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Abstract
The nonlinear propagation of dust-acoustic solitary waves (DASWs) in an unmagnetized dusty plasma consisting of two 
distinct temperature ions, two distinct temperature electrons and mobile dust fluid has been investigated by employing 
reductive perturbation method. It has been assumed that the two distinct temperature ions follow the Maxwell–Boltzmann 
distribution and nonthermal (Cairn’s) distribution separately while the two distinct temperature electrons follow the nonex-
tensive (Tsallis) distribution and superthermal (Kappa) distribution separately. The system has been treated by deriving and 
solving a set of three highly nonlinear equations such as K-dV, modified K-dV and Gardner equations. It has been noted that 
the basic properties of the DASWs are significantly modified by the presence of the nonthermal ions, nonextensive electrons 
and superthermal electrons. The possible applications of this investigation in astrophysical, space and laboratory plasma 
systems have also been briefly addressed.
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Introduction

The dusty plasma has become one of the prominent matters 
of studies during the last five decades because of its maxi-
mum presence in the universe. This is the most amazing and 
exciting matter of fact that more than ninety nine percent of 
the known universe is in the form of plasma and the remain-
ing one percent or less which includes our earth is not in the 
form of plasma. No doubt, this statement stresses strongly 
the importance of studying the plasma and hence dusty 
plasma. A plasma with dust particles or grains is termed 
as dust in a plasma or dusty plasma. Dust grains can be bil-
lions times heavier than proton, and their sizes range from 
nanometers to micrometers [1]. During the early studies of 
dusty plasmas, it had been assumed that the temperature of 
the dusty plasma particles is finite and the distribution of the 
dusty plasma particles follows the well-known Maxwellian 
distribution (based on the Boltzmann–Gibbs distribution) 

due to thermodynamic equilibrium. Boltzmann–Gibbs (BG) 
distribution is the distribution which describes the properties 
of plasma particles when the system is in the thermal equi-
librium. But the BG distribution is unable to describe the 
properties of many complex systems which are not in ther-
mal equilibrium. However, Tsalli [2] proposed a generalized 
version of BG statistics, known as nonextensive statistical 
mechanics for describing and analyzing complex systems out 
of thermal equilibrium. However, Tsalli’s nonextensive sta-
tistical mechanics also known as nonextensive (q) distribu-
tion has been successfully applied by some authors [3–5] for 
a large number of complex (dusty) plasma systems. Cairns, 
Verheest, Hellberg [6, 7] and many others utilized the effect 
of nonthermality on the dust-acoustic solitary waves using 
the ion density as
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characterizes the nonthermal effect and � is the number of 
nonthermal ions. The density of electrons on the basis of the 
Tsalli’s nonextensive distribution can be given as

where q measures the strength and degree of nonextensivity 
of electrons having temperature Te . It is evident that weakly 
coupled unmagnetized dusty plasma supports dust-acoustic 
(DA) mode [8]. The phase speed of such a (DA) mode is 
very much lower than electron or ion thermal speed. Conse-
quently, the charged mobile dust grains can be regarded as 
immobile in comparison with electrons or ions. The dust-
acoustic wave (DA mode) is extremely low phase veloc-
ity wave in which inertia comes from the dust mass and 
restoring force is provided by the pressure of the inertialess 
electrons and ions [8–10]

Many authors studied the dusty plasma theoretically as 
well as experimentally and found that the massive charged 
dust can modify the plasma systems generating the low-fre-
quency dust-acoustic waves [9, 10]. The pure plasmas (elec-
tron-ion plasmas) are often contaminated by solid impuri-
ties like dust which are in general not neutral and become 
charged (either positively or negatively) [11] by absorbing 
positive ions or electrons [12–15]. Plasma can also contain 
a significant amount of neutral particles [16]. Ikezi [17, 18] 
first pointed out a simple electron-ion plasma with a few 
micron-sized negatively charged dust grains which undergo 
strongly coupled regime due to high charge density and low 
temperature. A number of authors demonstrated the Ikezi’s 
prediction by laboratory experiments [19–21] and simula-
tion studies [22].

