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Abstract In this paper, we investigate the atomic positions

of single layer armchair graphene nanoribbon for two

cases, with and without hydrogen-passivate edges, accu-

rately and propose a formula which either removes the

need of structural relaxation generally or decreases its time

extremely (up to seven times). We also propose a general

pattern (hyperbolic) for these positions. On the other hand,

we show that edge effect influences several atoms near the

edge not just one. These results can be used in software,

which compute atomic positions and can increase their

efficiency. In addition, we prove that the C–C bond dis-

tance depends on dimer number and differs in length and

width directions, especially for narrow AGNRs. The

maximum value of these differences is about 0.017 Å.

Keywords Armchair graphene nanoribbon (AGNR) �
Structural relaxation � Atomic position � Dimer � C–C bond

length

Introduction

Graphene is a one-atom-thick crystal of sp2-bonded carbon

atoms ordered in a two-dimensional (2D) hexagonal lattice

[1]. Graphene and graphene nanoribbon (GNRs) have

attracted much recent attention for their unique two-di-

mensional structures and physicochemical properties [2],

as well as their wide potential applications in electronics

[3, 4], photonics, and optoelectronics [5], energy storage

and conversion [6], and chemical-bio sensing [7].

Regarding the broad usage of GNR in nano-electronics,

physics and chemistry, this substance is under wide

investigations at present. Most of these investigations are

done using some software based on density functional

theory (DFT), and they need structural relaxation of

nanoribbons. It takes much time, especially if the length of

nano-transistors being investigated is more than 10 nm. In

this case, the number of atoms will increase. If the method

for simulation of the structure is based on order-N3, the

time it needs will be much more even for supercomputers.

In the case of investigating multilayer graphene nanorib-

bon, the situation will deteriorate.

The idea is proposing a method having the dimer

number of GNR and its length to acquire the structural

relaxation and the exact position of atoms. In this case,

either the general need for structural relaxation would be

unnecessary or even by doing this, the time will be extre-

mely decreased.

To use graphene nanoribbon as a channel, we should

first determine the approximate position of atoms. Then

these positions should be given to applications such as

SIESTA, VASP and ATK [8–10] which change them using

structural relaxation and spending a long time, until these

atoms are placed in their precise positions. The running

time for relaxation depends on several parameters: the

accuracy of initial positions given to the software, the

method used in the software for structural relaxation, the

parameters that the user sets in the software, and the value

of the requested accuracy to end run.

Except for the initial positions, the rest of the parameters are

usually specified by the researcher at the beginning, and do not

change [10–12].Given that the initial position of the atoms is of
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paramount importance in comparison to the rest of the

parameters, it is underway in the present study. It is natural that

if we relax an atomic structure and set the obtained positions to

the software as new initial positions and repeat the structural

relaxation, the run time would be reduced several times. This

time for very large structures, can be reduced from months to

days. So acquiring away to determine the precise initial atomic

positions sounds completely logical.

Researchers obtain these initial positions from some

specific ways: downloading from the Internet, using simple

formulas available inbooks and articles [13, 14], and theuse of

applications that calculate these positions for a number of

particular structures such as carbon nanotube [15]. It is natural

that the atomic structures found on the Internet are limited.

Using the simple formula readily accessible in the books and

articles, we can calculate the positions with low accuracy, and

so much time is required to run structural relaxation.

Applications that are available in this field are also very

limited. For example, Nano Tube Modeler software, which

is used for CNT [15, 16]. Such applications use simple and

ideal formulas to calculate the atomic positions too, which

make the run time very long. So by determining the exact

formulas for the positions in GNRs in this paper,

researchers can utilize these formulas.

In all applications and simple formulas, C–C bond

lengths are considered constant for all GNRs in different

directions [13, 14]. As we calculate the exact atomic

position for all atoms, it will be obvious that the Dcc

(carbon-carbon bond length) is not equal for them. We

consider the average value of middle atoms in all GNRs in

two directions and compare them.

The paper is organized as follows: in Sect. 2, we present a

basic formula for atomic positions for all carbon atoms in

ideal (slab cut of graphene) and real (relaxed) AGNR. In

Sect. 3, we derive all atomic positions in x and y directions

and energy gap, and then present a generic formula for them

and show the fact that the C–C bond lengths are different in

two directions. Finally, Sect. 4 summarizes our findings.

