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Abstract The sd-version of the interacting boson model

(IBM) is used to establish the shape phase transitional

structure. A simplified Hamiltonian is used which is in-

termediate between the three dynamical symmetries of

U(6), namely the spherical U(5), the prolate and oblate

deformed SU(3) and the c-unstable O(6) limits. The po-

tential energy surfaces (PESs) to the IBM Hamiltonian

have been obtained using the intrinsic state formalism

which introduces the shape variables b and c. The Gado-

linium (Gd) and Ruthenium (Ru) isotopic chains have been

taken as examples in illustrating the U(5)–SU(3) and U(5)–

O(6) shape phase transitions, respectively. We used the

standard v2 test to get the IBM Hamiltonian parameters.

The fit is performed by minimizing the v2 function for

some selected experimental low-lying energy levels, the

two neutron separation energies and B(E2) transition rates.
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Introduction

The interacting boson model (IBM) [1] was designed to

describe the collective quadrupole degrees of freedom

in nuclei. The IBM Hamiltonian was written from the

beginning in second quantization form in terms of the

generators of the unitary Lie algebra U(6) subtended by

s and d bosons which carry angular momentum 0 and 2,

respectively. The model present three special limits that

can be solved easily. These three limits are U(5), SU(3)

and O(6) dynamical symmetries appropriate for an

harmonic vibrator, axial deformed rotor and c-unstable
deformed rotor, respectively. Each of these limits is

assigned to spherical, axially deformed and deformed

with c-instability shapes, respectively. Among the

transitional Hamiltonian a specially interesting case

occurs when it describes a critical point in the transition

from a given shape to another. A shape phase transition

may be of first or second order, depending on the

discontinuity of the first- or second-order derivatives of

the order parameter as a function of the control pa-

rameters [2–10].

The classical limit of the IBM is defined as its expec-

tation value in a coherent state [10–12] and yields a

function of shape variables b and c which can be inter-

preted as a potential energy surface (PES) depending on

these parameters. The symmetry E(5) [13] is designed for

the critical point of the transition from spherical to de-

formed c-unstable shapes. Later [14, 15] X(5) and Y(5)

describe the critical points between spherical and axially

deformed shapes and between axial and triaxial deformed

shapes, respectively.

In the present work, we use the two parameters sd-IBM-

1 Hamiltonian with the intrinsic coherent state method to

produce the potential energy surfaces (PESs) for chains of

isotopes 150�162Gd and 96�114Ru involving nuclei suggested

[16–18] to be good candidates for X(5) and E(5) critical

point symmetries.
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A simplified Hamiltonian of the sd-IBM in the intrinsic

condensate state

In this work, we adopt a simplified two-parameter IBM-1

Hamiltonian in the form

H ¼ �n̂d þ a2Q̂ðvÞ � Q̂ðvÞ ð1Þ

where the d-boson number operator n̂d and the quadrupole

operator QðvÞ are defined as

n̂d ¼ dy � ~d ð2Þ

Q̂ðvÞ ¼ sy~d þ dy~sþ v½dy � ~d�ð2Þ ð3Þ

with v the structure parameter of the quadrupole operator of

the IBM, and ½dy � ~d�ð2Þ stands for the l ¼ 2 tensor coupling

of the d-boson creation and annihilation operators ð~dl ¼
ð�1Þld�lÞ, where l ¼ �2;�1; 0;þ1;þ2 is the angular

momentum projection, and ð�Þ denoting the scalar product.

The geometric interpretation of the Hamiltonian (1) can

be derived using the intrinsic condensate state jNbci de-

fined by [10, 11]

jNbci ¼ 1
ffiffiffiffiffi

N!
p ðCyc Þ

N j0i ð4Þ

with

Cyc ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ b2
p ½sy þ b cos cd

y
0 þ 1

ffiffiffi

2
p sin cðdy2 þ d

y
�2Þ�

ð5Þ

where b and c are the geometric parameters. We get the

ground state potential energy surface (PES) by calculating

the expectation value of the Hamiltonian on the intrinsic

boson condensate state:

EðN; b; c; vÞ ¼ hNbcjHjNbci

¼ �
Nb2

1þ b2
þ a2

n N

1þ b2
½5þ ð1þ v2Þb2�

þNðN � 1Þ
ð1þ b2Þ2

h

4b2 � 4

ffiffiffi

2

7

r

vb3 cos 3cþ 2

7
v2b4

io

ð6Þ

If we eliminate the contributions of the one-body terms of

the quadrupole–quadrupole interaction, then

EðN; b; c; vÞ ¼ A2b
2 þ A3b

3 cos 3cþ A4b
4

ð1þ b2Þ2
ð7Þ

with

A2 ¼ ½�þ 4a2ðN � 1Þ�N

A3 ¼ �4

ffiffiffi

2

7

r

va2ðN � 1ÞN

A4 ¼ �þ 2

7
v2ðN � 1Þa2

� �

N

ð8Þ

Minimization of the PESwith respect to b for a given value of
v, gives the equilibrium value bm defining phase of the

system; bm ¼ 0 corresponding to the symmetric phase while

bm 6¼ 0 to the broken symmetry phase. Since c enters the

potential (7) only through the cos 3c dependence in the cubic
term, the minimization in this variable can be performed

separately. The global minimum is either at cm ¼ 0 ð2p=3;
4p=3Þ for A3\0 or at cm ¼ p=3 (p; 5p=3) for A3 [ 0. The

secondpossibility can be expected via changing the signof the

corresponding bm and simultaneously setting cm ¼ 0.

The IBM phase can be described as follows:

1. For A2
3\4A2jA4j, phase with bm ¼ 0 interpreted as

spherical U(5) dynamical symmetry.

2. For A2
3 [ 4A2jA4j; A3\0, phase with bm [ 0, cm ¼ 0

interpreted as prolate deformed SU(3) dynamical

symmetry.

3. For A2
3 [ 4A2jA4j; A3 [ 0, phase with bm [ 0, cm ¼

p=3 interpreted as oblate deformed �SUð3Þ dynamical

symmetry.

4. The dynamical symmetries O(6) and �Oð6Þ do not

represent separate phases.

For b non-zero, the first derivative of Eq. (7) must be zero

and the second derivative positive. This gives

b3ð4A4b
2 þ 3A3b cos 3cþ 2A2Þ ¼ 0

12A4b
2 þ 6A3b cos 3cþ 2A2 [ 0

ð9Þ

The solution for b 6¼ 0 are obtained if we set A3 ¼ 0 in

equation (9). Then equation (9) gives

4A4b
2 þ 2A2 ¼ 0 ð10Þ

or

b ¼ �
ffiffiffiffiffiffiffiffiffi

�A2

2A4

r

ð11Þ

This requires A4 and A2 to have opposite signs. Since A4

must be positive for bound solutions, A2 must be negative

in deformed phase.

The finite b solutions corresponds to prolate (b[ 0) and

oblate (b\0) equilibrium shapes, separated by a curve

corresponding to A3 ¼ 0. Thus, there are in total, three

phases. The spherical-deformed phase transition is gener-

ated by a change in sign of A2, while the prolate–oblate

correspond to changing the sign of A3.

For c ¼ 0 (to study the b dependence) and in the large

N-limit (i.e., N - 1 = N), yield the following coefficients

in the PESs

A2 ¼ ½�þ 4a2N�N

A3 ¼ �4

ffiffiffi

2

7

r

va2N
2

A4 ¼ �þ 2

7
v2a2N

� �

N

ð12Þ
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providing that A2 [ 0 and A3 [ 0, then the critical point is

located at A2
3 ¼ 4A2A4, which leads to

1 ¼ � a2N

�
4þ 2

7
v2

� �

ð13Þ

If we introduce the control parameter g such that

1� g
g

¼ � a2N

�
ð14Þ

Then the critical point is located at

gc ¼
4þ 2

7
v2

5þ 2
7
v2

ð15Þ

At gc the depth of the b ¼ 0 and b 6¼ 0 minima is equal.

The antispinodal point for the transition U(5)–SU(3)

appears when A2 ¼ 0, i:e:;

�a2N

�
¼ 1

4
ð16Þ

Fig. 2 Potential energy surface (PES) as a function of deformation parameters b corresponding to U(5)–O(6) transition for large N limit for three

values of control parameter k

Fig. 1 Potential energy surface (PES) as a function of deformation parameters b corresponding to U(5)–SU(3) transition for large N limit for

different values of control parameter g

J Theor Appl Phys (2015) 9:127–133 129

123



or

g ¼ 4=5 ð17Þ

For v ¼ �
ffiffiffi

7
p

=2, the critical point is located at gc ¼ 9=11

and the equilibrium value of the deformation parameter at

the critical point is b0 ¼ 1=2
ffiffiffi

2
p

. At g ¼ 1 the system is in

the symmetric phase since the PES has a unique minimum

at b ¼ 0. When g decreases, one reaches the spinodal point

at g\gc (g ¼ 0:820) where a second local minimum arises.

