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Abstract On the basis of the theory of thermodynamics,

a new formalism of classical nonrelativistic mechanics of a

mass point is proposed. The particle trajectories of a gen-

eral dynamical system defined on a ð1 þ nÞ-dimensional

smooth manifold are geometrically treated as dynamical

variables. The statistical mechanics of particle trajectories

are constructed in a classical manner. Thermodynamic

variables are introduced through a partition function based

on a canonical ensemble of trajectories. Within this theo-

retical framework, classical mechanics can be interpreted

as an equilibrium state of statistical mechanics. The rela-

tionship between classical and quantum mechanics is dis-

cussed from the viewpoint of statistical mechanics. The

maximum-entropy principle is shown to provide a unified

view of both classical and quantum mechanics.

Introduction

Quantum mechanics is considered to be the most basic

theory of nature. All phenomena, including gravitational

interactions, have an underlying quantum-mechanical

interpretation. Quantum mechanics describes the micro-

scopic behavior of particles under fundamental forces and

has been adopted in numerous applications. However, our

understanding of quantum mechanics remains incomplete.

One of the most characteristic and mysterious aspects of

quantum mechanics is that particle properties are described

by probability amplitudes. The probabilistic aspects of

quantum mechanics are inherent characteristics and are not

due to lack of detailed information such as partition func-

tions in statistical mechanics. Therefore, understanding

why and how the probabilistic nature of quantum

mechanics emerges from a primary principle is of critical

importance. To pursue this purpose, we propose herein to

use a thermodynamic theory.

Let us recall the relationship between thermodynamics

and statistical mechanics. Thermodynamics is a field of

physics that discusses the relationship between the mac-

roscopic physical quantities such as temperature, pressure,

volume, energy, entropy, and heat and/or work from out-

side of the system. Thermodynamics was established

before the microscopic details were clarified. Later, sta-

tistical mechanics was constructed on the basis of the

microscopic details of classical mechanics using thermo-

dynamics as a guiding principle. However, statistical

mechanics based on classical mechanics failed to explain,

for instance, the entire nature of electromagnetic waves

radiated from gases and metals, which provided a hint

about quantum mechanics. Although the microscopic

details of statistical mechanics were replaced by quantum

mechanics instead of by classical mechanics, the conse-

quences of thermal dynamics remain true, and again ther-

mal dynamics plays the role of a guiding principle in

constructing a theory. Thermodynamics and its second law

are still active in the field of physics, and are discussed, for

instance, by Lieb and Yngvason [12] in their epoch-mak-

ing paper. Relationships between thermodynamics and

quantum mechanics are also intensively discussed by

Gemmer et al. [6]. They gave new explanations for the

emergence of thermodynamics behavior from a quantum

mechanical system. Our way is something opposite to their
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intention, ‘‘the emergence of quantum mechanics from the

thermodynamics’’.

In our pursuit of the principle that underlies the proba-

bilistic characteristics of the basic equations of motion, we

suspend the notion that quantum mechanics is the most

fundamental theory of nature and regard it as a phenome-

nological theory. In other words, we propose to construct

the thermodynamics of quantum mechanics and then pur-

sue the underlying mechanics, which must be a more

fundamental theory of nature. In this study, we attempt to

construct the thermodynamics of classical and quantum

mechanics of a mass point. To construct the thermody-

namics of classical mechanics, an appropriate definition of

entropy must be introduced. To determine the entropy of

the classical dynamical system of a mass point, we con-

sider the system in geometrical terms and introduce a

general dynamical system �a la Arnol’d et al. [1]. Then, the

analogy between the thermodynamics of gases and the

Hamiltonian formalism of classical dynamics guides us to

identify an appropriate definition of entropy. An equation

of motion of the system can be extracted by requiring the

maximum-entropy principle (instead of the principle of

least action). Finally, quantum fluctuations can be under-

stood in analogy with thermal fluctuations. This view may

bring new insights of quantum mechanics.

This paper is organized as follows: After introducing a

general framework for dynamic systems in Sect. 1, a

generalized Hamiltonian formalism is developed in Sect. 2.

The statistical mechanics of particle trajectory in the pro-

posed framework is developed in Sect. 3. Here, we dem-

onstrate that a thermal-equilibrium state of the trajectory

corresponds to the classical mechanics of a mass point.

Section 4 is devoted to relating classical and quantum

mechanics using the statistical mechanics analogy. Con-

clusions and further discussion are presented in Sect. 5.

General mechanics

Dynamics on a symplectic manifold

First, we introduce a general dynamic space on which

various dynamical systems are developed. A structure

given here is a common for classical dynamic systems

treated in this report. It is considered to give the minimum

mathematical system to discuss classical mechanics.

Definition 2.1 General Dynamic Space A general

dynamical space is a collection of sets, fM ¼ M�
T; f ;P ¼ n � g; ðx;XÞg whose elements are defined as

follows:

1. A manifold M 2 R
n is an n-dimensional Euclidean

space called a space manifold.

2. A manifold T 2 R is a one-dimensional smooth

manifold called a time manifold. A point on T is

called an order parameter or time.

3. The direct product M ¼ T�M is a space-time

manifold. A position vector n on an open neighbor-

hood Up of a point p can be expressed in terms of local

orthonormal bases as

n ¼ ðn0 ¼ s; n1; . . .; nnÞ:

A flat metric whose metric tensor gll ¼ ð�;þ; . . .;þÞ is

imposed on the space-time manifold. Then, the M
becomes a Riemannian manifold with an indefinite metric.

4. A tangent bundle of M is written as TM ¼S
p2M TpM. A tangent vector to n is expressed as

on ¼
o

on0
¼ o

os
;
o

on1
; . . .;

o

onn

� �

2 TM:

5. In the same manner, we introduce a cotangent bundle,

T�M, with cotangent vector to n expressed as

dn ¼ dn0 ¼ ds; dn1; . . .; dnn
� �

2 T�M:

6. A characteristic function f is a C1-function that maps

a point on M to a real number. The characteristic

function is assumed holomorphic for a position vector

n such that o2f=onlonm ¼ o2f=onmonl; l; m ¼ 0; . . .; n.

