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Abstract A two-species driven-diffusive model of classi-

cal particles is introduced on a lattice with periodic

boundary condition. The model consists of a finite number

of first class particles in the presence of a second class

particle. While the first class particles can only hop for-

ward, the second class particle is able to hop both forward

and backward with specific rates. We have shown that the

partition function of this model can be calculated exactly.

The model undergoes a non-equilibrium phase transition

when a condensation of the first class particles occurs

behind the second class particle. The phase transition point

and the spatial correlations between the first class particles

are calculated exactly. On the other hand, we have shown

that this model can be mapped onto a two-dimensional

walk model. The random walker can only move on the first

quarter of a two-dimensional plane and that it takes the

paths which can start at any height and end at any height

upper than the height of the starting point. The initial

vertex (starting point) and the final vertex (end point) of

each lattice path are weighted. The weight of the outset

point depends on the height of that point while the weight

of the end point depends on the height of both the outset

point and the end point of each path. The partition function

of this walk model is calculated using a transfer matrix

method.

Keywords Driven-diffusive model � Walk model �
Correlation function � Zero-range processes

Introduction

One of the most studied models which shows non-equi-

librium phase transitions is asymmetric simple exclusion

process (ASEP). In many literatures, the ASEP in the

presence of an impurity on a ring have been studied. The

role of the impurity is to investigate the motion of the

shock fronts in the ASEP. The single impurity in [1, 2]

hops in the opposite direction relative to the ordinary

particle of the ASEP while in [3] the impurity moves in the

same direction as the ordinary particles of the ASEP. In

both cases the phase structure of the models have been

studied extensively.

In this paper, we study the effects of the presence of a

single impurity on the ASEP on a ring where the second

class particle (impurity) is allowed to hop in the both

directions, relative to the ordinary particle of the ASEP,

with the rates q and p. It has been shown that the steady-

state distribution of all one-dimensional exclusion models

whose steady-states have a simple factorized form, can be

written in a matrix product form. The matrices which are

necessary for this purpose satisfy a generalized quadratic

algebra [4]. In [5], the authors have introduced a mathe-

matical tool for studying of correlations in the models

whose steady-states have a simple factorized form. They

use the matrices which satisfy a generalized quadratic

algebra. In this paper, we introduce an infinite-dimensional

matrix representation which satisfies the quadratic algebra

of the model. The canonical partition function of the model

is calculated exactly. Using a canonical ensemble, the

phase structure of the model is studied in thermodynamic
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limit. The steady-state distribution of our model has a

factorized form hence two matrix representations are pre-

sented which satisfy the generalized quadratic algebra of

the model. An infinite-dimensional matrix representation

and a 2-dimensional matrix representation. Using this

matrix representations the calculations seem to be very

straightforward. It has been shown that using the grand

canonical partition function one can analyze the phase

structure of the model. The transition point can be calcu-

lated numerically or analytically [6, 7]. By assigning the

fugacity z to the first class particles in a grand canonical

ensemble, we shall find the exact phase structure and cal-

culate the density profile and the correlations of the first

class particles precisely. Some of the critical exponents of

the model in phase transition is also obtained.

In recent years, many studies have been done on con-

nections between the one-dimensional driven-diffusive sys-

tems and the two-dimensional walk models [8–10]. It has

been shown that the partition function of some of the one-

dimensional driven-diffusive models with open boundaries

obtained using a matrix product method is equal to the

partition function of a two-dimensional walk model obtained

using a transfer matrix method [8, 11, 12]. In [11], the

author has introduced a lattice path with specific dynamical

rules where walker can start from origin and end at any

height upper than origin and it has been shown that the

partition function of this two-dimensional walk model is

exactly equal to that of a driven-diffusive system defined on

a discrete lattice with periodic boundary conditions that can

be mapped to a zero-range process [13, 14]. In this paper, a

two-dimensional walk model is introduced in which the

walker can only move on the first quarter of a two-dimen-

sional plane. Random walker can start moving at any height

upper than the origin and end at any height upper than the

starting point. All the paths made by the random walker are

weighted. The weight of a given path will be equal to the

product of the weights of the consecutive steps in that path

and the weight of the starting and end points. The partition

function of this walk model is the sum of the unnormalized

weights of different paths consisting of t � 1 steps and is

calculated using a transfer matrix method.