The kappa distribution for high energetic particles is con-
venient in analyzing the observational data which show a 
Maxwellian “core” at low energies and a power law-like tail 
at high energies [23]. Spacecraft and satellite observations 
revealed the fact the charged particles in astrophysical and 
space environments are very far from the thermodynamic 
equilibrium due to their extremely high temperature and 
low densities. These high energetic plasma particles follow 
the non-Maxwellian distribution like generalized Lorent-
zin distribution (kappa distribution) [24, 25]. The density 
of high energetic plasma particles like electrons following 
superthermal kappa distribution can be given by [26, 27]

where � is called the spectral index parameter, and if � → ∞ , 
this distribution goes to Maxwellian distribution. In this 
manuscript, we have utilized two temperature ions following 
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Maxwellian and nonthermal distributiions and two temper-
ature electrons following nonextensive and superthermal 
kappa distributions separately and analyzed the model for 
dust-acoustic solitary waves. To the best of our knowledge, 
there is no any published work in which two temperature 
ions and two temperature electrons have been considered for 
treating the dust-acoustic solitary waves. In order to under-
stand the variables and parameters easily, they have been 
tabulated. We have organized the manuscript as follows. 
The model equations are given in “Model equations” sec-
tion. The construction and the solution of K-dV equation are 
performed in “Construction of K-dV equation” section. The 
derivation and the solution of the modified K-dV equation 
are given in “Modified K-dV equation” section. The con-
struction and the solution of Gardner equation are performed 
in “Gardner equation” section. The numerical analysis has 
been made in “Numerical analysis” section.Finally, the find-
ings and discussion are presented in “Discussion” section 
(Table 1).

Table 1  Meanings of important parameters and variables

Parameters/variables Nomenclatures

� Nonthermal ion number
� Nonthermal parameter
q Nonextensive parameter
� Spectral index parameter
�
ih

Cold ion to hot ion temperature ratio
�
ec

Cold ion to cold electron temperature ratio
�
ih

Cold ion to hot electron temperature ratio
�
ic

Cold ion number density parameter
�
ih

Hot ion number density parameter
�
ec

Cold electron number density parameter
�
eh

Hot electron number density parameter
T
ic

Cold ion temperature
T
ih

Hot ion temperature
T
ec

Cold electron temperature
T
eh

Hot electron temperature
n
ic

Cold ion number density
n
ih

Hot ion number density
n
ec

Cold electron number density
n
eh

Hot electron number density
n
d

Dust number density
n
ic0

Equilibrium value of n
ic

n
ih0

Equilibrium value of n
ih

n
ec0

Equilibrium value of n
ec

n
eh0

Equilibrium value of n
eh

n
d0

Equilibrium value of n
d

u
d

Dust fluid speed
m

d
Dust mass

Z
d

No. of electronic charges on dust surface
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Model equations

We would like to consider a collisionless unmagnetized dusty 
plasma containing Maxwellian ions, nonthermal ions, non-
extensive electrons, superthermal electrons and negatively 
charged mobile dust fluid. Some authors [28–30] have studied 
these types of dusty plasmas theoretically while some others 
[31–33] have studied experimentally.

The restoring force and the inertia which are the precondi-
tions for the formation of dust-acoustic waves come, respec-
tively, from the electron or ion thermal pressure and the dust 
mass. Thus, the extremely low-frequency dust-acoustic waves 
are formed. The quasi-neutrality condition of the system, at 
equilibrium, can be given as nic0 + nih0 = nec0 + neh0 + Zdnd0 , 
or in normalized form, �ic + �ih = �ec + �eh + 1 , where Zd is 
the number of electrons residing onto the dust grain surface; 
nec0 , neh0 , nic0 , nih0 and nd0 are, respectively, the equilibrium 
number densities of cold electrons (with temperature Tec ), hot 
electrons (with temperature Teh ), cold ions (with temperature 
Tic ), hot ions (with temperature Tih ) and dust; we also assume 
that Teh > Tec > Tih > Tic , and we call the electrons with 
temperature Teh as hot superthermal electrons, electrons with 
temperature Tec as cold nonextensive electrons, ions with tem-
perature Tih as hot nonthermal ions, ions with temperature Tic as 
cold Maxwellian ions; �ec , �eh , �ic and �ih are respectively the 
equilibrium number density ratios of cold nonextensive electron 
to dust, hot superthermal electron to dust, cold Maxwellian ion 
to dust and hot nonthermal ion to dust. The dynamics of the sys-
tem can be described by the normalized equations of the forms:

where

and nd is the dust number density normalized by its equilib-
rium value nd0 ; ud is the dust fluid speed normalized by Cd ; 
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� is the electrostatic wave potential normalized by Tic∕e . 
According to our assumption, �ic = nic0∕(Zdnd0) , 
�ih = nih0∕(Zdnd0) , �ec = nec0∕(Zdnd0) , �eh = neh0∕(Zdnd0) , 
�ih = Tic∕Tih , �ec = Tic∕Tec , �eh = Tic∕Teh ; Tic , Tih , Tec and 
Teh are, respectively, the temperatures of the cold Max-
wellian ions, the hot nonthermal ions, the cold nonextensive 
electrons and the hot superthermal electrons in units of 
energy. The time var iable t  is normalized by 
�−1
pd

= (md∕4�Z
2
d
e2nd0)

1∕2 and the space variable x is nor-
malized by �Dm = (Tic∕4�nd0Zde

2)1∕2 . The parameter � 
measures the slope of the energy spectrum of the superther-
mal particles that form the tail of the distribution function, 
called spectral index parameter.

Construction of K‑dV equation

In order to construct the nonlinear Burger’s equation by uti-
lizing the reductive perturbation method (ROPM), we must 
introduce the proper stretched coordinates. To study the elec-
trostatic dust-acoustic shock waves in the dusty plasma system 
under consideration, we develop a nonlinear theory of dust-
acoustic waves with small but finite amplitude which leads us 
to a scaling of the independent variables through the stretched 
coordinates [34–36]

where Vp is the phase speed of the perturbation mode and � 
is a small and dimensionless parameter ( 0 < 𝜖 < 1 ) which 
measures the weakness of the dispersion. Now, the perturbed 
quantities nd , ud and � can be expanded in power series of 
� as

Applying stretched coordinates (8) and perturbed quanti-
ties (9) into Eqs. (5)–(7), three equations are formed. Now, 
equating the coefficients of �

3

2 from first two equations and 
the coefficient of � from the third equation, one can find
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where

Equation (10) indicates the linear dispersion relation for the 
low-frequency dust-acoustic solitary waves superimposed 
by Maxwellian and nonthermal ions, and nonextensive and 
superthermal electrons of high temperature. Now, equating 
the coefficients of �5∕2 from first two Eqs. (5)–(6) and sim-
plifying them, one can get

Again, equating the coefficients of �2 from Eq. (7), differ-
entiating it with respect to � , utilizing Eqs. (10) and (16), 
rearranging and replacing �(1) by � , we have an equation of 
the form:

where

where A and B are, respectively, the nonlinear and dispersion 
coefficients. Equation (17) is the nonlinear K-dV equation. 
Equation (17) is known as the K-dV equation.

Solution of K‑dV equation

The localized stationary solution of K-dV Eq. (17) is given as

where �m = 3U0∕A is the amplitude, Δ1 =
√
4B∕U0 is the 

width and U0 is the static velocity of the K-dV soliton.
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Modified K‑dV equation

We carefully observe that the nonlinear K-dV equation does 
not give satisfactory result when the nonlinear coefficient 
A → 0 at the critical value of the spectral index parameter 
� = �c = 1.4983 . In such a situation, higher-order nonlinear 
equation is needed to describe the situation at A → 0 . This 
higher-order nonlinear equation is constructed by equating the 
higher-order coefficients of � . Now we proceed to form the 
higher-order nonlinear equation, i.e., modified K-dV equation. 
The stretched coordinates we require to introduce for modified 
K-dV equation are

where VP is the phase velocity of the perturbed mode and 
� is the small and dimensionless parameter ( 0 < 𝜖 < 1 ) as 
mentioned before. Substituting (9) and (21) in Eqs. (5)–(7), 
equating the coefficients of �3 from first two equations and 
equating the coefficients of �2 from the last equation, and 
then, simplifying, one can show that

where

Now, equating the coefficients of �4 from first two equations, 
equating the coefficients of �3 from the last equation and 
differentiating it with respect to � and finally simplifying 
these three equations, we have the desired modified K-dV 
equation of the form

where
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are, respectively, known as the dispersion and nonlinear 
coefficients.

