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Abstract The shifted Tietz—Wei (sTW) oscillator is as
good as traditional Morse potential in simulating the
atomic interaction in diatomic molecules. By using the
Pekeris-type approximation, to deal with the centrifugal
term, we obtain the bound-state solutions of the radial
Schrodinger equation with this typical molecular model via
the exact quantization rule (EQR). The energy spectrum for
a set of diatomic molecules (NO(a*Il;), NO(BII,),

NO(L2¢), NO(b*E"), 1c1(x12;), ICI(AT,) and

ICI(A”T1,) for arbitrary values of n and ¢ quantum num-
bers are obtained. For the sake of completeness, we study
the corresponding wavefunctions using the formula
method.
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Introduction

By employing the dissociation energy and the equilibrium
bond length for a diatomic molecule as explicit parameters,
Jia et al. [1] generated improved expressions for some well-
known potentials including Rosen—Morse, Manning—
Rosen, Tietz and Frost—-Musulin potential energy functions.
These authors found that the well-known Tietz potential
function is conventionally defined in terms of five pa-
rameters but it actually has only four independent pa-
rameters. Furthermore, the Wei [2] and Tietz potential
functions [3] are exactly same solvable empirical functions.

Wang et al. [4] also generated improved expressions for
two versions of the Schidberg potential energy function which
are the Rosen—Morse and Manning—Rosen potential func-
tions. By choosing the experimental values of the dissociation
energy, equilibrium bond length and equilibrium harmonic
vibrational frequency as inputs, the authors obtained the av-
erage deviations of the energies calculated with the potential
model from the experimental data for five diatomic molecules,
and find that no one of six three-parameter empirical potential
energy functions is superior to the other potentials in fitting
experimental data for all molecules examined.

All these efforts were made in an attempt to find a most
suitable molecular potential in its description of diatomic
molecules. Following Refs. [1, 4], we suggest sTW as a
modification for the TW [2-8]. This potential can be written as

2(ch — l)e—hh(r—"e) — (¢ -

(1 — che~tair—r))?

l)e—zb/x(r_re)

V(ir) =V,

)

(1)

where b, = (1 — ¢p), re is the molecular bond length, f is
the Morse constant, V. is the potential well depth and ¢y, is
an optimization parameter obtained from ab initio or
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Rydberg—Klein—Rees (RKR) intramolecular potentials. r is
the internuclear distance. When the potential constant ap-
proaches zero, i.e. ¢, — 0, the sTW potential reduces to the
Morse potential [9]. This potential is just the TW potential
shifted by dissociation energy D.. The shape of this po-
tential is shown in Fig. la for different molecules.

Figure 1b compare between TW diatomic molecular
potential, STW diatomic molecular potential and the Morse

potential using the parameters set for H, (X IZ;) diatomic

molecule. As it can be seen from this plot, the shifted
Tietz—Wei and the Morse potentials are very close to each
other for large values of r in the regions r = r. and r > r,
but they are very different at » ~ 0. This implies that the
shifted Tietz—Wei potential is as good as traditional Morse
potential and better than the Tietz—Wei potential in
stimulating the atomic interaction for diatomic molecules.

The scheme of our presentation is as follows. In the next
section we give basic ingredient of exact quantization rule
and all necessary formulas for our calculations. We solve
the radial Schrodinger equation for the sTW and also ob-
tain the rotational-vibrational energy spectrum for some
diatomic molecules. Finally, results and conclusions are
presented.

A brief review of the exact quantization rule

Here we give a brief review on the EQR. The details can be
found in Refs. [10-24]. In 2005, Ma and Xu [12, 13] by
carefully studying one-dimensional Schrodinger equation,
have extended results to three-dimensional case by simply
making the replacements x — r and V(x) — Veg(r):

Fig. 1 a Shape of sTW 8
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where r4 and rp are two turning points determined by
E = Ve(r). The N = n+ 1 is the number of the nodes of
¢(r) in the region E,; = Ve (r) and is larger by one than
the number n of the nodes of wave function ¥/(r). The first
term Nm is the contribution from the nodes of the
logarithmic derivative of wave function, and the second is
called the quantum correction.