Thepaper is organized as follows: In ‘‘The driven-diffusive

model’’ a two-species driven-diffusivemodel is introduced. In

‘‘The canonical partition function’’ the canonical partition

function of themodel is calculated in the thermodynamic limit

and the phase structure of the model is investigated. In ‘‘The

spatial correlations’’ the correlation functions and the critical

exponent of the model are calculated. In ‘‘The walk model’’

we introduce a two-dimensional walk model related to the

two-species driven-diffusive model.

The driven-diffusive model

In [11], the author has introduced a one-dimensional dri-

ven-diffusive model of classical particles with hardcore

interactions. The model consists of a single particle of type

A (called the second-class particle) and M � 1 particles of

type B (called the first-class particles). The particles move

on a one-dimensional lattice of length t with periodic

boundary condition. The particle of type A hops from the

lattice site i to iþ 1 with the rate p provided that the target

site is empty. A particle of type B hops from the lattice site

i to iþ 1 with the rate 1 provided that the target site is

empty.

In this paper, we assume that the second-class particle is

also allowed to hop backward with the rate q. If an empty

lattice site is denoted by ;, we can summarize the reaction

rules at a pair of lattice sites i and iþ 1 as follows

A; ! ;A with rate p

;A ! A; with rate q

B; ! ;B with rate 1:

In the long-time limit the system attains a non-equilibrium

steady-state. It can be shown that the probability distribu-

tion can be obtained using a matrix product method. For

this purpose, we label the particle of type A with 1 and

label the particles of type B with 2; 3; . . .;M. If the number

of empty lattice sites in front of the i’th particle is denoted

by ni, a general configuration of the model can be written

as fng ¼ fn1; n2; . . .; nMg. If the lattice site is occupied by

the particle of type A, the matrix D1 is attributed to it. If a

lattice site is occupied by a particle of type B, the matrix D2

is attributed to it. In the steady-state the probability of

finding the system in a general configuration fng ¼
fn1; n2; . . .; nMg is given by

PðfngÞ ¼ 1

Zt;Mðp; qÞ
Tr D1E

n1D2E
n2 . . .DME

nMð Þ ð1Þ

in which Zt;Mðp; qÞ is the normalization factor which is also

called the canonical partition function of the model and

that it should be calculated by considering the conservation

of the number of empty sites i.e.,
PM

m¼1 nm ¼ t �M. A

sufficient condition for (1) to be the steady-state probability

distribution of the model is

pD1E � qED1 ¼ D1

D2E ¼ D2:
ð2Þ

Details of the proof is given in [15]. It can easily be veri-

fied that the above algebra has the following infinite-di-

mensional matrix representation
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D1 ¼
X1

i¼0

X1

i0¼i

i0

i

� �
qi

pi
0 jiihi0j;

D2 ¼
X1

i¼0

j0ihij;

E ¼
X1

i¼0

jiþ 1ihij

in which jiij ¼ di;j for i; j ¼ 0; 1; . . .;1.

The canonical partition function

The number of empty lattice sites is a conserved quantity

and does not change by the dynamical rules; therefore,

using (1) one can calculate the canonical partition function

of the model as follow

Zt;Mðp; qÞ ¼
Xt�M

n1;...;nM¼0

Tr D1E
n1D2E

n2 . . .D2E
nM½ �dPM

m¼1
nm;ðt�MÞ:

ð3Þ

Using the matrix representations of D2 and E, one can write

D2E
n ¼ D2:

Using the above equation we can rewrite the canonical

partition function of the model as follows

Zt;Mðp; qÞ ¼
Xt�M

n1;...;nM¼0

Tr D1E
n1D2½ �dPM

m¼1
nm;ðt�MÞ: ð4Þ

Using the matrix representation of the matrices D1, D2 and

E and the definition of trace of a matrix one can obtain

Tr D1E
n1D2½ � ¼

X1

i¼0

hijD1E
n1D2jii

¼
Xn1

i¼0

n1

i

� �
qi

pn1
:

Inserting the above equation into (4), the canonical parti-

tion function of the model can be written as

Zt;Mðp; qÞ ¼
Xt�M

n1¼0

Xn1

i¼0

n1

i

� �
t � n1 � 2

M � 2

� �
qi

pn1
: ð5Þ

It can be seen that the partition function of the model in

thermodynamic limit M; t ! 1 behaves as

Zt;Mðp; qÞ ’
pt q�1ð Þ 1þ qð Þt�1

1þ q� pð Þ2�M
for q\

1� pþ q

1þ q

t

M

� �
pq2

p� 1� qð Þ 1þ qð Þ for q[
1� pþ q

1þ q

8
>><

>>:

ð6Þ

in which q is the density of the first-class particle and is given

by q ¼ ðM � 1Þ=t ’ M=t. It can be seen that a phase tran-

sition occurs at q ¼ ð1� pþ qÞ=ð1þ qÞ. To investigate the

phase behavior of the model we calculate the mean number of

the empty lattice sites in front of the second-class particle.