Problem statement

In this paper, we present two groups of AGNR slabs. For

the first group, all edge carbon atoms saturate with

hydrogen atoms and for second group, they are bare

(without hydrogen). The width of AGNR is defined by the

number of dimer lines (Ny) and that of length is defined by

the number of atoms in slab direction, as illustrated in

Fig. 1. Since the band gaps of AGNRs depend on its width

and exhibit three distinct families, (3n ? m) behavior

[17, 18], we choose AGNRs with length Nc = 6 (number

of carbon atoms in X direction), and width Ny = 5–30,

representing the family behavior with the n = 1–10 and

m = 0, 1 and 2. In addition, wider AGNRs with

Ny = 40–42, are also calculated to examine the size-de-

pendent effects, and to see some especial effects better.

At first, we can consider an ideal graphene nanoribbon.

The exact position of each atom is obtained by following

equations [13, 14] (we show these positions in ideal states

with capital letters):

Yði; jÞ ¼ C2 þ ðj� 1Þ
ffiffiffi

3
p

2
Dcc : for all i& j; ð3Þ

Xði ¼ Odd; jÞ ¼ Xði ¼ 1; jÞ þ 3� Nx � Dcc ð4Þ
Xði ¼ Even; jÞ ¼ Xði ¼ 2; jÞ þ 3� Nx � Dcc; ð5Þ

where Nx is the number of unit cells in X direction (every

two adjacent columns of atoms in X direction, is a unit

cell), C1 and C2 are arbitrary constant numbers, and Dcc is

C–C bond length. Now we are going to relax the various

nanoribbons with different widths. The computed positions

for these atoms are denoted by small letters. Let us call it

the real value. In general, the positions in real and ideal

states are not equal. We define this variation as:

xðRealÞ ¼ XðIdealÞ þ Dxði; j;NyÞ; ð6Þ

yðRealÞ ¼ YðIdealÞ þ Dyði; j;NyÞ: ð7Þ

Fig. 1 An AGNR slab with its whole details
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Now if we obtain the exact value of Dx and Dy, according
to obtained ideal value of X and Y with formulas (1)–(5),

we will have a general formula for the relaxed value of

x and y, and the relaxation of nanoribbons will not be

needed any more. Even if we need to relax the nanoribbons

the time of relaxation will be decreased considerably.

Results and discussion

Electronic structures and geometry relaxations are calcu-

lated based on the DFT [19], using the Spanish initiative

for electronic simulations with thousands of atoms package

(SIESTA) [20, 21] with local-density approximation

(LDA) [22]. A double-f plus polarization basis set is

employed to describe the localized atomic orbitals and an

energy cutoff for real-space mesh size is set to be 380 Ry.

All nanostructure geometries are fully relaxed with a force

tolerance, 0.01 eV/Å [11].

We do the structural relaxation using SIESTA for

AGNRs with Ny from 5 to 30 in two states, with and

without hydrogen for carbon atoms in edges. Then we use

the output files of these simulations as input files in

MATLAB and process all the output data of SIESTA by

several programs written in MATLAB. According to

reports by other researchers, it is obvious that energy

bandgap diagram vs the dimer number is divided into three

categories. The dimer number is shown as:

Ny ¼ 3nþ m; ð8Þ

where n is a natural number and m is 0, 1 or 2, other studies

have shown that energy bandgap diagram depends on the

value of m [23]. We also obtain the same diagrams in this

research. Figures 2, and 3, show this diagram in two states,

with and without hydrogen. These diagrams indicate that

each branch of these diagrams can be shown with a specific

formula:

f ðxÞ ¼ A0 þ
A1

x
; ð9Þ

where f = Eg and x = Ny. As a result, we fit these diagrams

with the obtained data using nonlinear regression. We

obtain the coefficient A0, A1 and the mean square error

(MSE) for various three branches of diagrams and in two

cases, with and without hydrogen by listing them in

Table 1. The diagrams related to nonlinear regression (as

fitted to) of the data together with the data itself obtained in

simulations are shown in Figs. 2, and 3. It can be figured

out from these diagrams that the obtained data in simula-

tions is perfectly coinciding with the proposed formula so

that five out of six branches coincide in a way that almost

no difference can be observed between simulation and

nonlinear regression.

In Table 1, each column of data is related to a specific

category of AGNRs, which has been shown by the value

m = 0, 1, and 2. In MSE section of the table, it can be seen

clearly that the value of error for m = 1, and for the case

without hydrogen is more than the other considerably.