Solution of modified K‑dV Equation

The steady-state localized solution of modified K-dV (mK-
dV) equation can be shown to be

where the amplitude �m and the width Δ2 are, respectively, 
given as �m =

√
6U0∕A1A2 and Δ2 = �m

√
A2∕6.

Gardner equation

Now we wish to derive the most nonlinear equation, i.e., the 
Gardner equation. Equating the coefficients of �4 from first 
two equations, simplifying, equating the coefficients of �3 
from the last equation and differentiating it with respect to � , 
involving it with the previous two, one can find the equation

Again, equating the coefficients of �2 from the Poisson’s 
equation using the term �2�(2) = 1

2
SC�3�2 , we have

Differentiating it with respect to � , using the value of �(3) 
and using other relevant equations, we ultimately reach an 
equation of the form

Equation (30) is a highly nonlinear equation and known as 
Gardner nonlinear equation.

Solution of Gardner equation

It is not easy to solve the Gardner equation. One way to solve 
the Gardner equation is to use a transformation relation as 
� = � − U0t in steady-state condition. Using this transforma-
tion relation, Gardner Eq. (30) can be expressed as

where V(�) is the pseudo-potential and it is the function of 
amplitude �m1,2 , the steady-state velocity U0 of the solitary 
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waves, the dispersion coefficient A1 , the nonlinear coefficient 
A2 , etc. The pseudo-potential can now be expressed as

where the parameters A1 and U0 are positive. Imposing the 
boundary conditions

on Eq. (32), one can show that

Using these conditions on Eq.  (32), we can solve the 
equation

Explicitly, Eq. (34) is a quadratic equation and it has two 
roots. Comparing Eq. (34) with standard quadratic equation

the two solutions of this equation can be written as

or separately,

and

w h e r e  �0 = −CS∕A2  i s  t h e  a m p l i t u d e  a n d 
V0 = 6A2∕(A1C

2S2). The solitary solution of the quadratic 
Eq. (31), also called as an “energy integral” of an oscillat-
ing particle with unit mass, with pseudo-position � , with 
pseudo-time � and pseudo-speed d�∕d� , can now be given 
as
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where Δ3 = 2∕
�√

A2�m1�m2∕6
�
 is the width of the Gardner 

solitary waves.

Numerical analysis

In order to express the results of this investigation numeri-
cally and graphically, we have assumed that the temperature 
of the hot electrons is ten times greater than the temperature 
of cold electrons, temperature of cold electrons is ten times 
greater than the temperature of hot ions, and the tempera-
ture of the hot ions is ten times greater than the tempera-
ture of cold ions. That is, by our assumptions, Teh > 10Tec ; 
Tec > 10Tih ; Tih > 10Tic or, Teh > 10Tec ; > 100Tih ; > 1000Tic . 
The temperature ratio of cold ions to hot ions has been des-
ignated as �ih , the temperature ratio of cold ions to cold 
electrons has been designated as �ec , and the temperature 
ratio of cold ions to hot electrons has been designated as 
�eh . So, by our assumptions, �ih = 0.1 , �ec = 0.01 and 
�ec = 0.001 . It is notable from K-dV Eq. (17) that it does 
not give any significant result corresponding to the nonlinear 
coefficient A → 0 . Solution (20) of K-dV Eq. (17) will give 
finite amplitude solitary waves if the static velocity U0 > 0 
and the condition 𝜙 > (<)0 is maintained. We have calcu-
lated the critical value for the current model of the dusty 
plasma by arbitrarily choosing the spectral index parameter 
� to have a desired parametric solution of highly nonlin-
ear Gardner equation. We have used the typical vales for 
the parameters as �ic = 0.8 , �ih = 0.6 , �ec = 0.3 , �eh = 0.1 , 
�ih = 0.1 , �ec = 0.01 , �eh = 0.001 , � = 0.5 , q = 1.49 for 
evaluating the critical value corresponding to the nonlin-
ear coefficient A = 0 . Using these values of the param-
eters and applying the condition A = 0 , we get two criti-
cal values for the spectral index parameter as �c = 1.49828 
(Approx) and �c = 1.49829 (Approx). Depending on these 
critical values of the spectral index parameter and using 
the typical values of the other parameters at the condition 
A�=�c

