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Abstract In this paper, a theoretical investigation has

been made of obliquely propagating dust acoustic solitary

wave (DASW) structures in a cold magnetized dusty

plasma consisting of a negatively charged dust fluid,

electrons, and two different types of nonthermal ions. The

Zakharov–Kuznetsov (ZK) and modified Zakharov–Kuz-

netsov (MZK) equations, describing the small but finite

amplitude DASWs, are derived using a reductive pertur-

bation method. The combined effects of the external

magnetic field, obliqueness (i.e. the propagation angle),

and the presence of second component of nonthermal ions,

which are found to significantly modify the basic features

(viz. amplitude, width, polarity) of DASWs, are explicitly

examined. The results show that the external magnetic

field, the propagation angle, and the second component of

nonthermal ions have strong effects on the properties of

dust acoustic solitary structures. The solitary waves may

become associated with either positive potential or nega-

tive potential in this model. As the angle between the di-

rection of external magnetic field and the propagation

direction of solitary wave increases, the amplitude of the

solitary wave (for both positive potential and negative

potential) increases. With changing this angle, the width of

solitary wave shows a maximum. The magnitude of the

external magnetic field has no direct effect on the solitary

wave amplitude. However, with decreasing the strength of

magnetic field, the width of DASW increases.

Keywords Magnetized dusty plasma � KP equation �
ZK equation � Nonthermal ion � Soliton � Reductive
perturbation method

Introduction

Dusty plasma is an ionized gas containing small particles

of solid matter which acquire a large electric charge by

collecting electrons and ions from the plasma. This state of

plasma is ubiquitous in the universe, e.g., in interstellar

clouds, in interplanetary space, in cometary tails, in ring

systems of giant planets (like Saturn F-ring’s), in meso-

spheric noctilucent clouds, as well as in many Earth bound

plasma [1, 2].

Recently, nonlinear wave propagation in plasmas has

become one of the most important subjects of plasma. One

of the most common and most fascinating eigen-modes that

exist in space and laboratory dusty plasmas is dust acoustic

wave (DASW), which was first theoretically predicted by

Rao et al. [3] and experimentally verified by Barkan et al.

[4]. The properties of these nonlinear plasma waves can be

described by different nonlinear differential equations, e.g.,

the Korteweg–de Vries (KdV) equation, Zakharov–Kuz-

netsov (ZK) equation, and so on [5–7].

Over the last few years, a great deal of attention has

been paid to non-Maxwellian particle distributions. The

Maxwellian distribution is applicable to systems in ther-

modynamic equilibrium. However, astrophysical systems

and space plasmas are observed to have particle distribu-

tions that depart from the Maxwellian distribution due to

non-equilibrium stationary state. This state may arise due

to a number of physical mechanisms such as external force

field present in natural space plasma environments, wave–

particle interaction, and turbulence. Spatial observations
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revealed the existence of non-Maxwellian distribution

functions with high-energy tails or pronounced shoulders.

Such type of distributions is frequently called superthermal

or nonthermal distributions and occurs in space/astro-

physical environments. Many authors studied solitary wave

propagation in such non-Maxwellian distributions.

For example, Lin and Duan [8] considering the non-

thermal ion in a dusty plasma derived a Korteweg–de Vries

(KdV) equation for DA wave and it was found that the

nonthermal ions have very important effect on the

propagation of DA solitary waves. In a recent report Dor-

ranian and Sabetkar [9] reported that with increasing

nonthermal ion population, the amplitude of solitary wave

decreases, while the width of solitary waves increases. It is

also reported that in nonthermal dusty plasmas, the DASW

have larger amplitude, smaller width, and higher

propagation velocity than those involving adiabatic ions.

Zhang and Wang [10] in their report observed the possi-

bility of co-existence of both compressive and rarefactive

solitary wave depending on a critical value of nonthermal

ion population.

In continuation of that a number of theoretical investi-

gations have been made on DASWs. Recently, the effects

of the dust fluid temperature on the DASWs have been

investigated by a number of authors [11, 12]. Sayed and

Mamun [13] assumed a dusty plasma containing the

adiabatic dust fluid and non-adiabatic (isothermal) iner-

tialess electron and ion fluid, and studied the effect of the

dust fluid temperature on the DASWs.

Many authors derived the ZK equation to study the

solitary wave structures in magnetized plasma in different

environments [14–16]. Recently, Mahmood et al. [17]

have derived the ZK equation for nonlinear acoustic

waves in dense magnetized electron–positron (e–p) plas-

mas. They showed that an increase in the strength of the

magnetic field may lead to a significant decrease of the

width of the solitons. More recently Shahmoradi et al.