In this approach, the energy spectrum equation is ob-
tained by solving the two integrals involved in Eq. (2). This
quantization rule has been used in many physical systems
to obtain the exact solutions of many exactly solvable
quantum systems [10-24]. EQR is a very important foun-
dation to proper quantization rule (PQR) [10, 25-27].

k(r)

The energy spectrum

To study any quantum physical model characterized by the
diatomic molecular potential given by Eq. (1), we need to
solve the following Schrodinger equation for spherically
symmetric potential in any arbitrary dimensional space:
& D-1d (l+D-2) 2u
— —— —(Ew—V
<dr2 rodr r? * n? (Ene (r))

wn,i,m(rv QD) =0.

(3)
Now, by defining the wavefunction V,,,(r,Qp) as

r(I—D)/2RnZ(r)Y[m(07¢) and taking V(r) as the sTW

diatomic molecular potential for
different diatomic molecules. b
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diatomic molecular potential, the radial part of Eq. (3) can
be found as

d’R, 2
o(7) L2

dr? 2
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UL
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where n, ¢ and E,, denote the principal quantum number,
orbital angular momentum number and the bound state
energy eigenvalues of the system under consideration (i.e.,
E, < 0), respectively. The parameter 1§ = ¢+ % (D —2)
which is a linear combination of the spatial dimensions D
and the angular momentum quantum number ¢. It is well
known that for ¢ = 0, problem in the form (4) is exactly
solvable. But for £ # 0, it is not due to the centrifugal
barrier. Therefore, in order to solve the above equation for
£ # 0 states, Hamzavi et al. [6] found that the following
formula is a good approximation scheme to deal with the

centrifugal barrier:
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Constant « = bpr. has been introduced for mathematical
simplicity. Now, by inserting this approximation into Eq.
(4) and then introducing a new transformation of the form
r — { =" through the mapping function { = f(r) with r
in the domain [0, o) or { in the domain [—1, co], we obtain
the following second order differential equation:

1dRy(0) | 2u

[Ene— Vet (O)|Rne() =0, with
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(7)
If we define ¢ :ﬁ, then we can obtain the two turning

points ¢, and ¢, as well as their sum and product properties
by solving Ve () —E =0 or Vg (S) —E,p=0 as:
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Now, we can write the non-linear Riccati equation for the
ground state is as

_ 1 +9)
re

B3 + B0 + 25 [Ew — Vg ()] =0
©)

Since the logarithmic derivative ¢ () for the ground state
has one zero and no pole, it has to take the linear form in ¢.
Thus, we assume the following solution for the ground states

bo(S) =A+BS. (10)

By putting Egs. (10) into (9), we can solve the non-linear
Riccati equation. After proper comparison, it is straight-
forward to obtain the ground state energy and values of A
and B as

and

"A? pwB—F/ct
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Since we now have all basic ingredient required to perform
our calculations, thus, we proceed to calculating integrals

2)

B
2

Y
ﬁ @ Springer



J Theor Appl Phys (2015) 9:151-158

, o J;, aS(1+<) %)z,
2uF [-(-3)GE-)'""
— 1 L= dg
h S(1+Sen)
__mre [2uF
== 5
1+¢ 1+¢ 1 —
% \/( + aCh)( +sth)___@]
Ch Ch
mre [2uF
= —— h2
» \/(.A Eng)ch Ben+F i_ JA—E,;
}"ch Ch F ’

(12)

where we have used the following standard integral
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Furthermore, we can find the integral on the right hand side
as
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Using the results in Eqs. (12) and (14) together with Eq.
(1), we can find the energy eigenvalues equation for the
sTW diatomic molecular potential as
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In three-dimensional (D =3) space, it can be reduced to the
form
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The Eigenfunctions

For the sake of completeness, we study the corresponding
wavefunctions for this potential. For this purpose we in-
troduce a new transformation of the form r = e (") ¢
(e*,0) in Eq. (7), which maintained the finiteness of the
transformed wave functions on the boundary conditions.
Thus, we can find

PUn(r) | 1dUu(1) 1
dr2 ¢t dt 2(1 — cpt)?
2 o
y { {ZW;EM ) DO}
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3 .
+ 2 (chh —Dz) — h2;2 ]l }Ung(l) =0.