Given that the total number of empty lattice sites on the lattice

is t �M, the probability that the number of empty lattice sites

in front of the second-class particle is n1, is given by

Pt;Mðn1Þ ¼
1

Zt;Mðp; qÞ
Xn1

i¼0

qi

pn1

n1

i

� �
t � n1 � 2

M � 2

� �

ð7Þ

Hence the average number of empty lattice sites in front of

the particle of type A is

�n1 ¼
Xt�M

n1¼0

n1Pt;Mðn1Þ ¼ �p
o ln Zt;Mðp; qÞ

op
: ð8Þ

Using (6), the average number of empty lattice sites in

front of the particle of second-class particle in the ther-

modynamic limit is as follows

�n1 ¼
t 1� q� pq

1þ q� p

� �

for q\
1� pþ q

1þ q

p

p� 1� qð Þ 1þ qð Þ � 1 for q[
1� pþ q

1þ q

8
>><

>>:
:

ð9Þ

As can be seen there is a phase transition from a phase in

which the mean number of empty lattice site in front of the

second-class particle is of order t to another phase where it

is a constant.

The spatial correlations

In [4] the author has shown that the steady state of a

disordered driven-diffusive system consisting of M differ-

ent type of particles, that can be mapped onto the Zero

Range Process, can be obtained using the matrix method in

which the matrices should satisfy the following generalized

quadratic algebra

DlE
nlDl0 ¼ flðnlÞDl0 for l; l0 ¼ 1; 2; . . .;M ð10Þ

in which flðnlÞ is a function of transition rates and can be

constructed using pairwise balance condition [16]. Our

model is a two-species driven-diffusive model of classical

particles on a lattice with periodic boundary condition with

the following dynamic

l0 0 � � � 0|fflffl{zfflffl}
nl0

l 0 � � � 0|fflffl{zfflffl}
nl

l00 ! l0 0 � � � 0|fflffl{zfflffl}
nl0þ1

l 0 � � � 0|fflffl{zfflffl}
nl�1

l00 with the rate ulðnlÞ

l0 0 � � � 0|fflffl{zfflffl}
nl0

l 0 � � � 0|fflffl{zfflffl}
nl

l0 ! l0 0 � � � 0|fflffl{zfflffl}
nl0�1

l 0 � � � 0|fflffl{zfflffl}
nlþ1

l00 with the rate vlðnlÞ

ð11Þ
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where ulðnlÞ is the hopping rate of the particle l to its right

neighboring lattice site and vlðnlÞ is the hopping rate of the
particle l to its left neighboring lattice site i.e.,

u1ðn1Þ ¼ p; v1ðn1Þ ¼ q;

u2ðn2Þ ¼ 1; v2ðn2Þ ¼ 0:
ð12Þ

It can be checked that by defining f1ðn1Þ ¼ ð1þq
p
Þn1 and

f2ðn2Þ ¼ 1 and requiring f1;2ð0Þ ¼ 1, the following infinite-

dimensional matrix representation satisfies the quadratic

algebra (10)

D1 ¼
X1

i¼0

f1ðiÞj0ihij;

D2 ¼
X1

i¼0

j0ihij;

E ¼
X1

i¼0

jiþ 1ihij:

ð13Þ

Using (13) the grand-canonical partition function of the

model can be written as

Ztðp; q; zÞ ¼ Tr½D1C
t�1� ¼

X1

i¼0

f ðiÞhijCt�1j0i ð14Þ

where the matrix C ¼ E þ zD2 and that z is the fugacity of

the first-class particles. According to the matrix represen-

tations (13) it can be verified that

Ct�1jji ¼
Xt�2

i¼0

zðzþ 1Þt�i�2jii þ jjþ t � 1i: ð15Þ

Now the grand-canonical partition function Ztðp; q; zÞ can

be calculated using (15)

Ztðp; q; zÞ ¼
pz 1þq

p

� �t�1

1þ q� pð1þ zÞ �
pzð1þ zÞt�1

1þ q� pð1þ zÞ þ
1þ q

p

� �t�1

:

ð16Þ

The fugacity z has to be fixed by density of the first-class

particles which is given by the following equation

qðzÞ ¼ z

t

o

oz
ln Ztðp; q; zÞ: ð17Þ

It is known that the real positive values of the fugacity are

of physical interest hence it is necessary that p \1þ q.