[18] have investigated the effect of dust size, mass, and

charge distributions on the characteristics of nonlinear

dust acoustic solitary waves (DASWs) in magnetized

dusty plasma. They found that at each strength of the

external magnetic field, there is an optimum magnitude

for its direction at which the width of DASW is

maximum.

This paper is organized in the following fashion. Fol-

lowing the introduction in Sect. 1, the governing equations

and model description of dusty plasma system are pre-

sented in Sect. 2. The Zakharov–Kuznetsov (ZK) equation

and its modified form with their solitary wave solution are

derived by employing the reductive perturbation method in

Sects. 3 and 4, respectively. Results and discussion are

presented in Sects. 5 and 6 is devoted to conclusion.

Model description

We consider a three-component dusty plasma system,

which consists of negatively charged dust fluid, Boltzmann

distributed electrons, and two-temperature nonthermal ions

with fast particles in the presence of external static mag-

netic field B = B0ẑ, where ẑ is the unit vector along z

direction. Charge neutrality at equilibrium reads

ne0 þ nd0Zd0 ¼ nil0 þ nih0 ð1Þ

where nilo (nih0), ne0, and nd0 are the unperturbed lower

(higher) temperature ion, electron, and dust number den-

sities, respectively, and Zd0 is the unperturbed number of

charges residing on the dust grain measured in the unit of

electron charge. The normalized equations governing the

dust acoustic wave dynamics are

ond

ot
þr � ðndudÞ ¼ 0 ð2aÞ

oud
ot

þ ðud � rÞud ¼ r/� xcdðud � ẑÞ ð2bÞ

r2/ ¼ nd þ ne � nil�nih ð2cÞ

where u d ¼ ðudx; udy; udzÞ. The time and space variables

are normalized by the dust plasma period x�1
pd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

md=4pnd0Z2
d0e

2
p

and the Debye length kd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Teff=4pnd0Zd0e2
p

; respectively. nd is the dust particle

number density normalized to nd0; u d is the dust fluid

velocity normalized to the dust acoustic speed Cd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Zd0Teff=md

p

in which Teff is the effective temperature

which is defined below and md is the mass of the dust

particles. / is the electrostatic potential of plasma medium

normalized by Teff=e and ni is the ion number density

normalized to ni0. For the case of dusty plasma with two

kinds of ions at different temperatures, the effective tem-

perature is

Teff ¼
1

nd0Zd0

ne0

Te
þ nil0

Til
þ nih0

Tih

� �� ��1

ð3Þ

in which Te, Til, and Tih are the plasma electron tem-

perature and the temperatures of plasma ions at lower and

higher temperatures, respectively. xcd ¼ Zd0eB0=mdxpd is

the dust cyclotron frequency normalized to xpd. The dis-

tribution function that was chosen by Cairns et al. [19] is

chosen to model an ion distribution with a population of

fast particles. Therefore, the lower temperature ion density,

nil, and higher temperature ion density, nih, are directly

given by

nil ¼
d1

d1 þ d2 � 1
1þ l s/þ s2/2

� �� �

expð�s/Þ; ð4aÞ
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nih ¼
d2

d1 þ d2 � 1
1þ l bs/þ b2s2/2

� �� �

expð�bs/Þ;

ð4bÞ

ne ¼
1

d1 þ d2 � 1
exp b1s/ð Þ; ð4cÞ

where l ¼ 4a=ð1þ 3aÞ, a is parameter determining the

number of fast (nonthermal) ions.

It should be noted here that if we neglect the number of

nonthermal ions in comparison with that of thermal ions,

i.e. we put a ¼ 0, this dusty plasma model reduces to the

model considered by Rao et al. [3]. From Eq. 1 one can

write

d1 þ d2 � 1� 0: ð5Þ

In above equations b1 ¼ Til
Te
, b2 ¼ Tih

Te
,

b1
b2
¼ Til

Tih
, d1 ¼ nil

ne
,

d2 ¼ nih
ne
, and S ¼ Teff

Til
¼ d1þd2�1

d1þd2bþb1
.