(17)

Following the procedure described in Ref. [28], we can
write the solution U,(f) in terms of hypergeometric
polynomials and thus the wave function takes the form
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Table 1 Model parameters of

the diatomic molecules studied ~ M1ClccUles (states) c u/107 (@) by (A7) re (A) D(em™)

in the present work
NO (a*IT;) 0.0082003 1.249 2.408413 1.451 16,361
NO (B*I1,) —0.482743 1.249 3.42650 1.428 22,722
NO (L?¢) —0.073021 1.249 2.73796 1.451 14,501
NO (b*Z7) —0.085078 1.249 3.01538 1.318 21,183
ICl (Xlzgr) —0.086212 4.55237 2.008578 2.3209 17,557
ICl (A1) —0.167208 4.55237 2.542557 2.6850 3814.7
ICl (A”T1,) —0.157361 4.55237 2.373450 2.6650 4875

Table 2 The bound states energy eigenvalues (D = 2 and 3) for set of diatomic molecules for various n and rotational ¢ quantum numbers in
sDF diatomic molecular potential

D n { NO (a*IL) NO (B*Ml,)  NO (L?¢) NO (h*=") 1l (xlz;) IC1 (A31,) ICI (A®T1,)
0 0 —1971298585 —2.88233770 —1.855428285  —2.695026855  —2.200695845  —0.4861418795  —0.618432865
1 0 —1.859308585 —3.01386965 —1.972859085 —2.834614855  —2.248819245  —0.5129225795  —0.646829015

1 —1.859148585 —3.01373250 —1.972723585 —2.834451355 —2.248804845 —0.5129118495  —0.646818105
20 —1.750608585 —3.14759050  —2.093631485  —2.977436555  —2.297420945  —0.5403157895  —0.675774025
1 —1.750468585 —3.14745280 —2.093493685 —2.977270755 —2.297406745  —0.5403049695  —0.675763045

2 —1.750098585 —3.14703970  —2.093081285  —2.976773655  —2.297363645  —0.5402725095  —0.675730195

2 3 0 —1.645178585 —3.28347662 —2217724085 —3.123472855  —2.346500045  —0.5683148895  —0.705263165
1 —1.645068585 —3.28333841  —2217584185 —3.123304955 —2.346485745  —0.5683039695  —0.705252125

2 —1.644678585 —3.28292375 —2.217165185 —3.122801255  —2.346442645  —0.5682712195  —0.705219005

3 —1.644058585 —3.28223274 —2216466785 —3.121961855  —2.346370345  —0.5682166495  —0.705163785
4 0 —1543078585 —3.42150558 —2.345115985  —3.272704955  —2.396055245  —0.5969133695  —0.735291785
1 —1.542938585  —3.42136686 —2.344973985  —3.272534755 —2.396040945  —0.5969023495  —0.735280655

2 —1.542598585  —3.42095075  —2.344548485  —3.272024355  —2.395997445  —0.5968693195  —0.735247275

3 —1.541978585 —3.42025729  —2.343839285  —3.271173455  —2.395924945  —0.5968142695  —0.735191635

4 1541118585 —3.41928647 —2.342846285 —3.269982555 —2.395823745  —0.5967371995  —0.735113745