As a result, the diagram of simulation and nonlinear

regression (for m = 1) in Fig. 3, are slightly different from

each other. Although there exist some minor errors in one

Fig. 2 Energy gap vs dimer number for AGNR with H

Fig. 3 Energy gap vs dimer number for AGNR without H

Table 1 Energy gap in AGNRs vs m

m = 0 m = 1 m = 2

With H

A0 0.1206 0.0741 0.1585

A1 6.1866 9.9777 1.0715

MSE 3.7e-05 8.2e-05 4.1e-05

Without H

A0 0.1475 0.2286 0.1329

A1 3.9968 8.0067 2.7275

MSE 2.9e-05 8.0e-04 2.1e-05
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branch, simulation results show enough good matches with

that of proposed formula.

Computing Dx

We take the idea from last paragraph and extend this

regression to all parameters of GNRs, including Dx and

Dy. The diagram of Dx based on the atom index in Y di-

rection (j) is drawn in Figs. 4, and 5, for the two dimer

numbers, 29 and 30 (odd and even). By looking over these

figures it is observable that the diagram is odd for

nanoribbons having even dimer number and vice versa. In

addition, except for edge carbon atoms of nanoribbons (on

both sides) which have the most variations, the diagram

relating to the rest of atoms is zigzag shape. It means the

amount of variations in X direction depends on atom index

being odd or even, and this state looks normal considering

the arrangement of atoms in graphene (or AGNR) unit cell

which they are placed alternatively as atoms type 1 and 2.

Considering these points, we can write the Dx formula

according atoms’ index. It is enough to have the mean and

peak to peak value of the zigzag. In this case the formulas

can be written as:

Dxði ¼ Odd; j ¼ OddÞ ¼ Avði ¼ 1Þ � 1

2
P2P ði ¼ 1Þ;

ð10Þ

Dxði ¼ Odd; j ¼ EvenÞ ¼ Avði ¼ 1Þ þ 1

2
P2P ði ¼ 1Þ;

ð11Þ

Dxði ¼ Even; j ¼ OddÞ ¼ Avði ¼ 2Þ þ 1

2
P2P ði ¼ 2Þ;

ð12Þ

Dxði ¼ Even; j ¼ EvenÞ ¼ Avði ¼ 2Þ � 1

2
P2P ði ¼ 2Þ;

ð13Þ

where Av and P2P are the mean and peak to peak values of

zigzags, respectively. The diagram relating to the mean

value is depicted in Fig. 6. Moreover, that relating to the

peak to peak is shown in Fig. 7, (both of them are plotted

for nanoribbons without hydrogen). The same diagrams

obtain for nanoribbons with hydrogen. Considering these

diagrams, it can be seen that the hyperbolic formula (9)

which is proposed for GNR’s bandgap energy is also valid

here. In this formula f = Av or P2P and x = Ny. In this

case, each diagram alone is divided into three categories

(for three different values of m) and the nonlinear regres-

sion for each category.

The obtained coefficients and the MSE for each category

are shown in Tables 2, and 3 for the mean and peak to peak

of zigzag section, respectively, for two cases, with and

without hydrogen.

Now we have to obtain the value of Dx of GNR for edge

carbon atoms and atom near the edge. In addition, beside

the edge carbon atom, the atoms near the edge are a little

far from the ideal zigzag shape that we consider for central

atoms. We have sketched the diagrams relating to Dx for

edge carbon atom (j = 1) in Fig. 8, and for the second

atom from the edge (j = 2) in Fig. 9, according to the

Fig. 4 Percentage of Dx for Ny = 29 vs atom index in Y direction

(j) for two atom index in x direction (i = 1, i = 2)

Fig. 5 Percentage of Dx for Ny = 30 vs atom index in Y direction

(j) for two atom index in x direction (i = 1, i = 2)

Fig. 6 Average of differences in percentage in X direction for

AGNRs without H for all first atoms (i = 1) and their fitted curves
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dimer number. Both of these figures are plotted for

nanoribbons without hydrogen.

We have achieved all these diagrams for both cases,

with and without hydrogen, and for four atoms near the

edge (j = 1, 2, 3, 4), but considering the high number of

figures, we do not draw them all. In all these diagrams, the

general shape of hyperbolic can be seen. Thus, we use the

formula (9). In this formula f = Dx and x = Ny.