Zakharov–Kuznetsov (ZK) equation

Derivation of the ZK equation

To investigate the nonlinear propagation of DASWs in

magnetized plasma, we employ the standard RPM [7] to

obtain the appropriate ZK equation. The independent

variables are stretched as

x0 ¼ e1=2x ð6aÞ

y0 ¼ e1=2y ð6bÞ

z0 ¼ e1=2ðz� ktÞ; ð6cÞ

t0 ¼ e3=2t; ð6dÞ

where e is a small parameter measuring the strength of

nonlinearity and k the phase velocity of waves normalized

by the dust acoustic speed Cd, which is determined later.

The physical quantities are expanded about their equilib-

rium values in a power series of e as

f ¼ f ð0Þ þ
X

1

i¼1

�mf ðmÞ ð7aÞ

udx;y ¼
X

1

i¼1

�1þm=2u
ðmÞ
dx;y: ð7bÞ

The variables f ¼ ðnd;/; udzÞ describe the state of the

system with f ð0Þ ¼ ð1; 0; 0Þ. Substituting Eqs. 6 and 7 into

the basic set of Eq. 2 and then equating the coefficient

powers of � in the lowest order, i.e. Oð�3=2Þ, we obtain the

followings:

n
ð1Þ
d ¼

u
ð1Þ
dz

k
ð8aÞ

u
ð1Þ
dz ¼ �/ð1Þ

k
ð8bÞ

u
ð1Þ
dy ¼ 1

xcd

o/ð1Þ

ox0
ð8cÞ

u
ð1Þ
dx ¼ �1

xcd

o/ð1Þ

oy0
ð8dÞ

Now, substituting Eq. 8 into the lowest order Poisson

equation, we get the phase velocity of DASWs as

k ¼ d1 þ d2bþ b1ð Þ 1þ 3að Þ
d1 þ d2bð Þ 1� að Þ þ b1 1þ 3að Þ

� �1=2

ð9Þ

which agrees exactly with the phase velocity of the per-

turbation mode derived by Dorranian et al. [9]. Similarly,

to the next higher order of �, i.e. Oð�2Þ we obtain the

second-order x and y components of the momentum and

Poisson equation as

u
ð2Þ
dy ¼ �k

x2
cd

o2/ð1Þ

oz0oy0
ð10aÞ

u
ð2Þ
dx ¼ �k

x2
cd

o2/ð1Þ

oz0ox0
ð10bÞ

o2

ox02
þ o2

oy02
þ o2

oz02

� �

/ð1Þ ¼ n
ð2Þ
d þ 1

k2
/ð2Þ

þ �1

2

d1 þ d2b
2 � b21

� �

s2

d1 þ d2 � 1

 !

� /ð1Þ
	 
2

ð10cÞ

Also, following the same procedure, we can obtain the

next higher-order continuity equation and z component of

momentum equation as, i.e. Oð�5=2Þ

on
ð1Þ
d

ot0
� k

on
ð2Þ
d

oz0
þ ou

ð2Þ
dx

ox0
þ
ou

ð2Þ
dy

oy0
þ o

oz0
ðuð2Þdz þ n

ð1Þ
d u

ð1Þ
dz Þ ¼ 0

ð11aÞ

ou
ð1Þ
dz

ot0
� k

ou
ð2Þ
dz

oz0
þ u

ð1Þ
dz

ou
ð1Þ
dz

oz0
� o/ð2Þ

oz0
¼ 0 ð11bÞ

Solving the system of Eq. 11, with the aid of Eqs. 8, 9, and

10, we can readily obtain

o/ð1Þ

ot0
þ AB/ð1Þ o/

ð1Þ

oz0
þ A

2

o3/ð1Þ

oz03
þ AD

2

o3/ð1Þ

oz0x02
þ o3/ð1Þ

oz0y02

 !

¼ 0

ð12Þ
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where

A ¼ k3 ð13aÞ

D ¼ x2
cd þ 1

x2
cd

ð13bÞ

B ¼ 1

2

d1 þ d2b
2 � b21

� �

d1 þ d2 � 1ð Þ
d1 þ d2bþ b1ð Þ2

� 3

2k4
: ð13cÞ

Equation 12 is known as the Zakharov–Kuznetsov (ZK)

equation or the Korteweg–de Vries (KdV) equation in three

dimensions.

