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Abstract
In this paper, we present a parallel algorithm for Monte Carlo simulation of the 2D Ising Model to perform efficiently on a

cluster computer using MPI. We use C?? programming language to implement the algorithm. In our algorithm, every

process creates a sub-lattice and the energy is calculated after each Monte Carlo iteration. Each process communicates with

its two neighbor processes during the job, and they exchange the boundary spin variables. Finally, the total energy of lattice

is calculated by map-reduce method versus the temperature. We use multi-spin coding technique to reduce the inter-process

communications. This algorithm has been designed in a way that an appropriate load-balancing and good scalability exist. It

has been executed on the cluster computer of Plasma Physics Research Center which includes 9 nodes and each node

consists of two quad-core CPUs. Our results show that this algorithm is more efficient for large lattices and more iterations.

Keywords Ising model � Monte Carlo method � Multi-spin coding � MPI

Introduction

The Ising model [1] gives a microscopic description of the

ferromagnetism which is caused by the interaction between

spins of the electrons in a crystal. The particles are

assumed to be fixed on the sites of the lattice. Spin is

considered as a scalar quantity which can achieve two

values þ1 and � 1. The model is a simple statistical one

which shows the phase transition between high-tempera-

ture paramagnetism phase and low-temperature ferromag-

netic one at a specific temperature. In fact, the symmetry

between up and down is spontaneously broken when the

temperature goes below the critical temperature. However,

the one-dimensional Ising model, which has been exactly

solved, shows no phase transition. The two-dimensional

Ising model has been solved analytically with zero [2] and

nonzero [3] external field. In spite of a lot of attempts to

solve 3D Ising model, one might say that this model has

never been solved exactly. All the results for the three-

dimensional Ising model have been used approximation

approaches and Monte Carlo methods.

Monte Carlo methods or statistical simulation methods

are widely used in different fields of science such as phy-

sics, chemistry, biology, computational finance and even

new fields like econophysics [4–9]. The simulation can

proceed by sampling from the Probability Density Function

and generating random numbers uniformly. The simulation

of the Ising model on big lattices increases the cost of

simulation. One way to reduce the simulation cost is to

design the algorithms which work faster. Swendsen-Wang

and Wolff algorithms [10, 11] and multi-spin coding

methods [12–14] are the examples of such methods.

Another way is to parallelize and execute the model on

GPUs, GPU clusters and cluster computers [15–27].

In this paper, we present a parallel algorithm to simulate

the 2D Ising model using Monte Carlo Method. Then, we

run the algorithm on a cluster computer using C?? pro-

gramming language and MPI. Message Passing Interface

(MPI) is a useful programming model in HPC systems

[28–34] in which the processes communicate through

message passing and was designed for distributed memory

architectures. MPI provides functionalities which allow

two specified processes to exchange data by sending and
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receiving messages. To get high efficiency, it is necessary

to have good load balancing and also to have minimum

communications between processes.

In our algorithm, each individual process creates its own

sub-lattice, initializes it, gets all Monte Carlo iterations

done and calculates the energy of the sub-lattice for a

specific temperature. Each process communicates with its

two neighbor processes during the job and they exchange

the boundary spin variables. Finally, the total energy of

lattice is calculated by map-reduce method. Since in multi-

spin coding technique each spin is stored by 3 bits, inter-

process communications are reduced considerably. Because

computational load of each sub-lattice is assigned to each

process and size of all sub-lattices is equal, an appropriate

load balancing exists. Since each process—independent of

number of processes—only communicates with its two

neighbor processes and the lattice is decomposed into sub-

lattices, the algorithm benefits a good scalability.

This paper has been organized as follows. In ‘‘Metro-

polis algorithm and Ising model’’ section, Metropolis

algorithm and the Ising model are studied briefly. In

‘‘Multi-spin coding method’’ section, we explain how to

use Multi-spin coding method to calculate the interaction

energy between a specific spin and its nearest neighbors.

We also study the boundary conditions in the memory-

word lattice.1 Details of parallelization of the algorithm are

discussed in ‘‘Parallelization’’ section and the method of

implementation is given in ‘‘Implementation’’ section. Fi-

nally, the results are given in ‘‘Results’’ section.