In Fig. 8, it can be seen that the diagrams are coinciding

for all three categories. It means this diagram does not

depend on m value, but as we can see in Fig. 9, those three

categories are unlike each other. This manner is extendable

for other atoms in the same way. It means that the various

categories of the diagram coincide for odd atoms but not

for even atoms. We use the general formula (9) again. In

this formula f = Dx and x = Ny. The various coefficients

obtained from nonlinear regression for the first four atoms

near the edge and for AGNRs with, and without hydrogen

are listed in Tables 4 and 5, respectively. The points

mentioned for odd and even edge atoms, are obvious in

these tables.

Now by considering diagrams being odd or even, we

have to write the formulas relating to second edge for first

four atoms of the edge. These formulas are:

Dx i;Ny � j
� �

¼ Dxði; jÞ : j ¼ 1; 2; 3; 4 and Ny ¼ Odd;

ð14Þ

Dxði;Ny � jÞ ¼ AvðiÞ � Dxði; jÞ : j ¼ 1; 2; 3; 4 and Ny

¼ Even:

ð15Þ

Therefore, using Tables 2, 3, 4 and 5 in Eqs. (10)–(15), we

compute the exact value of Dx for all atoms and for each

dimer number. By inserting this value in Eq. (7), we obtain

the real value of x.

Fig. 7 Peak to Peak percentage of Dx for middle first atoms in

Y direction (i = 1) for AGNRs without H vs dimer number

Table 2 The average of Dx in middle carbons

m = 0 m = 1 m = 2

With H

A0 -0.0082 -0.0374 0.0618

A1 -2.7524 -2.5069 -4.1218

MSE 7.4e-08 3.3e-08 3.0e-07

Without H

A0 -0.0204 0.0075 -0.1548

A1 -9.1735 -9.9429 -6.8449

MSE 1.2e-07 7.2e-09 6.4e-07

Table 3 Peak to Peak of Dx in middle carbons

m = 0 m = 1 m = 2

With H

A0 0.0972 -0.0222 0.0613

A1 1.5239 3.5494 2.2642

MSE 1.9e-07 8.3e-08 6.0e-08

Without H

A0 -0.3470 -0.0671 -0.2856

A1 18.0746 12.3439 16.6161

MSE 3.3e-06 3.7e-08 1.8e-06

Fig. 8 Percentage of Dx for first carbon in Y direction (j = 1) for all

AGNRs without H vs dimer number, and their fitted curves

Fig. 9 Percentage of Dx for second carbon in Y direction (j = 2) for

all AGNRs without H vs dimer number, and their fitted curves
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Computing Dy

Figure 10, shows Dy diagram in two cases, with and

without hydrogen, according to atom index in Y direction

(j) for GNR with dimer number 29 as an example. The

basic difference between diagrams related to Dx and Dy is

that the coefficients relevant to various indices in X direc-

tion (i) are completely coinciding in Dy diagrams while

these coefficients in Dx diagrams are different.

Now to look at the inner atoms more carefully, we

eliminate two atoms from the edges of the diagram and

focus on central atoms. This diagram has shown as an

example for dimer number 30 in Fig. 11. Now suppose we

divide atom’s index in Y direction (j) into three categories

means j = 3 9 n ? mj. Based on this figure it is obvious

that the value of Dy depends on the categories (mj).

However, there is not much difference between categories

(mj) for the most dimer numbers. This point can be seen in

Fig. 12, for dimer number 29. However, if we consider

original figure in that two edge atoms are not eliminated

(Fig. 10), the effect of mj can be ignored.