7. A momentum vector is introduced in terms of the

characteristic function as

g ¼ g0; . . .; gn
� �

¼ on� f ¼ of

on0

; . . .;
of

onn

� �

;

where n� ¼ fglmn
lg. Here we follow the Einstein

convention in summing the repeated indices, summing

the Greek indices from 0 to n, and summing the Roman

indices from 1 to n, unless otherwise stated. Not all g’s

and n’s are independent because the characteristic

function imposes a constraint. We assume that the

zeroth component of the momentum vector is a func-

tion of other components, g0ðg1; . . .; gn; n0; . . .; nnÞ. A

direct product of position and momentum vector space

P ¼ n � g is called an extended phase space. This

space is a ð2n þ 2Þ-dimensional smooth manifold.

8. On the extended phase-space, 1- and 2-forms such as

x ¼ g � dn ð1Þ

¼ gldnl

¼ gidni � g0ds;
ð2Þ

X ¼ dx

¼ dgl ^ dnl

¼ dgi ^ dni � dg0 ^ ds;

ð3Þ
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are defined [1], which are called characteristic 1-

form and 2-form, respectively. The characteristic 2-

form is assumed to be a closed form satisfying

dX ¼ 0. The even dimensional manifold that has a

non-degenerate and closed 2-form is called a sym-

plectic manifold.

Definition 2.2 Time evolution operator and Trajectory

The smooth map

/s : M ! M : n ¼ ðs; n1; . . .; nnÞ7!/sn

¼ n0 ¼ ðs þ s; n01ðs þ sÞ; . . .; n0nðs þ sÞÞ;

is called a time evolution operator. The map /s generates a

one-dimensional manifold c � M, such that

c ¼ fnðsÞ ¼ ðs; n1; . . .; nnÞðsÞ
�
�/sðs1; n

01ðs1 þ sÞ; . . .;
n0nðs1 þ sÞ; s 2 ½0; s2 � s1�g:

This manifold is called a trajectory.

We assume that a tangent vector exists for a given tra-

jectory, i.e.,

dnðsÞ
ds

�
�
�
s¼t

¼ lim
dt!�0

nðt þ dtÞ � nðtÞ
dt

;

at any t 2 ½s1; s2�. The time evolution operator maps a

momentum vector as

g0 ¼ /sg ¼ on� f
�
�
�
n¼/sn

:

The time evolution operator, which introduces dynamics to

the general dynamic space, must describe some physical

principle. More specifically, the following is true.

Principle 1 (Cartan) [2, 15] When the integration of the

characteristic 1-form is invariant under map /s, i.e.,
Z

l

xðn; gÞ ¼
Z

lð/sn;/sgÞ
xð/sn;/sgÞ;

the trajectory induced by /s is physically realized. Here

l ¼ lðn; gÞ is any closed circle in an extended phase space

ðPÞ at fixed s.

Theorem 2.1 (Characteristic Equations) Trajectories

satisfying Principle 1 determine an equation of motion

such that

d~ni

ds
¼ o~g0

ogi
;

d~gi

ds
¼ � o~g0

oni
;

d~g0

ds
¼ o~g0

os
;

which are known as characteristic equations.

Here ~g ¼ ð~g0; ~g1ðsÞ; . . .; ~gnðsÞÞ is the tangent vector

along the trajectory ~nðsÞ, defined as

~gðsÞ ¼ o�nf
�
�
�
n¼~nðsÞ

;

where ~g0 ¼ of=osjs¼s is assumed to be a function of n and

gi; ði ¼ 1; . . .; nÞ.

Proof The characteristic forms along the trajectory ~nðsÞ
can be written as

~x ¼ ~gld~nl

¼ �~g0ds þ ~gid
~ni;

~X ¼ d~gl ^ d~nl

¼ �d~g0 ^ d~n0 þ d~gi ^ d~ni;

and by definition

d~n0 ¼ ds;

d~g0 ¼ o~g0

oni
dni þ o~g0

ogi

dgi þ
o~g0

os
ds

� �

s¼s

ð4Þ

¼ o~g0

oni
d~ni þ o~g0

ogi

d~gi þ
o~g0

os
ds: ð5Þ

Here we used a property of an exterior derivative, dðx ^
gÞ ¼ dx þ ð�1Þdeg xðx ^ dgÞ; for any x and g, and

o~n0=os ¼ 1. Note that Eq. (5) is a simplified expression of

Eq. (4). Consider the Cartan tube shown in Fig. 1. Let l1 be

a closed circle at s ¼ s1, and l2 ¼ /s2�s1
ðn 2 l1Þ. The

cylindrical surface of the Cartan tube A consists of trajec-

tories connected from l1 to l2. By Stokes’ theorem, an

integration of the characteristic 2-form on A vanishes,1 i.e.,
Z

A

~X ¼
Z

A

d ~x

¼
Z

oA

~x

¼
Z

l2

~x �
Z

l1

~x

¼ 0;

ð6Þ

Fig. 1 Cartan tube

1 See for example [5].
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where the last equivalence follows from the definition of

the trajectory, which maintains constant ~x. On the other

hand, by contraction of the left-hand side of Eq. (6) with

/s ¼ dso=os, we obtain

0 ¼
Z

A

h ~Xj/si

¼
Z

A

� d~g0

ds
d~n0 þ d~gi

ds
d~ni � d~g0

d~n0

ds
þ d~gi

d~ni

ds

 !

¼
Z

A

o~g0

os
� d~g0

ds

� �

ds þ
Z

A

d~gi

ds
þ o~g0

oni

� �

d~ni

þ
Z

A

o~g0

ogi
� d~ni

ds

 !

d~gi; ð7Þ

where h	j	i is a contraction of two forms. The third step of

this contraction uses Eq. (5). For the integral to identi-

cally vanish on any A, each term in the parentheses must be

zero. h

This proof immediately leads to the following remark.