= 0 , we have also evaluated the C value for the system 
and these are C = 0.0000319999 (when �c = 1.49828 ) and 
C = −0.0000319999 (when �c = 1.49829 ). We have plotted 
the variation of the amplitude of DASWs with the spectral 
index parameter on the basis of the solution of the K-dV 
equation in Fig. 3. We have also shown the variation of the 
amplitude of DASWs with the spectral index parameter on 
the basis of the solution of mK-dV equation in Fig. 5. If we 
compare these two Figs. 3 and 5, we note that mK-dV soli-
tary waves or mK-dV solitons exist for the larger value of 
the spectral index parameter � than the K-dV solitary waves 
or K-dV solitons. It is justified because mK-dV equation is 
more nonlinear than the K-dV equation. We have drawn the 
variation of the amplitude of the DASWs with the spectral 
index parameter � on the basis of the solution of Gardner 

Eq. (32) in Figs. 7 and 8. In Fig. 7, we have used the positive 
value of C, and thus, we get the positive potential Gardner 
solitary waves or Gardner solitons, whereas we have utilized 
the negative value of C in Fig. 8 and we get the negative 
potential Gardner solitary waves or Gardner solitons.

We see from Eq. (18) that the nonlinear coefficient A is 
the function of a set of parameters such as �ih , �ec , �ih , �ec , � 
and � . We have used a set of standard values of the param-
eters like many authors.

In Fig. 1, we have plotted the variation of the phase veloc-
ity VP of DASWs with the nonthermal parameter � and the 
different values of the nonextensive parameter q. It is clear 
from this figure that if the value of the nonthermal parameter 
� increases, the phase velocity increases almost linearly for 
a long range of the value of the nonthermal parameter � . 
The phase velocity decreases smoothly at the increase in 
the nonextensive parameter q which can be seen from the 
blue ( q = 0.7 ), the green ( q = 1.1 ) and the red ( q = 1.49 ) 
curves in Fig. 1.

In Fig. 2, we have shown the variation of the phase veloc-
ity of the DASWs with the spectral index parameter � and 
the different values of the cold ion number density parameter 
�ic . The phase velocity of DASWs increases at first, almost 
linearly with the spectral index parameter � , and then, it 
increases sharply and exponentially with the increase in the 
spectral index parameter � . The phase velocity decreases 
abruptly with a small increase in the cold ion number density 
parameter �ic which can be seen from the blue, the green and 
the red curves in Fig. 2.

Figure 3 shows the variation of the amplitude of the 
DASWs (obtained from the solution of the nonlinear K-dV 
equation) with the position coordinate � and the spectral 
index parameter � . The amplitude of the DASWs remains 

Fig. 1  (color figure online) Variation of phase velocity VP of DASWs 
with nonthermal parameter � and the different values of the nonexten-
sive parameter q. For blue, green and red curves, the values of q are, 
respectively, q = 0.70 , q = 1.10 and q = 1.49 . For other parameters, 
we have chosen �ic = 0.8 , �ih = 0.6 , �ec = 0.3 , �eh = 0.1 , �ih = 0.1 , 
�ec = 0.01 , �eh = 0.001 , and � = 1.4983
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almost constant with the increase in the spectral index 
parameter � for a long range of the value of the spectral 
index parameter. When the spectral index parameter reaches 
its critical value, i.e., when � = �c = 1.4983 corresponding 
to A → 0 , the breakdown of ROPM occurs due to the infi-
nitely large amplitude of DASWs (not shown in figure).

Figure 4 shows the variation of the amplitude of the 
DASWs (obtained from the solution of the nonlinear K-dV 
equation) with the position coordinate � and the nonther-
mal parameter � . The amplitude of the DASWs decreases 
slightly with the increase in the nonthermal parameter � up 
to a certain value of the nonthermal parameter.

In Fig. 5, we have plotted the variation of the amplitude 
of the DASWs (obtained from the solution of the modified 

K-dV equation) with the position coordinate � and the 
spectral index parameter � . The amplitude of the DASWs 
remains almost constant with the increase in the spectral 
index parameter � for value near to the critical value of the 
spectral index parameter. If the value of the � is further 
increased, the breakdown of ROPM occurs again due to the 
infinitely large-amplitude DASWs.