Metropolis algorithm and Ising model

The Ising model consists of spins variables which take

values þ1 or � 1 and are arranged in a one-, two- or three-

dimensional lattice. Each spin interacts with its neighbors,

and the interaction is given by the Hamiltonian:

H ¼ �J
X

hm;ni
smsn; ð1Þ

where J is the coupling coefficient. The summation in

Eq. (1) is taken over the nearest neighbor pairs hm; ni.
Periodic boundary conditions are used which state that

spins on one edge of the lattice are neighbors with the spins

on the opposite side. In this paper, we focus on simulation

of the 2D square Ising model using Metropolis Monte

Carlo algorithm [35]. The lattice is initialized randomly

and is updated as the following:

1. Select a spin (si;j) randomly and calculate the interaction

energy between this spin and its nearest neighbors (E).

2. Flip the spin si;j to s0i;j and again calculate the

interaction energy (E0).
3. ME ¼ E0 � E, if ME� 0, s0i;j is accepted. Otherwise, s

0
i;j

is accepted with the probability e�ME=KT where K is

Boltzmann constant and T is the temperature.

4. Repeat steps 1–3 till we are sure that every spin has

been flipped.

5. Calculate the total energy of the lattice for ith iteration

Ei
total

� �
.

The steps above form a Monte Carlo iteration. We perform

enough iterations (N times) and finally average on Ei
total

� �

to obtain Etotal:

Etotal ¼
1

N

XN

i¼1

Ei
total: ð2Þ

Multi-spin coding method

Multi-spin coding refers to all techniques that store and

process multiple spins in one memory word. In this paper,

we apply the multi-spin coding technique to the 2D Ising

model. In general, multi-spin coding technique results in a

faster algorithm as a consequence of updating multiple

spins simultaneously. However, we mainly employ this

technique to reduce the inter-process communications.

We apply the multi-spin coding introduced in Ref. [12].

However, in our implementation, the size of a memory word

is 64 bits, in contrast to Jacobs’s 60-bit memory word. In

addition, each spin is retained in three consecutive bits and

the value of the 64th bit is always set to zero. 000 represents

the spin down and the spin up is shown by 001. Since a

memory word contains 21 spins, the size of the lattice is

taken to be 21N � 21N, where N is an integer greater than

one. Now, we need to convert the spin lattice (Fig. 1a) to the

lattice of memory words (Fig. 1b). Therefore, the size of the

memory-word lattice is considered as N � 21N. Each col-

umn of the spin lattice is coded into the same column of the

memory word in the memory-word lattice. So, 21N spins in

one column of the spin lattice are arranged in N memory

words of a column in the memory-word lattice as follows:

Sð0; JÞ : s0;j; sN;j; s2N;j; . . .; s19N;j; s20N;j
Sð1; JÞ : s1;j; sNþ1;j; s2Nþ1;j; . . .; s19Nþ1;j; s20Nþ1;j

..

. ..
.

SðN � 1; JÞ : sN�1;j; s2N�1;j; s3N�1;j; . . .; s20N�1;j; s21N�1;j;

where S(I, J) represents the memory word at the row I and

the column J, 0� I�N � 1, 0� J� 21N � 1. si;j shows

1 A word is a data unit of a defined length used as a piece of data by

processors. The number of bits in a word, word size, is an important

feature of any processor design.
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the spin located at the row i and the column j where j ¼ J.

The advantage of this arrangement is that each spin is

placed in the appropriate position related to its neighbors.

Consider kth spin in a given memory word S(I, J). The

right/left/top/down neighbor of the kth in the spin lattice is

exactly kth spin in the right/left/top/down neighbor of the

memory word S(I, J) in the memory-word lattice.

In order to apply periodic boundary conditions to the

memory words in the first and last row (Fig. 2a), we need

to make some changes to up and down neighbors in

advance. In fact, the down (up) neighbor of SðN � 1; JÞ
(S(0, J)) is not exactly S(0, J) (SðN � 1; JÞ). For a memory

word in the first (last) row, its up (down) neighbor—which

is the memory word in the last (first) row and in same

column—has to be shifted 3 bits to the right (left). These

two cases have been shown in the diagrams (b) and (c) of

Fig. 2. We should recall that the 64th bit is always set to

zero.