Remark 1 (Coordinate independent representation) The

characteristic equations can be expressed independently of

the coordinates as

h ~Xj/si ¼ 0:

Proof The proof is evident from Eq. (7), which is true for

all A. h

Hereafter, the~of the trajectory is omitted for simplicity.

Definition 2.3 (Hamiltonian, Lagrangian and Action) A

Hamiltonian, H, is defined from the zeroth component of

the momentum vector as

H ¼ g0: ð8Þ

from which an integration of the characteristic 1-form

along a trajectory can be expressed as

IðcÞ ¼
Z

c
x

¼
Z

c
gidni �Hds
� �

¼
Z s1

s0

dsc� gi

dni

ds
�H

� �

:

This integral is called an action, where c is the trajectory

and c�ð	Þ is a pull of ð	Þ by c. The characteristic 1-form

can be expressed as

x ¼ c�Lð ÞðsÞds;

L ¼ gi

dni

ds
�H:

ð9Þ

Here L is the Lagrangian.

Since the action is independent of the parameterization

of the trajectory, the pull of the trajectory c� is hereafter

omitted unless required for clarity. The action can be

interpreted as the ‘‘distance’’ between two points on the

space-time manifold measured by the characteristic 1-form

x. A detailed treatment of the trajectory c is given in

Sect. 3.

Examples of dynamics

Here we provide two concrete examples of the general

dynamical space from thermodynamics and Hamiltonian

mechanics. Similarity between these two examples guides

us to new insights in classical dynamics.

Example 1 (Irreversible thermodynamics)2

First, let us consider an isolated system of gas. The adia-

batic free expansion of an isolated system enlarges the

entropy ðSÞ (according to the second law of thermody-

namics) and maintains constant temperature ðTÞ because

heat energy cannot be gained or lost. In this case, the order

parameter is entropy ðS 2 TÞ, while the one-dimensional

space-manifold is volume ðV 2 MÞ. The thermodynamics

is described by the following characteristic function:

fTD ¼ pV � ST ; ð10Þ

where p is the pressure of gas in an insulating container and

p is the pressure of the system. From the thermodynamic

characteristic function, g0 can be obtained as ofTD=oS ¼ T .

The general dynamical space then becomes

ðn0; n1Þ ¼ ðS;VÞ;
ðg0; g1Þ ¼ ðT ; pÞ;

xE ¼ pdV � TdS;

XE ¼ dp ^ dV � dT ^ dS:

The characteristic function can be expressed as a scalar

function on the space-time manifold as follows:

fTD ¼ nlgl

¼ n1g1 � n0g0

¼ pV � ST :

We assume that a Hamiltonian exists such that

g0 ¼ Tðp;VÞ. From the characteristic function and space-

time manifold, we obtain the following characteristic

equations:

dV

dS
¼ oT

op
;

dp

dS
¼ � oT

oV
;

dT

dS
¼ oT

oS
¼ 0

2 These examples are given in [14]. Other examples are provided

therein.
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These are known as the Maxwell relations for an adiabatic

transition. The characteristic 1-form corresponds to the

energy of the system (xE ¼ �dE).3

Next let us consider a system contained in an insulating

container with an expandable wall and its isothermal

reversible transition. The initial temperature of the system

is T1. The system is attached to a heat bath of temperature

T2 [ T1 and pressure is maintained constant. Here tem-

perature is adopted as the order parameter (T 2 T)

because temperature increases monotonically in this case.

In this example, the one-dimensional space-manifold is

pressure p 2 M. From the characteristic function, Eq. (10),

g0 can be obtained as ofTD=oT ¼ SðV ; pÞ, and the general

dynamical space becomes

ðn0; n1Þ ¼ ðT ; pÞ;
ðg0; g1Þ ¼ ðS;VÞ;

xG ¼ Vdp � SdT;

XG ¼ dV ^ dp � dS ^ dT ;

and the characteristic functions are derived as

dp

dT
¼ oS

oV
;

dV

dT
¼ � oS

op
;

dS

dT
¼ oS

oT
¼ 0 :

These functions are alternative expressions of the above-

derived Maxwell relations. Here the characteristic 1-form

corresponds to the Gibbs free energy of the system, given

as

xG ¼ Vdp � TdS ¼ dG: ð11Þ

Example 2 (Hamiltonian formalism of mass points)

Next let us consider the well-known Hamiltonian formalism

of mass points with n degrees of freedom. The order

parameter and space-time manifold are defined as t 2 T and

ðq1; . . .; qnÞ 2 M, respectively. The characteristic function is

f ¼ nlgl;

¼ qipi � Ht;

where n ¼ ðt; q1; . . .; qnÞ and g ¼ ðH; p1 . . .; pnÞ. Assuming

the Hamiltonian as H ¼ Hðt; qi; piÞ, the characteristic

forms are obtained as

x ¼ pidqi � Hdt;

X ¼ dpi ^ dqi � dH ^ dt:

Then, the celebrated canonical equations of motion can be

expressed as the following characteristic functions:

dqi

dt
¼ oH

opi

;
dpi

dt
¼ � oH

oqi

;
dH

dt
¼ oH

ot
:

Underlying structure of Hamiltonian systems

The similarity between thermodynamics and the Hamilto-

nian formalism of mass points was highlighted in the pre-

vious section. Both systems show the same symplectic

structure of base manifold and evolve along an order

parameter under a set of ‘‘equations of motion’’. However,

thermodynamic ideal gas systems are known to possess an

underlying structure generated by the statistical mechanics

of independent gas molecules. On the other hand, the

Hamiltonian formalism of mass points requires no underly-

ing structure. Here we treat the Hamiltonian formalism as a

thermodynamic system and assume a virtual underlying

structure for the motions of mass points. Among several

candidates for a microscopic entity governing the Hamilto-

nian formalism, particle trajectories are adopted for the fol-

lowing reasons. The Hamiltonian formalism of mass points

differs from ideal-gas thermodynamics primarily by impor-

tance of the trajectory. The main goal of the former is to

determine the trajectory of a mass point under applied forces

and initial conditions. In contrast, in the latter, the trajectory

cannot be measured and has no essential meaning, similar to

the quantum mechanics of mass points. By considering

particle trajectories as the statistical entity, a relation

between classical and quantum mechanics may be clarified.