Using (16) it can be shown that in the thermodynamic limit

the density of first-class particles can be written as follows

qðzÞ ¼

z

1þ z
for z [

1þ q� p

p

0 for z \
1þ q� p

p

8
>><

>>:
: ð18Þ

According to (18) it turns out that there is a critical fugacity

zc ¼ 1þq�p
p

at which the density of the first-class particles

shows a finite discontinuity. The behavior of qðzÞ for z \zc
and z [ zc are different and the system undergoes a first-

order phase transition provided that p \1þ q . In Figs. 1

and 2 exact expression of the density of the first-class par-

ticles and its thermodynamic limit are plotted as a function

of the fugacity z. As can be seen, in the thermodynamic limit

both plots overlap. At zc there is a finite discontinuity while

for z [ zc, qðzÞ grows with z until it saturates.

In [5] the authors have studied the spatial correlations in

exclusion models corresponding to the Zero Range Pro-

cesses. They have shown that the spatial correlations of the

exclusion models that can be mapped onto the Zero Range

Processes can be expressed in terms of 1-point and 2-point

correlation functions G
ð1Þ
i and G

ð2Þ
i;j . Given that the only

impurity is at site 1, the density of the first-class particles at

the lattice site i can be written as

G
ð1Þ
i ¼ hqii ¼

1

Ztðp; q; zÞ
Tr D1C

i�2ðzD2ÞCt�i
� �

: ð19Þ

Calculating (19) using (15) is straightforward and the result

is

ρ(z)

z

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

Fig. 1 The density of the first-class particles as a function of fugacity

z obtained from the exact solution (the blue line) and in the

thermodynamic limit (the red dotted line) for t ¼ 200, p ¼ 1 and

q ¼ 2

Fig. 2 Two lattice path that start from (0, 0) and (0, 2)
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hqii ¼ A1 þ A2 exp
�i

n

� �

ð20Þ

in which n is a correlation length which is given by

n�1 ¼ ln
pð1þ zÞ
1þ q

: ð21Þ

The coefficients A1 and A2 in (20) are functions of the

transition rates p, q and also the system size t

A1 ¼
pz2ð1þ zÞt�2

pz ð1þ zÞt�1 � 1þq
p

� �t�1
	 


þ ð1þ q� p� pzÞ 1þq
p

� �t�1
;

A2 ¼
z 1þq

p

� ��2

ð1þ q� pÞð1þ zÞt

p 1þq
p

� �2
z ð1þ zÞt�1 � 1þq

p

� �t�1
	 


þ ð1þ q� p� pzÞ 1þq
p

� �t�1
:

ð22Þ

The density of the first class particles increases expo-

nentially from the vicinity of the second-class particle. In

the thermodynamic limit the density of the first class

particles hqii behaves as (18) far from the second class

particle.

It should be noted that in addition to infinite dimensional

matrix representation (13) the quadratic algebra (10) has a

2-dimensional matrix representation. In [17] the authors

have shown that the quadratic algebra (10) has a finite-

dimensional representation which depends on the number

of types of particles. The dimension of the matrix is M if

the number of types of the particles is equal to M. Hence

for our model with two species of particles the quadratic

algebra (10) has a 2-dimensional matrix representation

given by

D1 ¼
1 0

1 0

� �

; D2 ¼
0 1

0 1

� �

; E ¼
1þ q

p
0

0 1

0

@

1

A:

ð23Þ

According to (23) the matrix C ¼ E þ zD2 in (14) can be

written as

C ¼
1þ q

p
z

0 1þ z

0

@

1

A: ð24Þ

It can be seen that the correlation length (21) can be written

as a function of the eigenvalues of the 2-dimensional

matrix C as

n�1 ¼ ln
k1
k2

� �

ð25Þ

where k1 ¼ 1þ z and k2 ¼ 1þq
p
, in agreement with the

known results obtained in [18]. The 2-point correlation

function G
ð2Þ
i;j ðzÞ ¼ hqiqji can be written as

G
ð2Þ
i;j ðzÞ ¼

z2

Ztðp; q; zÞ
Tr D1C

i�2D2C
j�i�1D2C

t�j
� �

: ð26Þ

Using (15) and (20) and after some straightforward cal-

culations one can obtain G
ð2Þ
i;j ðzÞ explicitly

G
ð2Þ
i;j ðzÞ ¼

z

1þ z
hqii: ð27Þ

The ðnþ 1Þ-point correlations are written as

G
ðnþ1Þ
j1...jn

¼ hqiqiþj1
. . .qiþj1þ���þjn

i

G
ðnþ1Þ
j1...jn

¼ 1

Ztðp; q; zÞ
Tr½D1C

i�2ðzD2ÞCj1�i�1ðzD2ÞCj2�j1�1ðzD2Þ. . .Ct�n�:

ð28Þ

Using (19) and (26) we can express the above equation in

terms of G
ð1Þ
i as follows

G
ðnþ1Þ
j1...jn

¼ z

1þ z

� �n

hqii: ð29Þ

We can calculate the critical exponents of model at the

phase transition point. To find the critical exponent defined

by q / ðz� zcÞb, we only need to consider the behavior of

the density of the first-class particles as a function of

fugacity z at the critical point zc ¼ 1þq�p
p

in the thermo-

dynamic limit. According to (17), it can be seen that the

density of the first-class particles in the vicinity of zc can be

expressed as q / ðz� zcÞ�1
. Hence the critical exponent

b ¼ �1. Near the critical fugacity, ð1þ zÞ ! 1þq
p
.

According to (20), it can be seen that in the thermodynamic

limit the density profile hqii / ðz� zcÞ�1
. Hence, the

critical exponent a defined by hqii / ðz� zcÞa is a ¼ �1.

With the correlation function given asymptotically by

G
ð2Þ
i;j � j� ið Þ�Dþ2�g

expð�ðj�iÞ
n Þ in which D is the dimen-

sion of the system, we find g ¼ 1.

The walk model

In this section, we show that there exists a walk model which

is equivalent to the driven-diffusive model explained in the

previous sections. We consider a two-dimensional walk

model in which a random walker can start from any height

upper than the origin (0, j) in which j is an integer j� 0. We

assume that the random walker can take a finite number of

steps on Z2þ ¼ fði; jÞ : i; j� 0 are integersg according to

the rules which will be explained later. For the reasons that

will become clear shortly we assume that the length of the

lattice path is equal to t � 1. After taking a finite number

t � 1 of consecutive steps, the random walker can get to the

lattice site ðt � 1; j0Þ where j0 ¼ j; jþ 1; . . .; jþ t � 1. The

initial vertex (starting point) and the final vertex (end point)
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of the lattice path are weighted. This type of lattice path is

introduced in [19]. For any path the weight of the start and

end points depend on the height of these points. There are

different ways that after taking the finite number of steps

t � 1, the randomwalker can get to the lattice site ðt � 1; j0Þ.
The weight of a given path will be equal to the product of the

weights of the start and end points and the consecutive steps.

The random walker moves according to the following rules:

1. The random walker can start from any height upper

than the origin as (0, j) where j ¼ 0; 1; 2; . . .;1.

2. A path that starts from the height (0, j), after t � 1

steps might terminate at any height such as ðt � 1; j0Þ
where j0 ¼ j; jþ 1; jþ 2; . . .; jþ t � 1.

3. The weight of the initial vertex (starting point) for the

path that starts from the height (0, j) is qj.

4. The weight of the final vertex (end point) for the path

that starts from the height (0, j) and terminates to the

lattice site ðt � 1; j0Þ, is j0

j

� �
1
pj
0

5. For i� j and from the lattice site (i, j) to ðiþ 1; jþ 1Þ
the steps have the weight 1(upward steps).

6. For i� j and from the lattice site (i, j) the random

walker can drop to the surface ðiþ 1; 0Þ. These steps

have the weight 1 (jump steps for j [ 0 and horizontal

steps for j ¼ 0).

In Fig. 2 we have plotted two different paths of length 8

according to the above mentioned rules. We will be

interested in those paths of fixed length which contain a

certain number of jumps and horizontal steps (equivalently

upward steps); therefore, for our later convenience we

introduce an ad hoc fugacity z and change the last rule as

follows: for i� j from the lattice site (i, j) random walker

can drop to the surface ðiþ 1; 0Þ with the weight z.