Calculation of energy

Now, using multi-spin coding method, we show how to

calculate the energy difference (DE) between two config-

urations in the Ising model. At first, to better understand the

process, we consider two 3 bit-spins s1 and s2. s1 XOR s2
produces 000 when the two spins are placed in the same

direction and 001 is given when spins s1 and s2 are in the

opposite directions.2 Hence, for a given memory word

S(I, J), the expression

ðSðI; JÞ XOR SðI � 1; JÞÞ þ ðSðI; JÞ XOR SðI þ 1; JÞÞ
þ ðSðI; JÞ XOR SðI; J � 1ÞÞ þ ðSðI; JÞ XOR SðI; J þ 1ÞÞ;

ð3Þ

generates a value in the range of [0, 4] for every 3bit-group

given in the last column of Table 1. In the second and third

columns, we have considered different cases that might

occur between a selected spin and its four neighbors. The

initial interaction energy E and the energy E0 calculated
after flipping the selected spin have been presented in the

forth and fifth rows, respectively.

Parallelization

In a Monte Carlo Metropolis iteration, each memory word

is updated at least once. The iterations must be performed

enough times to yield accurate outcome energy. The given

lattice could be vertically divided into Np sub-lattices with

equal sizes, where Np is the number of processes. Com-

putational load of each sub-lattice is assigned to the pro-

cesses 0 to Np � 1 from left to right. Each process creates a

sub-lattice of the specific size, initializes the sub-lattice,

performs all Monte Carlo iterations and calculates the

energy of the sub-lattice using Eq. (2). When all individual

processes calculate the energy of their own sub-lattice, the

energies of the sub-lattices are added up, through a Map-

Reduce operation, to calculate the total energy of the lat-

tice. However, this approach results in two problems. As

illustrated in Fig. 3, half of the neighbors of the memory

words on the border, are placed in the sub-lattice of

neighbor process. Therefore, to calculate the energy of the

(a) (b)

Fig. 1 Arranging spins in memory words. a Spin lattice, b memory-word lattice

2 Exclusive OR (XOR) is a logical operator that outputs true if

exactly one (but not both) of the two inputs is true.
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memory words on the border, some memory words of the

side sub-lattice are needed. Therefore, these memory words

have to be observed when needed. Moreover, we should

note that neighbor memory words should not be updated

simultaneously by different processes.

To deal with the second problem, we propose a method

in which the memory words are updated in two phases (see

Fig. 3). In each phase, half of the sub-lattice is updated

while the other half stays unchanged, i.e., in phase 1 (2) the

left (right) half of the sub-lattice is updated. After the phase

1 (2) is done, each process will pass to phase 2 (1) only if

S(0,J): s0,j sN,j s2N,j ... s19N,j s20N,j0

S(N-1,J): s21N-1,js20N-1,j...s3N-1,js2N-1,jsN-1,j0

s0,j sN,j s2N,j ... s19N,j s20N,j0

s21N-1,js20N-1,j...s3N-1,js2N-1,jsN-1,j0

(a)

(c)

(b)

S(0,J):

S(N-1,J):

sN,j s2N,j s3N,j ... s20N,j s0,j0Down neighbor of S(N-1,J):

s20N-1,js19N-1,j...s2N-1,jsN-1,js21N-1,j0Up neighbor of S(0,J):

Fig. 2 a Memory words in the

first and last rows of a memory-

word lattice, b up neighbor of

S(0, J) formed by shifting three

bits of SðN � 1; JÞ to the right,

c down neighbor of SðN � 1; JÞ
formed by shifting three bits of

S(0, J) to the left

Table 1 Different

configurations which might

happen between a selected spin

and its four nearest neighbors

Configuration Selected spin Nearest neighbors E E0 DE Value of a 3-bit group

1 Up 4 Up–0 Down � 4J 4J 8J 000

2 Down 0 Up–4 Down � 4J 4J

3 Up 3 Up–1 Down � 2J 2J 4J 001

4 Down 1 Up–3 Down � 2J 2J

5 Up 2 Up–2 Down 0 0 0 010

6 Down 2 Up–2 Down 0 0

7 Up 1 Up–3 Down 2J � 2J � 4J 011

8 Down 3 Up–1 Down 2J � 2J

9 Up 0 Up–4 Down 4J � 4J � 8J 100

10 Down 4 Up–0 Down 4J � 4J

The initial energy E and the energy E0 after flipping the selected spin, have been shown in forth and fifth

columns, respectively. The energy difference DE ¼ E0 � E has been given in the sixth column. the last