This section considers the statistical mechanics of particle

trajectories in the general dynamic space of Definition 2.1.

Geometrical preparation

This subsection introduces the geometrical objects used in

subsequent discussions.

Definition 3.1 (Curvilinear path) A set of maps c such that

c : T ! C � M : t 2 ½t1; t2�7!cðtÞ
¼ c0ðtÞ
�

¼ t; c1ðtÞ; c2ðtÞ; . . .; cnðtÞ
�
;

ci : R ! R : t 7!ciðtÞ; ci 2 C1;

is called a curvilinear path (or simply ‘‘path’’), and a set of

paths, C, is called a curvilinear-path space.

In this section, we consider only those paths whose

end points are fixed at cðt1Þ ¼ n1 ¼ ðt1; n1
1; . . .; n

n
1Þ and

cðt2Þ ¼ n2 ¼ ðt2; n1
2; . . .; n

n
2Þ.

Definition 3.2 (Velocity vector) A velocity vector is a

tangent vector at a point cðtÞ on the curvilinear path,

defined as

dc
dt

ðtÞ ¼ 1;
dc1

dt
ðtÞ; dc2

dt
ðtÞ; . . .; dcn

dt
ðtÞ

� �

:

Hereafter, the velocity vector is written as

_cðtÞ ¼ ð1; _c1ðtÞ; _c2ðtÞ; . . .; _cnðtÞÞ. The velocity vector can be3 For a statistical physics treatment, see for example [11].
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expressed in terms of natural bases on a tangent space Ttc
at cðtÞ as

_ciðtÞ ¼ dciðsÞ
ds

o

oci

�
�
�
s¼t

;

where i runs from 1 to n and the components are not

summed. A tangent vector bundle _C ¼
S

cðtÞ�c2C Ttc is

called a velocity bundle.

Definition 3.3 (Variational vector) A variational vector

is defined as a cotangent vector at cðtÞ 2 M on the cur-

vilinear path dcðtÞ. In terms of natural bases of the cotan-

gent space T�
t c, variational vectors can be expressed as

dciðtÞ ¼ dcidci, where i runs from 1 to n and the compo-

nents are not summed. The zeroth component is dc0ðtÞ ¼ 0.

A cotangent vector bundle dC ¼
S

cðtÞ�c2C T�
t dc is called a

variational bundle.

The bases of a velocity bundle and variational bundle

are orthogonal, i.e., dclo=ocm ¼ dl
m .

Definition 3.4 (Variational operator) A map induced by

a variational vector such that

d : C ! C : c 7!ðd 
 cÞðtÞ ¼ c þ dcð ÞðtÞ;

is called a variational operator.

Here c þ dcð ÞðtÞ denotes the sum of two vectors c and

dc, which are defined on M. The curvilinear path dcðtÞ ¼
ðd 
 cÞðtÞ is assumed to become an element of the curvi-

linear-path space, i.e., dcðtÞ 2 C1. The distance between

two paths c and dc is defined as

jjdc � cjj ¼ jjdcjj

¼
Z t2

t1

dtjdcðtÞj

¼
Z t2

t1

dt
Xn

k¼1

dckðtÞ
� �2

( )1=2

:

Suppose that F is a functional defined on C such that

F : C ! R
m : c 7!FðcÞ; m 2 N. The variational operator

maps a functional F to another functional as d :

FðcÞ 7! dFðcÞ ¼ FðdcÞ: Since c is a map defined in

Definition 3.1, a functional F can be pulled back to a

function defined on R using a pull of c, which denoted as c�:

c� : FðcÞ7!c� FðcÞð ÞðsÞ 2 R:

For simplicity, we use a shorthand, c�ðFðcÞÞðsÞ ¼
FðcÞðsÞ. A variational operator can be pulled as

c�ðdcFðcÞÞðsÞ ¼ Fðc þ dcÞðsÞ: Thus variation of a func-

tional F can be defined as

d k FðcÞ k
dc

¼ lim
kdck!0

k Fðc þ dcÞ k � k FðcÞ k
k dc k :

When a variation is zero with some cc, it is said that the

functional F has a extremal at cc.

Dynamics of paths

We now define the general dynamic space occupied by a

mass point and impose a probability space on it. For sim-

plicity, we treat a single mass point.

Definition 3.5 (General dynamic path space) The general

dynamical space occupied by a point particle is described

as follows:

• Space Manifold: The space manifold M is a three-

dimensional Euclidean space R
3:

• Time Manifold: The time manifold T is Newtonian

absolute time, which is commonly used in inertial

system analysis. A space-time manifold T�M ¼
R� R

3 is called a Galilean Manifold.

• Characteristic Function: The characteristic function

(functional) is defined as

f ¼ plc
l

¼ pic
i �Hðp; cÞt;

where c is a path defined on M, and p is a vector

defined on the velocity bundle. The mass is defined as

m ¼ jjpjj=jj _cjj. The characteristic function f can be

considered as a functional of the path defined on C � _C.

• Characteristic Forms: The characteristic 1- and 2-

forms, respectively, are defined as

x ¼ pldcl

¼ pidci �Hdt;

and

X ¼ dpl ^ dcl

¼ dpi ^ dci � dH^ dtl:

Here the characteristic functional is assumed to be invari-

ant under affine transformation on the space manifold,4M.