In Fig. 6, we have depicted the variation of the ampli-
tude of the DASWs (obtained from the solution of the 
modified K-dV equation) with the position coordinate � 
and the nonthermal parameter � . The amplitude of the 
DASWs remains almost constant with the increase in the 

Fig. 2  (color figure online) Variation of phase velocity VP of DASWs 
with spectral index parameter � and the different values of the cold 
ion number density parameter �ic . For blue, green and red curves, 
the values of �ic are, respectively, �ic = 0.75 , �ic = 0.7505 and 
�ic = 0.751 . For other parameters, we have chosen � = 0.5 , �ih = 0.6 , 
�ec = 0.3 , �eh = 0.1 , �ih = 0.1 , �ec = 0.01 , �eh = 0.001 , and q = 1.49

Fig. 3  (color figure online) Variation of the amplitude � of DASWs 
with position coordinate � and the spectral index parameter � . For 
other parameters, we have chosen � = 0.5 , �ih = 0.6 , �ec = 0.3 , 
�eh = 0.1 , �ih = 0.1 , �ec = 0.01 , �eh = 0.001 , q = 1.49 and U

0
= 0.01

Fig. 4  (color figure online) Variation of the amplitude � of DASWs 
with position coordinate � and the nonthermal parameter � . For other 
parameters, we have chosen � = 1.4 , �ih = 0.6 , �ec = 0.3 , �eh = 0.1 , 
�ih = 0.1 , �ec = 0.01 , �eh = 0.001 , q = 1.49 and U

0
= 0.01

Fig. 5  (color figure online) Variation of the amplitude � of DASWs 
(on the basis of the solution of modified K-dV equation) with position 
coordinate � and the spectral index parameter � . For other parameters, 
we have chosen � = 0.5 , �ih = 0.6 , �ec = 0.3 , �eh = 0.1 , �ih = 0.1 , 
�ec = 0.01 , �eh = 0.001 , q = 1.49 and U

0
= 0.01
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nonthermal parameter � for a wide range of the value of 
the nonthermal parameter.

Figure 7 shows the variation of the (negative) amplitude 
DASWs (on the basis of the solution of Gardner equa-
tion) with position coordinate � and the spectral index 
parameter � . It is observed from this figure that ampli-
tude of the DASWs remains constant with the increase 
in the spectral index parameter for a long range of the 
value of the spectral index parameter � . It can be noted 
from this figure that the increase in the value of � up to 

its critical value ( � = �c = 1.4983 ) does not affect the 
amplitude of the DASWs. In other words, solitary waves 
or Gardner solitons exist at the critical value of the spec-
tral index parameter. That means, no breakdown of ROPM 
occurs at the critical value of the spectral index parameter 
( � = �c = 1.4983 ) corresponding to A → 0 . So, Gardner 
solitons exist for this model of dusty plasmas.

Figure 8 shows the variation of the (positive) amplitude 
DASWs (on the basis of the solution of Gardner equation) 
with position coordinate � and the spectral index param-
eter � . It is notable from this figure that the amplitude 
of the DASWs remains constant up to the critical value 
of the spectral index parameter. Gardner solitons exist at 
the critical value of the spectral index parameter (i.e., at 
� = �c = 1.4983 ) corresponding to nonlinear coefficient 
A → 0.

Discussion

In this article, we have carried out an investigation on the 
dust-acoustic solitary waves in an unmagnetized dusty 
plasma consisting of two temperature ions (nonthermal 
Cairn’s distributed ions and Maxwell–Boltzmann distributed 
ions), two temperature electrons (superthermally distributed 
electrons and nonextensively distributed electrons) and neg-
atively charged mobile dust fluid. By employing reductive 
perturbation method (ROPM), we have constructed a set 
of three highly nonlinear equations (K-dV equation, modi-
fied K-dV equation and Gardner equation) and solved these 
equations under steady-state conditions. The results of this 

Fig. 6  (color figure online) Variation of the amplitude � of DASWs 
(on the basis of the solution of modified K-dV equation) with position 
coordinate � and the nonthermal parameter � . For other parameters, 
we have chosen � = 1.45 , �ih = 0.6 , �ec = 0.3 , �eh = 0.1 , �ih = 0.1 , 
�ec = 0.01 , �eh = 0.001 , q = 1.49 , U