Solitary wave solution of the ZK equation

To study the propagation of DASWs in a direction making

an angle h with the external magnetic field B, lying in the

x0 � z0 plane, we transform the coordinate system x0; y0; z0

into the new coordinate system f; n; g by a rotation around

the y0 axis through an angle h. The relations between the

new and old coordinates become

f ¼ x0 cos h� z0 sin h ð14aÞ

g ¼ y0 ð14bÞ

n ¼ x0 sin hþ z0 cos h ð14cÞ

s ¼ t0 ð14dÞ

Under these changes of the independent variables, the ZK

Eq. 12 becomes

o/ð1Þ

os
þ h1/

ð1Þ o/
ð1Þ

on
þ h2

o3/ð1Þ

on3
þ h3/

ð1Þ o/
ð1Þ

of

þ h4
o3/ð1Þ

of3
þ h5

o3/ð1Þ

on2of
þ h6

o3/ð1Þ

onof2

þ h7
o3/ð1Þ

onog2
þ h8

o3/ð1Þ

ofog2
¼ 0:

ð15Þ

Coefficients of Eq.15 are

h1 ¼ AB cos h; h2 ¼
A

2
cos h cos2 hþ D sin2 h

� �

;

h3 ¼ �AB sin h; h4 ¼ �A

2
sin h sin hþ D cos2 h

� �

;

h5 ¼ A sin h D cos2 h� 1

2
sin2 h

� �

� 3

2
cos2 h

� �

;

h6 ¼ A cos h D
1

2
cos2 h� sin2 h

� �

þ 3

2
sin2 h

� �

;

h7 ¼
AD

2
cos h; h8 ¼ �AD

2
sin h:

Defining the new variables Z ¼ n� u0s and /
ð1Þ ¼ /ð0ÞðZÞ

in Eq. 15, the ZK equation in a steady state can be written

as

h2
d3/ð0Þ

dZ3
� u0 � h1/

ð0Þ
	 
 d/ð0Þ

dZ
¼ 0 ð16Þ

in which u0 is the constant velocity normalized to the dust

acoustic speed. Using the appropriate boundary conditions

(/ð0Þ and its two successive derivatives tend to zero when

Z ! 1) the solution of the Eq. 16 is given by

/ð0ÞðZÞ ¼ /ð0Þ
m sech2

Z

W

� �

ð17Þ

where /ð0Þ
m and W are the amplitude and width of the

DAWs, respectively, given by

/ð0Þ
m ¼ 3u0

AB cos h
ð18aÞ

W ¼
2A cos h cos2 hþ D sin2 h

� �

u0

 !1=2

: ð18bÞ

Modified Zakharov–Kuznetsov (MZK) equation

Derivation of the MZK equation

It is obvious that the propagation of compressive and rar-

efactive solitons depends on the sign of the nonlinear co-

efficient, AB, of the ZK equation. If we assume that the

dispersion coefficient of the ZK equation AB[ 0 (AB\0),

the dust acoustic solitary waves are compressive (rarefac-

tive) waves. When the density of low (high) temperature

ions d1(d2) reaches the so-called d1c(d2c) critical density of

low- (high-) temperature ions, the nonlinear coefficient of

the ZK equation vanishes, i.e., AB ¼ 0. Therefore, ZK

equation breaks down and one has to seek for another

equation suitable for describing the evolution of the sys-

tem. At the critical density of low- (high-) temperature

ions, the general method of the reductive perturbation

method introduces the modified stretched variables defined

by

x0 ¼ �x ð19aÞ

y0 ¼ �y ð19bÞ

z0 ¼ �ðz� ktÞ ð19cÞ

t0 ¼ e3t: ð19dÞ

The dependent variables nd, udz; and / are expanded the

same as Eq. 7 but udy and udx are expanded as follows:

udx ¼ �2u
ð1Þ
dx þ �3u

ð2Þ
dx þ �4u

ð3Þ
dx þ � � � ð20aÞ

udy ¼ �2u
ð1Þ
dy þ �3u

ð2Þ
dy þ �4u

ð3Þ
dy þ � � � : ð20bÞ
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Using Eqs. 19, 20, and 7 in the main Eq. 2 and collecting

terms with the same powers of expanding parameter � we

have Eqs. 8 and 9 again, for the lowest order, i.e. Oð�2Þ.
Similarly, to the next higher order of �, i.e. Oð�3Þ we obtain
the second-order x; y; and z components of the momentum