In this notation, the action and Lagrangian, respectively,

are expressed as

IðcÞ ¼
Z

Ldt;

and

Ldt ¼ ðpid _c
i �HÞdt

¼ pldcl:

4 If the characteristic functional is assumed to be invariant under

affine transformation on the entire space-time manifold, then the

manifold is called a Minkowski manifold and the system is called

relativistic.
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This transformation from the Hamiltonian to Lagrangian is

known as a Legendre transformation and the independent

variables of L are now ðc; _cÞ. Here the flat Riemannian

metric gll ¼ ð�;þ;þ;þÞ correctly induces a Legendre

transformation from H to L.

From the geometrical framework introduced in the

previous subsection, we now construct a dynamical path

system of a mass point evolving under the Hamiltonian

formulation.

Theorem 3.1 (Hamilton) In a general dynamical space,

the following two trajectories are equivalent:

1. Trajectory that gives the extremal of variation of the

action: dIðcÞ ¼ 0,

2. Trajectory that satisfies the characteristic equations:

dci

dt
¼ oH

opi

;
dpi

dt
¼ � oH

oci

;
dH
dt

¼ oH
ot

:

Proof 1 ) 2: Applying a variational operator to the

action, we obtain

dIðcÞ ¼ d
Z

c
x

¼
Z

dc
x ¼ 0;

implying that the integration of the characteristic 1-form is

independent of dc and satisfies Principle 1. Then, the

Hamiltonian must satisfy the characteristic equations.

2 ) 1: Applying the variational operator to the

Lagrangian, we obtain

dL ¼ dðpi _c
iÞ � dH

¼ dpi _c
i þ pid _c

i � oH
oci

dci þ oH
opi

dpi

� �

¼ dpi _c
i þ pid _c

i � � _pidci þ _cidpi

� �

¼ dpi _c
i þ pid _c

i � pid _c
i þ _cidpi

� �
¼ 0;

where i ¼ 1; 2; 3. Here we use integration by parts and

assume zero variations at both ends of the path. Steps 2 and

3 in the derivation are obtained by substituting the char-

acteristic equations. h

The variation of the action, on the other hand, can be

written as dIðcÞ ¼
R

dtdL, which yields dIðcÞ ¼ 0 )
dL ¼ 0. This is analogous to the extremal of the Gibbs free

energy in an isothermal reversible system at equilibrium. Let

us consider this analogy in more detail. As pointed out, when

introducing Eq. (11), the characteristic 1-form of the iso-

thermal reversible transition is equivalent to the Gibbs free

energy. In this analogy, the Hamiltonian corresponds to the

entropy of the system and the macroscopic system configu-

ration may be determined by the extremal point of the char-

acteristic 1-form, which corresponds to the Lagrangian. The

analogies between the Hamiltonian formalism of mass points

and thermodynamics of ideal gases is summarized in Table 1.

This analogy will be pursued further in the next subsection.

Statistical mechanics of trajectories

The curvilinear path defined in the previous subsection is

the trajectory of the particle. This trajectory is considered

as the microscopic basis for constructing a statistical

mechanical analog of the thermodynamic system.

Definition 3.6 (Lagrangian probabilistic space) The

probabilistic space fC;PðCÞ; pðcÞg is imposed on the

general dynamic path space (see Definition 3.5) as follows:

1. Whole event: The set of whole events is the curvilin-

ear-path space.

2. r-Algebra: The r-algebra is a power set of C, denoted

PðCÞ.
3. Probability measure: Consider a map such that

p : C ! ½0; 1� 2 R : c 7!pðcÞ;
X

c2C

pðcÞ ¼ 1:

This functional describes the probability density to realize

the path c. Please note that we consider only those paths

whose start and end points are fixed at n1 and n2, respec-

tively. The initial momentum vector must be chosen

to realize a classical path. The probabilistic space

fC;PðCÞ; pðcÞg is assumed to satisfy the probability axioms

proposed by Kolmogorov [8]. If a set C with infinite degrees

of freedom belongs to @1, then a set PðCÞ must belong to @2.

Since we cannot mathematically justify the probability

Table 1 Analogies between

isothermal reversible

thermodynamics and statistical

dynamics of particle paths

Adiabatic free

expansion

Isothermal reversible

transition

Statistical dynamics

of paths

Order parameter Entropy: S Temperature: T Time: t

Momentum vector Pressure: p Volume: V Momentum: p

Space coordinate Volume: V Pressure: p Position: cðtÞ
Hamiltonian Temperature: T Entropy: S Hamiltonian: H
Lagrangian Internal energy: Gibbs free energy: Lagrangian:

�dU ¼ p dV � TdS dG ¼ Vdp � SdT Ldt ¼ pdc �Hdt
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measure defined on such an infinite set, we present a formal

treatment only. The existence of the measure can be verified

in limited cases, as will be discussed later.

Definition 3.7 (Entropy of Paths) The entropy of the

paths is defined as

S ¼ �
X

c2C

pðcÞ log pðcÞ; ð12Þ

according to Shannon [13]. Here C, c 2 C and pðcÞ are

defined in the Definition 3.6.

Consistency between the above definition of entropy and

Hamiltonian formalism will be discussed later. At this

stage, we lack detailed knowledge of the dynamics that

govern path behavior. However, it seems natural to con-

figure paths by the following principle.

Principle 2 (Maximum entropy principle) Path configu-

ration is determined to maximize the entropy of the paths.

According to above principle, a probability pðcÞ to

observe a path c can be given by following theorem.

Theorem 3.2 (Canonical ensemble) The probability pðcÞ
defined as following two requirement are equivalent:

1. The path whose entropy is maximized under the

following constraints
X

c2C

pðcÞ ¼ 1; ð13Þ
X

c2C

pðcÞIðcÞ ¼ I: ð14Þ

The first constraint is conservation of probability. The

second stipulates that an action averaged over all

possible paths I, called a classical action, must exist.