0
= 0.01 , S = 1 and C = 0.000032

Fig. 7  (color figure online) Variation of the (negative) amplitude 
DASWs (on the basis of the solution of Gardner equation) with 
position coordinate � and the spectral index parameter � . For other 
parameters, we have chosen � = 0.5 , �ih = 0.6 , �ec = 0.3 , �eh = 0.1 , 
�ih = 0.1 , �ec = 0.01 , �eh = 0.001 , q = 1.49 , U

0
= 0.01 , S = 1 and 

C = −0.000032

Fig. 8  (color figure online) Variation of the (positive) amplitude 
DASWs (on the basis of the solution of Gardner equation) with 
position coordinate � and the spectral index parameter � . For other 
parameters, we have chosen � = 0.5 , �ih = 0.6 , �ec = 0.3 , �eh = 0.1 , 
�ih = 0.1 , �ec = 0.01 , �eh = 0.001 , q = 1.49 , U

0
= 0.01 , S = 1 and 

C = 0.000032
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investigation have been treated and explained both graphi-
cally and numerically. In this current model of dusty plas-
mas, we have observed that the solitary waves or solitons 
exist, particularly K-dV solitons exist very far below the 
critical value of the spectral index parameter ( �c = 1.4983 ), 
modified K-dV solitons exist far below (not very far), and 
Gardner solitons exist at and around the critical value of the 
spectral index parameter ( �c = 1.4983 ). The basic properties 
of the dust-acoustic solitary waves are found to be modified 
strongly by the changes of the nonthermal, nonextensive 
and superthermal effects of ions and electrons. However, 
the important results of this investigation are pointed out as 

(I)  Dust-acoustic solitary waves exist on the basis 
of the solutions of the K-dV, modified K-dV and 
Gardner equations for the current model of dusty 
plasmas.

(II)  K-dV solitons exist far below the critical value of 
the spectral index parameter ( �c ) corresponding to 
A → 0.

(III)  The amplitude of the K-dV solitons slightly 
decreases with the increase in the nonthermal 
parameter � (Fig. 4), and the amplitude remains 
constant with the increase in the spectral index 
parameter � (Fig. 3).

(IV)  At the critical of the spectral index parameter, i.e., 
at � = �c , the breakdown of the ROPM occurs due 
to the infinitely large-amplitude solitary waves cor-
responding to A → 0.

(V)  No K-dV solitons are available near and at the criti-
cal value of the spectral index parameter ( � = �c).

(VI)  Modified K-dV (mK-dV) solitons exist near the 
critical value of the spectral index parameter 
( � = �c).

(VII)  The amplitude of the modified K-dV solitons 
remains nearly constant with the increase in the 
spectral index parameter � (Fig. 5) and the nonther-
mal parameter � (Fig. 6).

(VIII)  Both negative and positive amplitude Gardner soli-
tons exist at the critical value of the spectral index 
parameter ( � = �c).

(IX)  No breakdown of ROPM occurs for higher-order 
nonlinear Gardner equation corresponding to 
A → 0 and Gardmer solitons exist for the current 
model of dusty plasmas.

(X)  The amplitude of negative and positive amplitude 
DASWs remains constant with the increase in the 
spectral index parameter � (Figs. 7 and 8).

We have carefully noted that both positive and negative 
polarity K-dV, mK-dV and Gardner solitary waves or soli-
tons exist for this multitemperature dusty plasma model. The 
fundamental properties of the dust-acoustic solitary waves 

such as amplitude, width and polarity are seen to be strongly 
modified by the presence of the two temperature ions (Max-
wellian and nonthermal ions), two temperature electrons 
(nonextensive and superthermal electrons) and negatively 
charged mobile dust. It can be inferred that the results of 
this investigation should be useful for treating the nonlin-
ear features of localized electrostatic disturbances in both 
astrophysical plasma systems such as the edges of the AKR 
(auroral kilometric radiation) source regions [37], the nocti-
lucent cloud region in the Earth’s atmosphere [38], the solar 
neutrino deficit problems, the self-gravitating polytropic 
systems, the peculiar velocity distribution of galaxy clus-
ters, Saturn’s rings, cometary environments and the labora-
tory plasma systems such as the radio frequency discharge 
plasma [39], hot turbulent thermonuclear plasma [40], dis-
sipative optical lattices [4], thermoluminescence dosimetry 
and the dating of archeological and geological minerals [3]. 
We, therefore, propose to perform a laboratory experiment 
which would be able to identify such special features of 
DASWs found in our present investigation.
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