and continuity equation and Poisson equation as

u
ð2Þ
dx ¼ �k

x2
cd

o2/ð1Þ

oz0ox0
� 1

x2
cd

o/ð2Þ

oy0
ð21aÞ

u
ð2Þ
dy ¼ �k

x2
cd

o2/ð1Þ

oz0oy0
þ 1

x2
cd

o/ð2Þ

ox0
ð21bÞ

u
ð2Þ
dz ¼ ð/ð1ÞÞ2

2k3
� /ð2Þ

k
ð21cÞ

n
ð2Þ
d ¼ ð/ð1ÞÞ2

2k4
� /ð2Þ

k2
ð21dÞ

o2

ox02
þ o2

oy02
þ o2

oz02

� �

/ð1Þ ¼ n3dþ
/ð3Þ

k2

þ
d1þ d2� 1
� �2

d1þ d2bþb1
� �3

ð1þ 15aÞ d1þ d2b
3

� �

þð1þ 3aÞb31
6ð1þ 3aÞ

� ð/ð1ÞÞ3þ
d1þ d2� 1
� �

d1þ d2bþb1ð Þ2
b21� d1� d2b

2
� �

/ð1Þ/ð2Þ:

ð21eÞ

Following the same procedure, we can obtain the next

higher-order continuity equation and z component of mo-

mentum equation as, i.e. Oð�4Þ.

on
ð1Þ
d

ot0
� k

on
ð3Þ
d

oz0
þ o

ox0
ðuð2Þdx þ n

ð1Þ
d u

ð1Þ
dx Þ þ

o

oy0
ðuð2Þdy þ n

ð1Þ
d u

ð1Þ
dy Þ

þ o

oz0
ðuð3Þdz þ n

ð1Þ
d u

ð2Þ
dz þ n

ð2Þ
d u

ð1Þ
dz Þ ¼ 0

ð22aÞ

ou
ð1Þ
dz

ot0
� k

ou
ð3Þ
dz

oz0
þ u

ð1Þ
dx

ou
ð1Þ
dz

ox0
þ u

ð1Þ
dy

ou
ð1Þ
dz

oy0
þ u

ð1Þ
dz

ou
ð2Þ
dz

oz0

þ u
ð2Þ
dz

ou
ð1Þ
dz

oz0
� o/ð3Þ

oz0
¼ 0:

ð22bÞ

Solving the system of Eq. 22, using Eqs. 8, 9, and 21, we

finally obtain the modified Zakharov–Kuznetsov (MZK)

equation:

o/ð1Þ

ot0
þ AE /ð1Þ

	 
2o/ð1Þ

oz0
þ A

2

o

oz0
o2

oz02
þ D

o2

ox02
þ o2

oy02

� �� �

� /ð1Þ ¼ 0 ð23Þ

A and D were introduced in the previous section and E

is

E¼ 15

4k6

�1

4

d1þd2�1ð Þ2 ð1þ15aÞ d1þd2b
3

� �

þð1þ3aÞb31
� �

d1þd2bþb1ð Þ3ð1þ3aÞ
ð24Þ

Solitary wave solution of the MZK equation

To study the propagation of DASW in a direction making

an angle h with the external magnetic field B, lying in the

x0 � z0 plane, we transform the coordinate system x0; y0; z0

into the new coordinate system f; n; g by a rotation around

the y0 axis through an angle h. The relations between the

new and old coordinates were introduced in Eq. 14. In this

case, the new form of Eq. 23 will be

o/ð1Þ

os
þ X1 /ð1Þ

	 
2o/ð1Þ

on
þ X2

o3/ð1Þ

on3

þ X3 /ð1Þ
	 
2o/ð1Þ

of
þ X4

o3/ð1Þ

of3
þ X5

o3/ð1Þ

on2of

þ X6

o3/ð1Þ

onof2
þ X7

o3/ð1Þ

onog2
þ X8

o3/ð1Þ

ofog2
¼ 0: ð25Þ

where

X1 ¼ AE cos h; X2 ¼
1

2
A cos h cos2 hþ D sin2 h

� �

;

X3 ¼ �AE sin h X4 ¼ � 1

2
A sin h sin2 hþ D cos2 h

� �

;

X5 ¼ A sin h D cos2 h� 1

2
sin2 h

� �

� 3

2
cos2 h

� �

X6 ¼ A cos h D
1

2
cos2 h� sin2 h

� �

þ 3

2
sin2 h

� �

;