2. The path whose probability pðcÞ is given as

pðcÞ ¼ exp �bIðcÞð Þ
ZðbÞ ; ð15Þ

ZðbÞ ¼
X

c2C

exp �bIðcÞð Þ; ð16Þ

where b is a constant to eliminate a dimension in the

argument of exponential function.

Here, the functional integration ZðbÞ is regarded as a

partition functional by analogy with equilibrium statistical

mechanics. Then, particle trajectories (paths) form a

canonical ensemble.

Proof To maximize the entropy of the constrained paths,

we introduce Lagrange multipliers a and b such that

/ðp; a; bÞ ¼ �S þ a
X

c2C

pðcÞ � 1

 !

þ b
X

c2C

pðcÞIðcÞ � I

 !

:

The following conditions must be satisfied:

o/ðp; a; bÞ
oa

¼
X

c2C

pðcÞ � 1 ¼ 0;

o/ðp; a; bÞ
ob

¼
X

c2C

pðcÞIðcÞ � I ¼ 0;

o/ðp; a; bÞ
op

¼ log pðcÞ þ 1 þ a þ bIðcÞ ¼ 0:

Here we used the functional derivative rules presented in

the Appendix. Solving the above equations gives

pðcÞ ¼ exp �bIðcÞð Þ
P

c2C exp �bIðcÞð Þ :

To ensure that exp �bIðcÞð Þ converges when IðcÞ ! 1,

b must be positive. h

The above theorem implies that introducing the entropy

of paths described by Eq. 12 yields the canonical ensemble

of equilibrium statistical mechanics. Therefore, it appears

that the classical trajectory of a mass point can be inter-

preted as the equilibrium state among all possible paths.

The following theorem should then naturally hold:

Theorem 3.3 (The most probable path) The following

two trajectories are equivalent:

1. Trajectory that gives the extremal of variation of the

action: dIðcÞ ¼ 0,

2. Trajectory that gives the maximum probability in

Eq. (15).

Proof Applying the variational operator d to both sides of

Eq. (15), we obtain

dpðcÞ ¼ �b
exp �bIðcÞð Þ

Z
dIðcÞ:

Thus, dpðcÞ ¼ 0 and dIðcÞ ¼ 0 are equivalent. Since b, Z,

and exp ð�bIðcÞÞ are positive, the path c that minimizes

IðcÞ gives the maximum pðcÞ. h

Above theorem posits that the classical trajectory described

in Theorem 3.1 is the most probable path of a mass point under

Principle 2. Thus, we have proved that the maximum entropy

principle (Principle 2) and Cartan principle (Principle 1)

are mathematically equivalent in a general dynamic space.

Classical mechanics to quantum mechanics

This section relates the formulations of classical and quan-

tum mechanics. Quantum and classical mechanics differ

most distinctly by the probability amplitude, whose square

gives probability density. Quantum mechanical motions,

embodied in the Heisenberg/Schrödinger equation, are
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governed by the time evolution of probability amplitudes

rather than probability densities. Importance of the quantum

probability amplitude is discussed elsewhere [10]. The fol-

lowing subsection introduces a general framework of

quantum mechanics, within which we relate our formulation

to path integrals and stochastic quantization.

General quantum system

Here we develop a general framework for defining quan-

tum mechanical probability amplitudes.

Definition 4.1 (Quantum amplitude5and Probability)

Let K be any field, not necessarily commutative, and let

V be a linear (vector) space on it. The base field K is

associated with each element of C. The probability

amplitude and probability measure are introduced on these

spaces as follows:

1. We introduce the following map from the path to an n-

dimensional vector space:

wn
K
: C ! Vn ¼ V � � � � � V|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

n

: c 7!wn
K
ðcÞ;

where the paths have fixed end points at n1 and n2 (see

Definition 3.1). The amplitude is then defined as

wn
K
ðn2; n1Þ ¼

X

c2C

wn
K
ðcÞ:

In defining a measure on the vector space, a r-algebra

of the probability amplitudes in the base field K is

assumed. Hereafter, the simplified notation wn
K

denotes

that the start and end points are fixed at n1 and n2,

respectively, unless otherwise stated.

2. The following map from an amplitude to a real number

l : Vn ! R : wn
K
! l wn

K

� �
2 ½0; 1�;

is called a quantum probability (measure). The

sequential map

l 
 wn
K
: C ! ðVn !ÞR : C7!l ¼ l Cð Þ ¼ lðwn

K
Þ;

is also called a quantum probability and is represented

by the same symbol lðcÞ, where K and V are as pre-

viously defined. The quantum probability measure

must satisfy lðwn
K
Þ� 1: This measure is not normal-

ized to unity because the curvilinear-path space C
includes only paths with fixed end points; however, the

quantum mechanical uncertainty relation precludes

precise determination of an end point.

Two essential differences exist between the above-

described general quantum system and canonical ensemble

introduced earlier:

1. Relaxation of the first constraint in Theorem 3.2.1.

2. The probability amplitude is not necessarily a real

number.

These differences may lead the dynamical system to adopt

quantum mechanical instead of classical behavior.

Path integral quantization

Here we derive the probability measure and amplitude

from the maximum entropy principle (Principle 2). The

probability that a mass point observed at n1 is later

observed at n2 is

pðn2; n1Þ ¼ lðCÞ ¼
�
�
�
X

c2C

w1
C
ðcÞ
�
�
�
2

; ð17Þ

where the quantum probability amplitude w1
C
ðcÞ resides in

a one-dimensional vector space on a complex number field

C. Hereafter, w1
C
ðcÞ is written as wðcÞ for simplicity.

Theorem 4.1 (Path integral quantization) The quantum

probability amplitude and probability measure that mini-

mize the entropy

S ¼ �
X

c2C

�
�
�wðcÞ

�
�
�
2

log
�
�
�wðcÞ

�
�
�
2

; ð18Þ

under constraints

X

c2C

�
�
�wðcÞ

�
�
�
2

IðcÞ ¼ I; ð19Þ

X

c2C

�
�
�wðcÞ

�
�
�
2

¼ 1; ð20Þ

is given by

wðcÞ ’ C e
i
�hIðcÞ; ð21Þ

where C 2 R is an appropriate normalization constant and

I is rendered dimensionless by dividing by the constant �h.