The position of the random walker in lattice path will be

denoted by the vector jji in which j is the height relative to

the horizontal plane which is a number between 0 and 1.

These vectors have the following properties

jjik ¼ dj;k for j; k ¼ 0; 1; . . .;1;

hjjj0i ¼ dj;j0 for j; j0 ¼ 0; 1; . . .;1;

X1

j¼0

jjihjj ¼ I
ð30Þ

in which I is an infinite-dimensional identity matrix. We

assume that the random walker starts from the height jji in
which j ¼ 0; 1; . . .;1. After taking t � 1 steps the random

walker can get to the lattice site ðt � 1; j0Þ in which

j0 ¼ j; jþ 1; . . .; jþ t � 1. There are different paths to get

to the lattice site ðt � 1; j0Þ . Each of these paths has its own

weight. We now calculate the weight of a given path p as

follow

Wp ¼ wi
Yt�1

i¼1

wstepðeiÞ
" #

wf ð31Þ

in which wi and wf are the weights of the start and end

points and wstepðeiÞ is the weight of the i’th step in the path.

We know that the transfer matrix updates the state of the

random walker hence according to the rules of the steps in

the lattice path and their weights, the transfer matrix cor-

responding to this lattice path can be written as follow

Cjji ¼ zj0i þ jjþ 1i: ð32Þ

The matrix representation of the transfer matrix C is

C ¼

z z z z � � �
1 0 0 0 0 � � �
0 1 0 0 0 � � �
0 0 1 0 0 � � �
..
. ..

. ..
. ..

.

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

: ð33Þ

The partition function of the lattice path

As we mentioned the random walker can start from the any

height upper than the origin jji in which j ¼ 0; 1; . . .;1.

We have also assumed that the total number of steps is

t � 1. After taking these steps the random walker can get to

the lattice site ðt � 1; j0Þ where j0 ¼ j; jþ 1; . . .; jþ t � 1

through different paths. Each of these paths has its own

weight. The partition function of the walk model is the sum

of the unnormalized weights of different paths consisting

of t � 1 steps that start from different heights jji and get to

the different heights jj0i where j ¼ 0; 1; . . .;1 and

j0 ¼ j; jþ 1; . . .; jþ t � 1. To obtain the partition function

of the lattice path, we calculate the sum of the weights of

all paths that start from the height jji and, according to the

mentioned rules, after t � 1 successive steps get to the

height jj0i. This sum is given by the following equation

Zj;j0 ¼ wihj0jCt�1jjiwf ð34Þ

in which Zj;j0 is the sum of unnormalized weights of dif-

ferent paths that start from the lattice site (0, j) and after

taking t � 1 steps get to the lattice site ðt � 1; j0Þ.
According to the mentioned rules the weight of the start

and end points for each path that starts from the height jji
and ends at the height jj0i are given by

wi ¼ qj; wf ¼
j0

j

� �
1

pj
0 : ð35Þ

Using the above equations the Zj;j0 can be written as
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Zj;j0 ¼
j0

j

� �
qj

pj
0 hj0jCt�1jji: ð36Þ

Considering that the lattice path can start from different

height jji in which j ¼ 0; 1; . . .;1 and end at different

height jj0i where j0 ¼ j; jþ 1; . . .; jþ t � 1 then the parti-

tion function of the lattice path can be written as

Z ¼
X1

j¼0

Xjþt�1

j0¼j

j0

j

� �
qj

pj
0 hj0jCt�1jji: ð37Þ

Using (15) the partition function of the lattice path is given

by the following relation

Ztðp; q; zÞ ¼
X1

j¼0

Xjþt�1

j0¼j

j0

j

� �
qj

pj
0

Xt�2

k¼0

zðzþ 1Þt�k�2dj0;k þ dj0;jþt�1

 !

:

ð38Þ

Hence, the partition function of the lattice path can be

rewritten as

Ztðp; q; zÞ ¼
X1

j¼0

Xjþt�1

j0¼j

j0

j

� �
qj

pj
0 zðzþ 1Þt�j0�2

þ
X1

j¼0

jþ t � 1

j

� �
qj

pjþt�1
:

ð39Þ

Using Newton’s binomial expansion the above equation

can be rewritten as follows

Ztðp; q; zÞ ¼
X1

j¼0

Xjþt�1

j0¼j

j0

j

� �
qj

pj
0 zðzþ 1Þt�j0�2 þ 1

pt�1
1� q

p

� ��t

:

ð40Þ

Note that all parameters in the summand are non-neg-

ative thus using Tonelli’s theorem we can interchange

the summations, as
P1

j¼0

Pt�1
j0¼j

� �
�

P1
j0¼0

Pj0

j¼0

� �
.