0 0 —1971278585 —2.88230356 —1.855395085  —2.694986655  —2.200692145  —0.4861392095  —0.618430175
1 0 —1.859278585 —3.01383536 —1.972825385  —2.834574055  —2.248815545  —0.5129198795  —0.646826285
1 —1.859008585 —3.01356106 —1.972554585 —2.834247155 —2.248787045 —0.5128984495  —0.646804535
20 —1.750568585 —3.14755607 —2.093596885  —2.977395155  —2.297417445  —0.5403130995  —0.675771295
1 —1.750288585 —3.14728068 —2.093321985 —2.977063955 —2.297388745  —0.5402914395  —0.675749345

2 —1.749808585  —3.14672991  —2.092771985 —2.976400855  —2.297331445  —0.5402481695  —0.675705525
33 0 —1.645158585 —3.28344206 —2217689085 —3.123430855 —2.346496645  —0.5683121595  —0.705260395
1 —1.644908585 —3.28316563 —2.217409585 —3.123095155 —2.346467645  —0.5682903295  —0.705238345

2 —1.644418585 —328261279 —2.216850885  —3.122423255  —2.346410245  —0.5682466595  —0.705194145

3 —1.643678585 —3.28178358 —2.216012785 —3.121415755  —2.346323545  —0.5681811695  —0.705127915

4 0 —1543028585 —3.42147091  —2.345080285  —3.272662455 —2.396051945  —0.5969106095  —0.735288995
1 —1.542798585 —3.42119348  —2.344796885  —3.272322355 —2.396022645 —0.5968885995  —0.735266735

2 —1.542328585  —3.42063869  —2.344229385 —3271641355 —2.395964745  —0.5968445495  —0.735222225

3 —1541588585 —3.41980654 —2.343378185  —3.270620455  —2.395877945  —0.5967784695  —0.735155455
4 —1.540608585 —3.41869700 —2.342243285 —3.269259655 —2.395761945  —0.5966903895  —0.735066435
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where N, is the normalization constant. For a further detail
on the calculation of similar potential models solved using
formula method, one is advised to refer to other work [28]

Results and conclusions

In this study, in an attempt to find a more suitable potential
that simulate the atomic interaction in diatomic molecules,
we suggested sSTW diatomic molecular potential as a
modification for the TW diatomic molecular potential. The
bound state solution of this potential has been found in an
arbitrary D-dimension via the improved exact quantization
rule.

Further, using the spectroscopic parameters presented in
Table 1 which are taken from Ref. [8], we computed ro-
tational-vibrational energy spectrum of some diatomic
molecules in 2,3,4,5-dimensions. The results are presented
in Tables 2 and 3. In our numerical computations, we have
used the following conversions: 1 amu = 931.494028

Table 3 The bound states energy eigenvalues (D =4 and 5) for set of diatomic molecules for various »n and rotational ¢ quantum numbers in sDF

diatomic molecular potential

D n { NO (a*IL) NO (B*M,)  NO (L?¢) NO (h*=7) 1l (Xlzg-) ICI (A1) ICI (A”T1,)
0 0 —1971158585 —2.88220112 —1.855295085 —2.694865755 —2.200681645  —0.4861312495  —0.618422105
1 0 —1.859148585 —3.01373250 —1.972723585 —2.834451355  —2.248804845 —0.5129118495  —0.646818105

1 —1.858778585 —3.01332103 —1.972317885 —2.833961155 —2.248762245 —0.5128796695 —0.646785525
20 —1.750468585  —3.14745280  —2.093493685  —2.977270755  —2.297406745  —0.5403049695  —0.675763045
1 —1.750098585 —3.14703970  —2.093081285  —2.976773655 —2.297363645  —0.5402725095 —0.675730195

2 —1.749438585  —3.14635128  —2.092393885  —2.975945655  —2.297292045  —0.5402183995  —0.675675405
33 0 —1.645068585 —3.28333841  —2.217584185  —3.123304955  —2.346485745  —0.5683039695  —0.705252125
1 —1.644678585  —3.28292375 —2217165185 —3.122801255 —2.346442645 —0.5682712195  —0.705219005

2 —1.644058585 —3.28223274 —2216466785 —3.121961855  —2.346370345  —0.5682166495  —0.705163785