Proof The probability amplitude that maximizes the

entropy is again obtained by the Lagrange multiplier method:

/ðw; a; bÞ ¼ �S þ a
X

c2C

�
�
�wðcÞ

�
�
�
2

� 1

 !

þ b
X

c2C

�
�
�wðcÞ

�
�
�
2

IðcÞ � I

 !

;

o/ðw; a; bÞ
oa

¼
X

c2C

�
�
�wðcÞ

�
�
�
2

� 1 ¼ 0;

o/ðw; a; bÞ
ob

¼
X

c2C

�
�
�wðcÞ

�
�
�
2

IðcÞ � I ¼ 0;

o/ðw; a; bÞ
ow�ðcÞ ¼ wðcÞ log

�
�
�wðcÞ

�
�
�
2

þ 1 þ a þ bIðcÞ
� �

¼ 0:

5 In a narrow sense,‘‘quantum amplitude’’ is a complex number

whose square of the absolute value is a probability (density). In this

report, we use a word ‘‘quantum amplitude’’ not only for complex

numbers, but also for vectors whose square of the absolute value is a

probability (density).
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Here we again used rules of a functional derivative

described in Appendix. Solving the above equations, the

probability amplitude is obtained as

wðcÞ ¼ e�
1
2
bIðcÞ=Z1=2;

Z ¼
X

c2C

e�R½b�IðcÞ:

Here b 2 C and R½b� (I½b�) are real-part (imaginary) of b,

respectively. An imaginary part of b is arbitrary due to an

Uð1Þ symmetry of wðcÞ. As shown in the Theorem 3.3, a

main contribution for the probability comes from the tra-

jectory of the classical mass point. Moreover it is expected

that a quantum mechanical path is small fluctuated around

this classical trajectory. Thus here we assume that a real-

part of b contributes to wðcÞ as slow moving function and

replace it by a mean value. Then the probability amplitude

can be express as

wðcÞ ¼ 1

Z1=2
e�

1
2
bIðcÞ;

¼ 1

Z1=2
e�

1
2

R½b�þiI½b�ð ÞIðcÞ;

’ Ce�
i
�hIðcÞ;

where �h ¼ 2I½b�� and

C ¼ 1

Z1=2

X

c2C

e�
1
2
R½b�IðcÞ:

h

Equations (21) and (17) are nothing but the path-integral

representation of transition probability introduced by Fe-

ynman [3, 4].6 The constant �h is not necessarily the

Planck’s constant and cannot be determined within this

formulation. Instead, a transition from classical to quantum

mechanics arises through the probability amplitude, which

can be a complex valued functional in our interpretation, in

contrast to the real probability density of classical

mechanics. This transition becomes evident if Eqs. (12)

and (14) are compared with Eqs. (18) and (19).

Conclusions and discussions

In this report, we introduced a general dynamic space that

allows a unified geometric viewpoint of various dynamic

systems. System dynamics were geometrically introduced

though Cartan’s principle. The equations of motion

derived from Cartan’s principle were found to be math-

ematically equivalent to Hamiltonian dynamics. Under the

proposed generalized framework, the dynamics of a mass

point were equivalent to those of equilibrium thermody-

namics, enabling the derivation of a thermodynamic

analogue of mass point dynamics. In fact, the maximum

entropy principle defined in trajectory space generated

precisely the Hamiltonian equation of motion. The clas-

sical trajectory of a mass point can be interpreted as the

most probable path of the point. By extending the maxi-

mum entropy principle to probability amplitude rather

than probability density, we retrieved the equations of

path-integrated quantum mechanics. The probability

amplitude was essential for transferring the system from a

classical to quantum state. In summary, we incorporated

various dynamical systems such as classical mechanics of

a mass point and equilibrium thermodynamics and

quantum mechanics of a point particle into a general

mathematical framework.

While this framework provides a unique vantage point

for both classical and quantum mechanics, it is not yet

suitable for quantum mechanical analysis. We defined

quantum amplitudes on a curvilinear space of precisely

fixed end points. A basic quantum mechanical element is

not naturally located in such a space-time manifold because

of violation of the uncertainty relation. To satisfy the

uncertainty relation, the essential element of quantum

mechanics must be defined on a measurable space. A

suitable candidate manifold is the Cartan tube introduced in

Sect. 2.1, which is defined in a measurable extended phase

space. The elements of this space, space-time and

momentum manifolds comprise a Fourier-dual pair [9].

Thus, we can expect to construct quantum mechanics that

satisfy the uncertainty condition on the Cartan tube.

Moreover this formalism is suitable to treat quantum field

theory, which is considered as a more fundamental theory

than quantum mechanics of a mass point. A detailed ana-

lysis of this subject is beyond the scope of this report and

will be reported elsewhere.
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Appendix: Algebraic functional calculus

The functional differential and integral calculus used in

this report is not directly extendable to an infinite

dimensional space. However, an algebraic treatment of

the functional derivatives required in this report is

sufficient.6 See also a section 1.3 of [7].
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Algebraic differentiation

Definition 6.1 (Algebraic differentiation(1-parameter)

Algebraic differentiation is a map Z from the vector,

defined on an open neighborhood U about the point p on

manifold M, to a complex number. The map Z must satisfy

three algebraic conditions:

• Unity: ZðxÞ ¼ 1,

• Linearity: Zðaf þ bgÞ ¼ aZðf Þ þ bZðgÞ,
• Leibniz’s rule: Zðgf Þ ¼ fZðgÞ þ Zðf Þg,

where x is a local coordinate on U, f ; g 2 V , and a; b 2 R.