column represents the value of a 3-bit group

+
+
+
+

+
+
+
+

x
x

Phase 1 Phase 2Phase 1 Phase 2Phase 1 Phase 2

Process p1 Process p2 Process p3 

+
+
+
+

+
+
+
+

x
x

x
x
x
x

x
x
x
x

x
x
x
x

Fig. 3 Sub-lattices of the memory words that belong to the three

consecutive processes. The memory words on the border of the two

different sub-lattices which have interaction with each other, are

marked the same. Each half of the memory-word lattice is updated in

the phase 1 or 2. Therefore, the border memory words are not updated

simultaneously
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its right (left) process accomplishes the phase 1 (2). To

better understand this process, we consider three consecu-

tive processes in Fig. 3 which are updating the left half of

their sub-lattices in phase 1. The process p2 has updated

the left half of its sub-lattice and is going to start the phase

2 to update the right half. However, it is not able to reach

the phase 2 until the process p3 accomplishes the phase 1

and finishes the update of the left half. So, the memory

words on the borders of the processes p2 and p3, marked

with � in Fig. 3, do not update simultaneously. In the same

manner, the memory words on the borders of processes p1

and p2, marked with ? in Fig. 3 do not update at the same

time.

Now, we turn to the first problem. As mentioned before,

in each phase half of a sub-lattice is updated. Before a

process starts updating the half of the sub-lattice, it should

receive the corresponding border memory words of the

neighbor process. Suppose that the process p2 is going to

update the left half of its sub-lattice in phase 1. It waits to

receive the right-side border memory words of the process

p1. The process p1 sends its right border memory words to

the process p2 asynchronously just after it accomplishes

the phase 2 of the last iteration. After p2 receives the

border memory words from p1 synchronously, it starts

updating the memory words in the phase 1. Just after fin-

ishing the phase 1, p2 sends its updated left-side border

memory words to p1 asynchronously and goes to the phase

2. The similar procedure occurs for other processes as well.

It should be mentioned that we use periodic boundary

conditions thereby the left neighbor of the first process is

the last process, and likewise the right neighbor of the last

process is the first process.

Implementation

In this section, we describe the implementation details of

the algorithm presented in the previous section. Consider a

memory-word lattice of size N � 21N where N is an

arbitrary integer bigger than one. We execute the algorithm

on Np processes and each process is identified by an integer

number, 0 to Np � 1, called rank. Each process is respon-

sible for Nc columns of the memory-word lattice where

Nc ¼ 21N
Np
. Each individual process creates its own sub-lat-

tice, initializes it, gets all Monte Carlo iterations done and

calculates the energy of the sub-lattice for a specific tem-

perature. Within each Monte Carlo iteration a sub-lattice is

updated many times and the energy of iteration is calcu-

lated. Finally, the total energy of the memory-word lattice

for a specific temperature is obtained via a reduce opera-

tion. This operation is illustrated in Fig. 4. Now, every step

of the algorithm is studied in details.

Initialization

Now, we explain how a process creates its own sub-lattice

and initializes it randomly. We use a 64-bit long integer as

a memory word to store 21 spins. A 2D array of N � Nc

long integers forms the sub-lattice of the process where

Create and initialize
the sub-lattice

Update the sub-lattice
in two phases

Calculate the energy
of an iteration  NO

All iterations  
got done?

Calculate the average
energy of the sub-

lattice (AES) 

Add up all (AES) via reduce operation

YES

Create and initialize
the sub-lattice

Update the sub-lattice
in two phases

Calculate the energy
of an Iteration  NO

All iterations  
got done?

YES

Process P Process P+1 

Calculate the average
energy of the sub-

lattice (AES) 

Fig. 4 Function of our

implemented program. Left and

right arrows denote inter-

process communications
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Nc ¼ 21N
Np
. However, we use an array with two additional

columns (N � ðNc þ 2Þ) reserved for border memory

words of the neighbor processes (see Fig. 5a). In this paper,

we denote this array by S-lattice. Each spin in the memory

words of the s-lattice is initialized with 0 or 1 randomly—

except for the first and last columns—which represent spin

down and up, respectively.

Updating

As mentioned before, updating process is done in two

phases. In each phase, one half of the sub-lattice is updated.

In cases where Nc is odd, floorðNc=2Þ columns are updated

in phase 1 and the rest of the columns is updated in phase 2.

Before starting the update process in each phase, some

inter-process communication should be carried out.