X7 ¼
1

2
AD cos h; X8 ¼

�1

2
AD sin h:

Using again the new variables Z ¼ n� u0s and /ð1Þ ¼
/ð0ÞðZÞ in Eq. 25, the MZK equation in a steady-state

forms as

X2

d3/ð0Þ

dZ3
� u0 � X1 /ð0Þ

	 
2
� �

d/ð0Þ

dZ
¼ 0 ð26Þ

in which u0 is constant velocity normalized to the dust

acoustic speed. Now, using the appropriate boundary

conditions (/ð0Þ and its two successive derivatives tend to

zero when Z ! 1) the solution of the Eq. 26 is given by

/ð0ÞðZÞ ¼ /ð0Þ
m sech

Z

W

� �

ð27Þ
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where /ð0Þ
m and W are the amplitude and width of the

DASWs, respectively, given by

/ð0Þ
m ¼ 6u0

AE cos h

� �1=2

ð28aÞ

W ¼
A cos h cos2 hþ D sin2 h

� �

2u0

 !1=2

ð28bÞ

Solitons exist when E[ 0.

Results and discussion

The nonlinear propagation of dust acoustic solitary waves

(DASW) in a magnetized dusty plasma which consists of

two different types of nonthermal ions, electrons, and

mobile negatively charged dust particles is studied. The

Zakharov–Kuznetsov (ZK) and modified Zakharov–Kuz-

netsov (MZK) equations, describing the small but finite

amplitude DASW, are derived using a reductive perturba-

tion method. The combined effects of the external mag-

netic field, obliqueness (i.e., the propagation angle), and the

presence of second component of nonthermal ions, which

are found to significantly modify the basic properties of

DASWs, are explicitly examined. For a ¼ 0, and by as-

suming collisionless dusty plasma systems (such as outside

ionopause of Halley’s comet, Saturn’s F-ring, Saturn’s

spokes, zodiacal dust disc (IAU) and supernovae shells),

our results would coincide with the results obtained by

Moslem [20]. It is obvious that if we neglect the contri-

butions of external magnetic field, xcd ¼ 0, our present

dusty plasma model corresponds to the dusty plasma sys-

tem considered in a recent published work by Dorranian

et al. [9]. As u0 [ 0, it is clear from Eqs. 13 and 18 that

depending on whether AB is positive or negative, the

solitary waves will be associated with either positive po-

tential /ð0Þ
m [ 0 or negative potential /ð0Þ

m \0. Therefore,

there exist solitary waves associated with positive (nega-

tive) potential when AB[ 0 (AB\0).

Figure 1 shows the variation of the nonlinear coefficient

AB, with d1 and d2 for u0 ¼ 1, a ¼ 0:4, b1 ¼ 0:1, and

b2 ¼ 0:4. This figure also indicates the critical value of d1
and d2 (which are d2c = 0.93, and d1c = 0.57). For the

region of positive nonlinear coefficient AB, the nonlinear

coefficient AB decreases as the values of both d1 and d2
decrease. AB is effectively changed with d1 and d2 when

they are smaller than 5 and for larger magnitudes of d1 and
d2, the nonlinear coefficient is almost constant. It is ob-

served from Eqs. 13 and 18 that the amplitude of DASW

/ð0Þ
m is a nonlinear function of d1, d2, b1, b, h, and a. The

variation of /ð0Þ
m (for positive and negative potential) with

d2, b2, h, and a are shown in Figs. 2–7. Figure 2(3) shows

the variation of the amplitude of the negative solitary

waves (positive solitary waves) with d2 and a for

u0 ¼ 1,d1 ¼ 0:1; b1 ¼ 0:1; b2 ¼ 0:4, and h ¼ 30o (for

u0 ¼ 1, d1 ¼ 1:9; b1 ¼ 0:1; b2 ¼ 0:4; and h ¼ 30�). Figure
2 shows that the amplitude increases as the values of both

d2 and a increase. Figure 3 shows that the amplitude in-

creases as the values of both d2 and a decrease. With de-

creasing the nonthermal coefficient a, the amplitude of

soliton increases, while with decreasing d2 amplitude in-

creases very slightly. In other words, the influence of

nonthermal coefficient on the amplitude is more larger.

This effect was observed in Ref. [9].