A differential operator acting on local coordinates x on

U is written as Z ¼ d
dx
:

Example 3 (Constant functions) Given that

d

dx
ð1Þ ¼ d

dx
ð1 � 1Þ ¼ 1 � d

dx
ð1Þ þ d

dx
ð1Þ � 1 ¼ 2

d

dx
ð1Þ;

) d

dx
ð1Þ ¼ 0;

and that the derivative of the constant function f ¼ 1 is

zero, it immediately follows that the derivative of any

constant function is zero.

Example 4 (Polynomials) The derivative of f ðxÞ ¼ x2 is

d

dx
ðx2Þ ¼ d

dx
ðx � xÞ ¼ x

d

dx
ðxÞ þ d

dx
ðxÞx ¼ 2x:

Then, by mathematical induction on n, d
dx
ðxnÞ ¼ nxn�1 for

any Z 3 n 6¼ 0 .

Example 5 (Power function) The derivative of f 2ðxÞ is

d

dx
ðf 2Þ ¼ d

dx
ðf � f Þ ¼ d

dx
ðf Þ � f þ f � d

dx
ðf Þ ¼ 2f

d

dx
ðf Þ :

Then, by mathematical induction on n, d
dx
ðf nÞ ¼ nf n�1 d

dx
ðf Þ

for any n 6¼ 0.

Example 6 (Exponential function) An exponential function

expðxÞ is defined as an identity function of the differentiation

operator. It is lower-bounded by expð0Þ ¼ 1 such that

d

dx
ðexpðxÞÞ ¼ expðxÞ; expð0Þ ¼ 1:

On the other hand, the infinite series

ExpðxÞ ¼
X1

k¼0

1

k!
xk;

satisfies the same differential equation and boundary con-

dition. Thus, expðxÞ is equivalent to ExpðxÞ and both are

hereafter expressed as expðxÞ.

Example 7 (Logarithmic function) The logarithmic

function is the inverse of the exponential function, such

that expðlogðxÞÞ ¼ logðexpðxÞÞ ¼ x: Differentiating the

right-hand side of the formula, we get

d

dx
ðexpðlogðxÞÞÞ ¼ d

dx
ðlogðxÞÞ expðlogðxÞÞ ¼ d

dx
ðlogðxÞÞx:

On the other hand, differentiating the left-hand side

yields d
dx
ðxÞ ¼ 1: Equating these, we obtain d

dx
ðlogðxÞÞ ¼

1
x
ðx 6¼ 0Þ:

Integration: inverse operation of differentiate

Definition 7.1 (Primitive function) A function FðxÞ
satisfying

d

dx
ðFðxÞÞ ¼ f ðxÞ;

is called a primitive function. A map homologizing a

function f ðxÞ to a primitive function FðxÞ, i.e.,

Z

dx : V ! V : f ðxÞ7!
Z

dx

� �

f ðxÞ ¼ FðxÞ

is called an integration.

An operator
R

dx maps a function to its primitive

function.

Definition 7.2 (Definite integral) The map

Z 	

	
dx : V � R� R ! R : ðf ðxÞ; fa; bgÞ

7!
Z b

a

dx

� �

f ðxÞ ¼ FðbÞ � FðaÞ;

is called a definite integral.

Leibniz’s rule gives rise to the following theorem:

Theorem 7.1 (Integration by parts)

Z b

a

dx f ðxÞgðxÞð Þ ¼ FðxÞgðxÞ½ �ba�
Z b

a

dx FðxÞ d

dx
gðxÞ

� �

;

where FðxÞ is a primitive function of f ðxÞ.

Example 8 As an example, we integrate the function

f ðxÞ ¼ x expð�x2Þ by parts. For 8c 2 R, we have

d

dx
� 1

2
expð�x2Þ þ c

� �

¼ x expð�x2Þ;

Performing the definite integration, we obtain
Z 1

�1
dx f ðxÞ ¼ � 1

2
expð�x2Þ

�
�
�
x¼þ1

� � 1

2
expð�x2Þ

�
�
�
x¼�1

� �

¼ 0:
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Here convergence of the limit can be confirmed by

expressing expðxÞ as an infinite series.

Example 9 (Dirac d function) The Heaviside unit func-

tion is defined as

HðxÞ ¼
1 x 0

0 x\0:




The Dirac delta function is formally defined as dðxÞ ¼
d
dx

HðxÞ: For any function f ðxÞ, we have

Z 1

�1
dx

� �

dðxÞf ðxÞð Þ ¼ HðxÞf ðxÞ½ �1�1�
Z 1

�1
dx HðxÞ d

dx
f ðxÞ

� �

¼ �f ðxÞ
�
�
x¼1�

Z 1

0

dx
d

dx
f ðxÞ

¼ �f ðxÞ
�
�
x¼1� f ðxÞ½ �10

¼ f ð0Þ;

where we have used integration by parts.

Functional calculus

In this report, differential calculus is applied on function-

als. The calculus is treated algebraically and the operations

are not checked for convergence.

Definition 7.3 (Algebraic functional calculus) A func-

tional differential d
d/ðyÞ is a linear operation that satisfies

Leibniz’s rule and

d/ðxÞ
d/ðyÞ ¼ dðx � yÞ:

Elementary functionals and their functional derivatives

are defined and calculated following the methods of

Appendix A.1.

Example 10 (Exponential functional) An exponential

functional is an identity function of the differential oper-

ator. It is bounded by expð/0Þ ¼ 1, where /0 ¼ 0. The

exponential functional is therefore equivalent to

Exp½/ðxÞ� ¼
X1

k¼0

1

k!
/kðxÞ:

From the definitions of functional calculus, we obtain

d
d/ðyÞ exp

Z

dx /ðxÞuðxÞ
� �

¼ d
d/ðyÞ

X1

k¼0

1

k!

Z

dx /ðxÞuðxÞ
� �k

¼
X1

k¼0

1

k!
i

Z

dx /ðxÞuðxÞ
� �k�1

uðyÞ

¼ uðyÞ exp

Z

dx /ðxÞuðxÞ
� �

:
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