Another important point is that if we eliminate the edge

atoms, a linear shape can be seen for other atoms. Thus, we

can consider Dy formula for central atoms as linear. For

doing it, we use the linear regression in MATLAB to obtain

the slope and offset values for each AGNR with various

dimer numbers. As an example, the slope diagram is

Table 4 Dx of four first carbons in AGNRs with H

m = 0 m = 1 m = 2

Carbon 1

A0 -1.7607 -1.7344 -1.6468

A1 -5.1316 -5.5395 -7.3415

MSE 3.5e-08 3.0e-08 6.4e-07

Carbon 2

A0 -0.4238 -0.3344 -0.3516

A1 -0.1986 -2.6628 -1.5550

MSE 3.6e-09 1.5e-08 7.1e-08

Carbon 3

A0 -0.0203 0.0647 0.0694

A1 -3.7301 -5.6972 -5.3053

MSE 3.3e-08 3.6e-08 4.6e-07

Carbon 4

A0 0.1402 0.1537 0.1080

A1 -1.6357 -2.2305 -0.7365

MSE 3.9e-09 8.6e-09 1.7e-08

Table 5 Dx of four first carbons in AGNRs without H

m = 0 m = 1 m = 2

Carbon 1

A0 -6.0231 -5.9924 -5.9971

A1 -18.244 -19.098 -19.027

MSE 3.3e-07 7.1e-08 1.1e-07

Carbon 2

A0 0.9351 0.9999 0.9759

A1 -2.9057 -5.1337 -4.1839

MSE 1.8e-08 1.4e-08 2.9e-08

Carbon 3

A0 -0.1980 -0.1265 -0.2033

A1 -13.489 -15.533 -13.714

MSE 2.8e-07 2.5e-08 8.5e-08

Carbon 4

A0 0.1357 0.1678 0.1086

A1 -4.4469 -5.4186 -3.9314

MSE 2.0e-08 3.1e-09 3.0e-08

Fig. 10 Percentage of DY for Ny = 29 vs atom index in Y direction

(j) with edge atoms

Fig. 11 Percentage of DY for Ny = 30 vs atom index in Y direction

(j) without edge atoms
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depicted for AGNR without hydrogen in Fig. 13. As it can

be seen easily, the diagram is hyperbolic and depends on m.

Considering this point, we use the general formula (9)

and the linear regression. The obtained coefficients for the

slopes and offsets of these lines have listed in Tables 6 and

7, respectively, in two cases, with and without hydrogen.

Thus, by having the values of the slope and offset, Dy
formula can be written for central atoms as:

Dyði; jÞ ¼ SðNyÞ � jþ OðNyÞ: ð16Þ

It can also be figured out from Figs. 11, and 12, that it is

not only the edge atom is placed out of linear regression but

also there are a couple of other atoms, which do the same

slightly. As a result, the value of Dy for the first four edge

atoms for AGNRs in two cases, without and with hydrogen,

are listed in Tables 8 and 9, respectively. These values also

follow the general hyperbolic shape. These values for

ANGRs without hydrogen depend on m, but for AGNRs

with hydrogen are independent of it.

As we have mentioned before, the diagram DY based on

j (compared to the central atom of ANGR) is an odd

function, thus for atoms near the second edge the following

formula can be written:

Dyði;Ny � jÞ ¼ �Dyði; jÞ : j ¼ 1; 2; 3; 4: ð17Þ

Fig. 12 Percentage of DY for Ny = 29 vs atom index in Y direction

(j) without edge atoms

Fig. 13 Slope in the curve of Dcc difference in percentage in AGNRs

without H in Y direction for middle atoms vs dimer number

Table 6 The slope (S) in AGNRs in Y direction

m = 0 m = 1 m = 2

With H

A0 0.0165 0.0140 0.0034

A1 0.3108 0.0344 0.6737

MSE 1.0e-07 3.6e-08 7.9e-08

Without H

A0 0.0296 0.0667 0.0073

A1 -2.2085 -3.3721 -2.1073

MSE 2.9e-08 2.4e-08 8.5e-08

Table 7 The offset (O) in AGNRs in Y direction

m = 0 m = 1 m = 2

With H

A0 -0.2819 -0.1644 -0.2724

A1 -0.8469 0.0477 -2.0991

MSE 8.0e-06 3.5e-06 9.4e-06

Without H

A0 0.5908 0.4035 0.7838

A1 4.5999 11.5680 3.5510

MSE 3.2e-06 6.6e-06 6.7e-06

Table 8 DY of four first carbons in AGNRs without H

m = 0 m = 1 m = 2

Carbon 1

A0 7.3245 7.2128 7.4956

A1 7.4807 13.1602 7.0796

MSE 1.8e-06 5.1e-06 3.2e-06

Carbon 2

A0 0.6364 0.6042 0.7627

A1 -0.5570 2.3996 -0.9311

MSE 1.3e-06 4.1e-06 2.2e-06

Carbon 3

A0 0.6678 0.6608 0.8137

A1 -1.5009 0.0079 -3.0802

MSE 1.2e-06 3.9e-06 2.4e-06

Carbon 4

A0 0.8059 0.7015 0.9006

A1 -5.3071 -0.9615 -5.4591

MSE 1.1e-06 3.2e-06 2.1e-06
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Therefore, using Tables 6, 7, 8 and 9 in Eqs. (16) and (17),