Figure 4(5) shows the variation of the amplitude of the

negative solitary waves (positive solitary waves) with b2
and h for u0 ¼ 1, a ¼ 0:1; b1 ¼ 0:1; d1 ¼ 0:1, and d2 ¼ 2:1

Fig. 1 The variation of the nonlinear coefficient AB with d1 and d2
for u0 ¼ 1; a ¼ 0:4;b1 ¼ 0:1 and b2 ¼ 0:4

Fig. 2 The variation of the amplitude of the negative ZK solitary

potential /ð0Þ
m \0

	 


with d2 and a for u0 ¼ 1; d1 ¼ 0:1;b1 ¼ 0:1;

b2 ¼ 0:4; and h ¼ 30�
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(for u0 ¼ 1, a ¼ 0:5; b1 ¼ 0:1; d1 ¼ 1:2, and d2 ¼ 2:1). In

Fig. 4 the rate of the increase is low (high) in the region

about 48�\h\70� (70�\h\89�) for all of b2. In Fig. 5

the rate of the increase is low (high) in the region at about

50�\h\77� (77�\h\89�) for all b2. Amplitude of

solitons are directly proportional with the angle of

propagation, but in the region 0�\h\50�, the soliton

amplitude changes very slightly both ZK and MZK soli-

tons. For the propagation angle almost greater than 50�,
variation of amplitude is noticeable in Figs. 4 and 5.

By considering u0 [ 0, it is clear from Eqs. 24 and 28

that MZK solitons exist when E[ 0. Therefore, there al-

ways exist solitary waves associated with positive poten-

tial. In Fig. 6(7), the variation of the amplitude of the

positive solitary waves with d2 and a is presented for

u0 ¼ 1, d1 ¼ 0:4, b1 ¼ 0:1, b2 ¼ 0:4; and h ¼ 30� (with b2

and h for u0 ¼ 1, d1 ¼ 1:1, b1 ¼ 0:1, a ¼ 0:1 and

d2 ¼ 2:1). Figure 6 shows that the amplitude decreases for

the lower regions of d2 (for about d2\0.76), its magnitude

increases rapidly with increasing the value of d2 (for the

region d2 [ 0.76) to 3.05 and this figure also indicates that

the amplitude increases with increasing a. Figure 7 shows

that the amplitude increases slowly as the value of b2 in-

creases. The rate of increase is very high in the region at

about 84�\h\89�.
The magnitude of the external magnetic field has a

significant effect only on the width, but not on the ampli-

tude of solitary waves. It is found from Eqs. 18 and 28 that

the width is a nonlinear function of d1; d2; b2; b; h; a; and
xcd. The variation of the width (for positive and negative

Fig. 3 The variation of the amplitude of the positive ZK solitary

potential /ð0Þ
m [ 0

	 


with d2 and a for u0 ¼ 1; d1 ¼ 1:9;b1 ¼ 0:1;

b2 ¼ 0:4; and h ¼ 30�

Fig. 4 The variation of the amplitude of the negative ZK solitary

potential /ð0Þ
m \0

	 


with b2 and h for u0 ¼ 1; d1 ¼ 0:1; d2 ¼ 2:1;

b1 ¼ 0:1, and a ¼ 0:1

Fig. 5 The variation of the amplitude of the positive ZK solitary

potential /ð0Þ
m [ 0

	 


with b2 and h for u0 ¼ 1; d1 ¼ 1:2; d2 ¼ 2:1;

b1 ¼ 0:1, and a ¼ 0:5

Fig. 6 The variation of the amplitude of the positive MZK solitary

potential /ð0Þ
m [ 0

	 


with d2 and a for u0 ¼ 1; d1 ¼ 0:4;b1 ¼ 0:1;

b2 ¼ 0:4, and h ¼ 30�
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solitary waves) with d2, b2, h; and xcd is presented in Figs.

8, 9, 10, 11 and Fig. 12. Dependence of soliton width on h
and a (d2 and b2) is shown in Fig. 8(9). In Fig. 8(9) we

have u0 ¼ 1; d1 ¼ 0:6; b1 ¼ 0:1; b2 ¼ 0:4; d2 ¼ 2:1, and

xcd ¼ 0:6 (u0 ¼ 1; d1 ¼ 0:4; b1 ¼ 0:1; a ¼ 0:2; h ¼ 30�;
and xcd ¼ 0:3). Figure 8 shows that the width increases

with h for the lower range, i.e. 0\h\53:6�, but decreases
for its higher range, i.e. 53:6�\h\89�, and as h ! 90�,
the width goes to 0. The maximum of width is at h ¼ 53:6�.
This also shows that the width increases with increasing a.
The width increases slowly with increasing (decreasing) d2
(b2) as shown in Fig. 9.

