬁ + 1 <m—> (48)
p
1
= Z/[uz(r) + Wz(r)]rzdr, (49)

where u(r) and w(r) are the S and D components of the NR
deuteron wavefunction, respectively. rp, is the matter
radius, ArZ is the effect of the meson exchange current plus
other non-classical effects, and r;, and r, are the root-mean-
square radii of the proton and neutron, respectively. The
obtained results are shown in Table 1.
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Table 1 The calculated values of electric quadrupole moment, magnetic dipole moment, D state percentage, matter and charge radius for

deuteron system comparison with experimental values

Quantity Vws(r) VGen(r) VMo (7) Exp. values [22]
Electric quadrupole moment Qq(fm?) 0.2769 £ (0.00622) 0.2818 £ (0.00281) 0.2836 + 0.2859(3) fm
Magnetic dipole moment py 0.8266 % (0.00957) 1y 0.8424 £ (0.00621)uy 0.8519 £ (0.0072) up 0.857438(94) uy
Matter radius ry (fm) 1.9532 £ (0.00475) 1.7269 £ (0.00358) 1.9532 £ (0.00475) 1.975(3) fm

2.1161(4)
6.659

Charge radius re,(fm)
D state percentage Py%

1.9092(3)
5.056 4.86 [2-6]

2.1354(9) 2.130(10) fm

Conclusion

We have used the Nikiforov-Uvarov (NU) method for
analytical solution of the radial Schrodinger equation. The
NU method provides an exact solution of the non-relativ-
istic Schrodinger equation for certain kinds of potentials.
With the use of the mentioned method, the wave function
are obtained for Standard, Generalized, and modified
Wood-Saxon potentials. A comparison of the calculated
values with experimental values is given. Then we applied
our results to calculate the static properties and form fac-
tors of deuteron system. It is shown that the obtained
results for modified form of the Wood—Saxon potential are
very close to the experimental results with other forms of
the potential. Our estimations indicate that the obtained
wave function for modified potential provides relatively
accurate values for form factors and static properties of
deuteron system, emphasizing on the importance of the
wave function and the nucleon-nucleon interaction model.

Open Access This article is distributed under the terms of the
Creative Commons Attribution License which permits any use, dis-
tribution, and reproduction in any medium, provided the original
author(s) and the source are credited.
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