3 —1.643188585 —3.28126535 —2.215488785 —3.120786155  —2.346269545  —0.5681402395  —0.705086495
4 0 —1542938585 —3.42136686 —2.344973985  —3.272534755  —2.396040945  —0.5969023495  —0.735280655
1 —1.542598585  —3.42095075 —2.344548485 —3272024355 —2.395997445  —0.5968693195  —0.735247275

2 —1.541978585  —3.42025729  —2.343839285  —3271173455  —2.395924945  —0.5968142695  —0.735191635

3 —1.541118585  —3.41928647  —2.342846285 —3.269982555  —2.395823745  —0.5967371995  —0.735113745

4 —1.540048585 —3.41803836 —2.341569785 —3.268451355 —2.395693345  —0.5966380895  —0.735013565
0 0 —1970998585 —2.88203041 —1.855128785  —2.694664455  —2.200663845 —0.4861179795  —0.618408615
0 —1.859008585 —3.01356106 —1972554585 —2.834247155  —2.248787045  —0.5128984495  —0.646804535

1 —1.858508585 —3.01301246 —1.972013385 —2.833593555 —2.248729945  —0.5128555495  —0.646761065
20 —1.750288585  —3.14728068  —2.093321985  —2.977063955  —2.297388745  —0.5402914395  —0.675749345
1 —1.749808585  —3.14672991  —2.092771985  —2.976400855 —2.297331445  —0.5402481695 —0.675705525

2 —1.749048585  —3.14590380  —2.091946885  —2.975407055  —2.297245545  —0.5401832395  —0.675639815
4 3 0 —1.644908585 —3.28316563 —2.217409585  —3.123095155  —2.346467645  —0.5682903295  —0.705238345
1 —1.644418585 —3.28261279 —2216850885 —3.122423255 —2.346410245 —0.5682466595  —0.705194145

2 —1.643678585 —328178358 —2216012785  —3.121415755  —2.346323545  —0.5681811695  —0.705127915

3 —1.642668585 —3.28067802 —2.214895385  —3.120072855  —2.346208245  —0.5680938395  —0.705039565

4 0 —1542798585 —3.42119348  —2.344796885  —3.272322355  —2.396022645  —0.5968885995  —0.735266735
1 —1.542328585  —3.42063869 —2.344229385 —3271641355 —2.395964745  —0.5968445495  —0.735222225

2 —1.541588585 —3.41980654 —2.343378185  —3.270620455 —2.395877945  —0.5967784695  —0.735155455

3 1540608585 —3.41869709  —2.342243285  —3.269259655  —2.395761945  —0.5966903895  —0.735066435
4 —1.539388585 —3.41731030 —2.340824985 —3.267557955 —2.395617345  —0.5965802805  —0.734955135
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MeV/c?, 1 cem™! =1.239841875 x 1074
fic = 1973.29¢VA.

From Eq. (15), it can be seen that two interdimensional
states are degenerate whenever (n,¢,D) — (n,{ £ 1,DF
2) = E), = E,SDJ:? Thus, a knowledge of Ele forD=2to
5 provides the information necessary to find E2, for other

eV, and

higher dimensions. For example, E(()ﬁ = E(()g = E((),62) = E(()gl) .
This is the same transformational invariance described for
bound states of free atoms and molecules [29-31] and
demonstrates the existence of interdimensional degenera-
cies among states of the confined Hulthén potential.

The advantage of the approach employed in this study is
that it gives the eigenvalues through the calculation of two
integral given by Eq. (2) and solving the resulting algebraic
equation. Firstly, we can easily obtain the quantum correc-
tion by only considering the solution of the ground state of
the quantum system since it is independent of the number of
nodes of the wave function for exactly solvable quantum
system. The general expressions obtained for the energy
eigenvalues and wave functions can be easily reduced to the
3D space (D = 3) and for s-wave (i.e. £ = 0 state). The EQR
produce as good results as the PQR, however the procedure
followed using PQR is more shorter and quick.
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