Figure 10(11) shows variation of soliton width with h
and a (d2 and b2) for u0 ¼ 1; d1 ¼ 0:6; b1 ¼ 0:1;

b2 ¼ 0:4; d2 ¼ 2:1, and xcd ¼ 0:6 (for u0 ¼ 1; d1 ¼ 0:6;

b1 ¼ 0:1; a ¼ 0:1; h ¼ 30�, and xcd ¼ 0:4). Figure 10

shows that the width increases with h for the lower range,

i.e., 0�\h\55:11�, but decreases for its higher range, i.e.,
55:11�\h\89� and as h tends to 90�, the width goes to 0.

This also shows that the width increases with increasing a.
Figure 11 shows that the width remains almost unchanged

for all value of b2, but increases rapidly with increasing d2.
Figure 12 shows the variation of width with h and xcd. In

this figure we have u0 ¼ 1; d1 ¼ 0:1; b1 ¼ 0:1; b2 ¼ 0:4;

d2 ¼ 2:1, and a ¼ 0:5. The width of soliton for the case of

MZK solution is half of the ZK solitons. Amplitude of

soliton is independent of magnetic field intensity while is

influenced by the direction of applied external magnetic

Fig. 7 The variation of the amplitude of the positive MZK solitary

potential /ð0Þ
m [ 0

	 


with b2 and h for u0 ¼ 1; d1 ¼ 1:1;b1 ¼ 0:1;

d2 ¼ 2:1, and a ¼ 0:1

Fig. 8 The variation of the width of positive ZK solitary potential

/ð0Þ
m [ 0

	 


with h and a for u0 ¼ 1; d1 ¼ 0:6; d2 ¼ 2:1;b1 ¼ 0:1;

b2 ¼ 0:4, and xcd ¼ 0:6

Fig. 9 The variation of the width of positive ZK solitary potential

/ð0Þ
m [ 0

	 


with d2 and b2 for u0 ¼ 1; d1 ¼ 0:4;b1 ¼ 0:1; a ¼ 0:2;

h ¼ 30o, and xcd ¼ 0:3

Fig. 10 The variation of the width of negative MZK solitary potential

/ð0Þ
m \0

	 


with h and a for u0 ¼ 1; d1 ¼ 0:6; d2 ¼ 2:1;b1 ¼ 0:1;

b2 ¼ 0:4, and xcd ¼ 0:6
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field. The effective variation of xcd on the width of soliton

is when xcd � 0:01. In the case of larger magnitude, width

of solitons does not change with xcd noticeably, and the

same results have been reported by Sabetkar et al. [21].

Figure 12 shows that the width increases with h for the

lower range, i.e., 0�\h\56:5�, but decreases for its higher
range, i.e., 56:5�;\h\89� and as h tends to 90�, the width
tends to a constant value. Also, with decreasing xcd, the

width of soliton increases.

Conclusion

In present paper, nonlinear propagating dust acoustic

solitary waves (DASWs) in a cold magnetized dusty

plasma containing negatively charged dust particles, elec-

trons, high- and low-temperature nonthermal ions in the

presence of an external static magnetic field are investi-

gated. For this purpose, a reasonable normalization of the

hydrodynamic and Poisson equations is used to derive the

Zakharov–Kuznetsov (ZK) and (MZK) equation for our

dusty plasma system. We have found that depending on the

values of d1; d2; b1; b2; and a, the solitary waves may be-

come associated with either positive potential or negative

potential. We have seen that as the values of d2 and a
increase, the amplitude of the positive (negative) solitary

waves decreases (increases). The width of soliton also in-

creases with the increasing d2 and a. For higher-order ap-
proximation, i.e. MZK case, we have found that the

amplitude of the positive solitary waves increases with

increasing a. The amplitude of solitary waves decreases

with d2 when d2\ 0.76 and increases rapidly for

d2 [ 0.76.

We have found that as the angle between the direction of

external magnetic field with the propagation direction of

solitary wave, h, increases, the amplitude of the solitary

wave (for both positive potential and negative potential)

increases. The width of solitary wave has a maximum

magnitude when h ¼ 55:11�. As h tends to 90�, the width

goes to 0, and the amplitude goes to infinity. It is found that

(for both positive potential and negative potential) the

amplitude increases slowly as the value of b2 increases, but
the width increases slowly. Taking into account the higher

order of � (i.e. MZK equation) the width remains almost

unchanged for all values of b2. The magnitude of the ex-

ternal magnetic field has no direct effect on the solitary

wave amplitude. However, it has a direct effect on the

width of the solitary waves, and also with decreasing xcd,

the width of DASW increases. In fact, the external mag-

netic field makes the solitary structures more spiky.
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