Hence, the partition function of the lattice path can be

written as

Ztðp; q; zÞ ¼
X1

j0¼0

Xj
0

j¼0

j0

j

� �
qj

pj
0 zðzþ 1Þt�j0�2 þ 1

pt�1
1� q

p

� ��t

:

ð41Þ

We are interested in the partition function of the original

walk model in the special case, that after taking t � 1

successive steps, the random walker has taken a certain

number of upward steps. We study the case in which after

t � 1 successive steps, the random walker can be at the

heights between 0 and t �M where M� t. To find the

partition function of the model in this case, let us have a

closer look at the role of the fugacity z. The weight asso-

ciated with a horizontal or downward movement is pro-

portional to z; therefore, the coefficient of zM�1 in (41) is

equal to the partition function of the walk model which

consists of at most t �M upward steps. The result is

ðzþ 1Þt�j0�2 ¼
Xt�j0�2

i¼0

t � j0 � 2

i

� �

zi:

Using the above equation, the coefficient of the zM�1 can

be easily calculated as follows

Zt;Mðp; qÞ ¼
Xt�M

j0¼0

Xj
0

j¼0

j0

j

� �
t � j0 � 2

M � 2

� �
qj

pj
0 : ð42Þ

One can interpret this partition function as the sum of the

weights of all paths that have the length t � 1 which con-

tain t �M upward steps (or equivalently M � 1 horizontal

and downward steps).

The phase behavior of the lattice path
in the thermodynamic limit

As a relevant quantity, one can investigate the mean height

of the random walker. The probability that the paths who

starts from the height jji, and after t � 1 successive steps

according to the rules of the lattice path end at the height

jj0i, is given by

Pt;Mðj; j0Þ ¼
1

Zt;MðpÞ
qj

pj
0

j0

j

� �
t � j0 � 2

M � 2

� �

: ð43Þ

Hence the average height of all possible paths in the lattice

path is

hhi ¼
Xt�M

j0¼0

Xj
0

j¼0

j0Pt;Mðj; j0Þ: ð44Þ

It should be noted that in the above equation the arrange-

ment of the index has been changed with respect to the

Tonelli theorem. According to (42), the average of the

height in lattice path is given by the following relation

hhi ¼ �p
o ln Zt;MðpÞ

op
: ð45Þ

In the thermodynamic limit due to the behavior of the

partition function of the lattice path, it turns out that the

mean height of the random walker is given by

hhi ¼
t 1� q� p

1þ q� p
q

� �

for p� q\1� q 1þ qð Þ
p

p� 1� qð Þ 1þ qð Þ � 1 for p� q[ 1� q 1þ qð Þ

8
>><

>>:
:

ð46Þ

As can be seen in the thermodynamic t ! 1, there is a

phase transition from a phase in which the mean height of

the random walker is of order t to another phase where it is
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1� qð Þ 1þ qð Þ= p� 1� qð Þ 1þ qð Þ½ �. If q ¼ 0 the results

are exactly those obtained in [11].

Concluding remarks

In this paper, we have introduced a two-species driven-

diffusive model of classical particles defined on a one-

dimensional lattice with periodic boundary condition

which can be mapped onto a zero-range process. The

canonical partition function of the model is calculated and

phase behavior of this model is investigated. After calcu-

lating the grand canonical partition function, the critical

fugacity is obtained at which the model undergoes a first-

order phase transition. The density profile of the model is

calculated exactly and the spatial correlations of the model

are obtained in terms of 1-point correlation function. We

have introduced a two-dimensional walk model in which

the random walker, in contrast with the lattice path intro-

duced in [11], can start from any height upper than the

origin and that the end point of the lattice path can be at

any height upper than the start point. This type of lattice

path is introduced in [19]. The partition function of the

lattice path is calculated using the transfer matrix method.

Comparing this partition function with that of the driven-

diffusive model we have shown that these two model are

equivalent. It should be noted that the walk model intro-

duced in [11] and the one introduced in present work can

be mapped onto zero-range process.
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