At first, each process sends its border memory words to

its neighbor process asynchronously. Then, it waits to

receive the border memory words from its neighbor pro-

cesses. When the process receives the required border

memory words, it can accomplish the phase by frequently

updating the memory words that belong to the corre-

sponding phase. In phase 1, in which the left half of the

sub-lattice is updated, each process sends the rightmost

column of its sub-lattice to its right neighbor (Fig. 5b). So,

the destination of the sending memory words is determined

by the following code:

It means that, due to the periodic boundary conditions,

the right neighbor of the process with the rank Np � 1 is the

process 0. Likewise, the source process from which the

process receives the border memory words is determined

by the following code:

which means that the left neighbor of the process with

the rank 0 is the process Np � 1.

The received column of memory words is stored in the

first column of the S-lattice which has been reserved for the

border memory words of the neighbor process. When the

border memory words are received, the left half of sub-

lattice is updated (Fig. 5c). Likewise, the destination and

the source, in phase 2, are determined by the following

code (Fig. 5d):

The received column of the memory words is stored in

the last column of the S-lattice which has been reserved for

the border memory words of the neighbor process

(Fig. 5e).

Calculating the Energy of a Monte Carlo Iteration

In order to obtain the total energy of the lattice, the energy

of all nearest neighbor pairs must be considered. However,

if we consider the interaction energy of the right and down

neighbors of each memory word, the total energy is cal-

culated. Each process calculates the energy of each mem-

ory word in the S-lattice except for the first and last

columns. Notice that the last column of the S-lattice con-

tains the copy of the border memory words of the right

process (Fig. 5e). Since these border memory words are not

used until they are sent, the copy of them is still valid. This

copied column is used as the right neighbor of the last

column of the sub-lattice. The code in Listing 1 shows how

the interaction energy between a specific memory word and

its right and down memory words is calculated: In the line

3, the outcome of the expression on the right side of the

assignment operator, is a memory word which includes 21

3bit-groups. Every group contains a number between 0 and

2, i.e., 0 represents � 2J, 1 represents 0 and 2 represents

þ2J. Each 3bit-group retains the sum of the interaction

energy between a specific spin with its right and down

source= (Rank==0) ? NP-1:Rank-1;

destination = (Rank == NP-1) ? 0: Rank+1;

destination = (Rank == 0) ? NP-1: Rank-1;
source= (Rank==NP-1) ? 0:Rank+1;
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neighbors. The for loop iterates on the 3bit-groups of E. In

each iteration, the energy of one 3bit-group is extracted and

is added to rv where rv retains the sum of energies of the

3bit-groups. Therefore, rv contains the total energy of the

21 3bit-groups.

Results

We have executed our program on a part of the computer

cluster of Plasma Physics Research Center which includes

16 nodes networked by a switch. Each node is equipped with

two Intel Xeon X5365 CPUs. We have used up to 9 nodes to

test our program. Three different cases with different num-

ber of iterations have been considered in Table 2.

The measured speedup and efficiency versus the number

of cores are illustrated in Figs. 6 and 7, respectively. As

shown, for all three test cases, as number of cores and

nodes is increased, efficiency goes down. Especially when

one more node is exploited, the efficiency drops consid-

erably. This fall is due to the fact that overhead of the

communication between processes on different nodes is

higher than overhead of the communication between pro-

cesses on the same node.

Now, we are able to inspect the impact of the lattice

dimension and the number of Monte Carlo iterations on the

performance of our algorithm. Comparing the test cases 2

and 3, it is inferred that bigger lattice sizes get better

speedup and efficiency. In addition, the comparison

between the test cases 1 and 2, we can claim when the

number of Monte Carlo iterations increases, better speedup

and efficiency is deduced. Therefore, our algorithm has

better performance for bigger lattice sizes and more Monte

Carlo iterations.

Listing 1: Computing the energy of a memory word
1 inl ine double computeEnergy ( long int memoryWord , long int r i ght ,

long int down)
2 {
3 long int E = (memoryWord ˆ r i gh t ) + (memoryWord ˆ down) ;
4 double rv=0;
5 for ( int i = 1 ; i <= 21 ; i++)
6 {
7 switch (E & 7)
8 {
9 case 0 :
10 rv−=2∗J ;
11 break ;
12 case 2 :
13 rv+=2∗J ;
14 break ;
15 }
16 E >>= 3 ;
17 }
18 return rv ;
19 }
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Table 2 Three different cases

which have been examined in

this paper

Test cases Number of iterations N Average number of updates per spin in an iteration

1 5000 96 10

2 4500 96 10

3 4500 48 10

The number of iterations, N and the average number of updates per spin in one iteration have been

presented in the second, third and forth columns, respectively
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