we compute the exact value of Dy for all atoms and for

each dimer number. By inserting this value in Eq. (8), we

obtain the real value of y. Using these equations, we repeat

structural relaxations again. Comparing the calculation

time required for new relaxations using the real positions

and the ideal positions, we show that the calculation time is

approximately reduced between 4 and 7 times. For exam-

ple, this time for relaxation of AGNR with Ny = 42

reduced from 17 days to less than four days. This reduction

is unbelievable when the channel length is more 10 nm or

when the GNR is multilayer.

Difference between C–C bond length in two

directions

If we look at the two Figs. 4, and 5 more carefully, we

understand with a little change in Dcc in X direction, the

mean value of zigzag shape can be equal to zero in both

cases, i = 1 and i = 2. By summing this change to the last

value of Dcc, we obtain its new value. Because this value is

the mean value for all central atoms, we can name it the

real value for Dcc in x direction. By writing Eq. (3) in two

states before and after the change of Dcc, we can calculate

the amount of change in Dcc accurately:

DDccx ¼ � 4

3
Av1; ð18Þ

P2P2 ¼ P2P1 þ
2

3
Av1; ð19Þ

where Av1 and P2P1 are mean value and peak to peak of

the zigzag part of DX diagram in central atoms which their

hyperbolic coefficients are listed in Tables 2 and 3,

respectively. P2P2 is the amount of peak to peak after the

changing of the Dcc obtained from the formula (18). The

figures obtained from MATLAB programs have proven the

improvements which we refuse to draw these figures be-

cause of their numbers and being repetitious.

Now, we consider Dcc in Y direction. If we look at the

Figs. 10, 11, and 12, again, we can observe a slope in

central atoms. This slope shows that the Dcc we considered

in this direction, is different than the last one, and we can

remove the slope by improving it. Using the Eq. (3) and

considering the fact that slope in this diagram means the

change of DY in two next atoms in Y direction, the fol-

lowing equation can be easily written as:

DDccy ¼ � 2
ffiffiffi

3
p S1: ð20Þ

The parameter S1 is the amount of obtained slope before

applying the change in Dcc in Y direction which its

hyperbolic coefficients are shown in Table 6. We achieved

other diagrams using MATLAB programs for this state,

which confirms the validity of our sayings. However, we

refuse to draw these figures because of their numbers and

being repetitious.

Now that we can have an estimation from existing dif-

ferences in Dcc in two various directions, we compute both

changes by using the formulas (18) and (20) for specific

dimer number, for example, Ny = 29, for the state of AGNR

without hydrogen. These values are approximately equal to:

DDccx � %0:4; DDccy � %0:06: ð21Þ

We can see that the amount of change is different in two

directions of AGNR. Regarding to the value of Dcc for

graphene (Dcc & 1.42 Å), the difference between C–C

bond lengths is approximately 0.005 Å. As another

example, the value for Ny = 5, it is nearly 0.017 Å, and it

reduces to zero when the dimer number goes to infinity.

Conclusions

We proposed a general hyperbolic formula, and we

proved that the way the AGNRs bandgap energy is

relatable, there are lots of other parameters, which can be

shown by this formula. In this way, we showed that the

atomic positions of all carbon atoms in AGNRs can be

calculated by the formula, and so we can perform the

analysis without the need to its structural relaxations.

Using obtained equations, we did the structural relax-

ations for AGNRs with different dimer numbers again,

and could reduce the analysis times, 4–7 times. We also

showed that the edge effect would not be only for the first

edge atom, and this effect can be observed in the couple of

atoms close the edges.

We also showed that the C–C bond length is slightly

different for each various directions. This difference is

about 0.017 Å for AGNRs with small dimer numbers and

is reduced to zero for AGNRs with large width (graphene).

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://crea

tivecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

Table 9 DY of four first carbons in AGNRs with H

A0 A1 MSE1

Carbon 1 1.3966 2.0813 1.0e-06

Carbon 2 -0.3637 1.3296 6.6e-07

Carbon 3 -0.4808 0.8744 6.3e-07

Carbon 4 -0.1334 0.5408 8.0e-07
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