The two minima have the same depth at the critical point

gc ¼ 9=11 (0.818). Beyond this value for g[ gc the sym-

metric minimum at b ¼ 0 becomes a local minimum till

g ¼ 4=5 (0.800) where it becomes antispinodal point. A

sketch of this evolution is illustrated in Fig. 1.

For v ¼ 0 (A3 ¼ 0), and for large N limit the PES re-

duces to

EðN; bÞ ¼ A2b
2 þ A4b

4

ð1þ b2Þ2
ð18Þ

with

A2 ¼ ð�þ 4a2NÞN ð19Þ

A4 ¼ �N ð20Þ

At the critical point A2 ¼ 0, which leads to

Fig. 3 Potential energy curves as a function of deformation parameter b in the U(5)–SU(3) transition for the even–even Gd isotopic chain

obtained from IBM with intrinsic state formalism. The total number of bosons N = 9–15 and v ¼ �
ffiffiffi

7
p

=2

Table 1 The optimized fitted parameters for the Gd isotopic chain

Nucleus NB A2 A3 A4

150Gd 9 4.0693 -1.6933 6.1707

152Gd 10 2.4414 -2.6035 5.6722

154Gd 11 -0.9785 -3.460 4.4119

156Gd 12 -3.9732 -3.6407 3.5284

158Gd 13 -5.1200 -3.8485 3.4606

160Gd 14 -7.8990 -3.0936 2.8020

162Gd 15 -12.4621 -2.2000 1.1697

130 J Theor Appl Phys (2015) 9:127–133

123



� a2N

�
¼ 1

4
ð21Þ

or

1� g
g

¼ 1

4
ð22Þ

Then the critical point is located at gc ¼ 4=5. All the three

points, spinodal, critical and antispinodal are located at

g ¼ 4=5 and the quantum phase transition between sphe-

rical and deformed phase is of the second order. A sketch

of this case is illustrated in Fig. 2.

Application of the model to the Gd and Ru isotopic

chains

We used the v2 test to get the coefficients A1;A2 and A3 of

the PESs. The v2 function is defined in the standard way,

v2 ¼ 1

Ndata � Npar

X

Ndata

i¼1

vexpi ðIÞ � vIBMi

ri

� �

" #2

ð23Þ

where Ndata is the number of data to be fitted, Npar is

the number of parameters used in the IBM fit, vexpi is

an experimental energy level [19] or the two-neutron

Fig. 4 The same as in Fig. 3 but for U(5)–O(6) transition for the even-even Ru isotopics chain. The total number of bosons N = 4–13 and v ¼ 0
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separation energies or the BðE2Þ values and vIBMi is the

corresponding calculated IBM value and ri is the

experimental error assigned to each vexpi . To perform the fit,

we minimized v2 function for the selected energy levels

(2þ1 ; 4
þ
1 ; 6

þ
1 ; 8

þ
1 ; 0

þ
2 ; 2

þ
3 ; 4

þ
3 ; 2

þ
2 ; 3

þ
1 and 4þ2 ) using A1;A2 and

A3 as free parameters.

We apply now the formalism outlined in the previous

section to Gd and Ru isotopic chains. In case of Gadoli-

nium chain 150�162
64Gd we assumed the structure parameters

v of the quadrupole operator to be equal to �
ffiffiffi

7
p

=2, be-

cause some Gd isotopes clearly exhibit the character of the

SU(3) dynamical symmetry. Using the optimized fitted

parameters shown in Table 1, we calculated the PESs

which are illustrated in Fig. 3. The phase diagram exhibits

first-order shape phase transition from spherical U(5) to

deformed axial symmetric prolate SU(3) when moving

from light isotopes to heavy ones. The 150Gd nucleus still

shows a vibrational structure while 156�162Gd are consid-

ered as rather good SU(3) examples.

As an example of isotopic chain in which the structure

changes from spherical U(5) to c-unstable O(6) symmetry,

we have studied the Ruthenium chain 96�114
44Ru. The cor-

responding PESs are plotted in Fig. 4 using the coefficients

in Table 2. We considered v ¼ 0 and performed the same

process of fitting as applied in Gd chain. The lighter iso-

topes exhibit a vibrational structure, while the heavier ones

present a c-unstable behavior with the critical point located

of 104Ru isotope.

Conclusion

In the present work, we have analyzed the shape phase

transitions in the framework of a two-parameter simplified

truncated sd-IBM1 as a very tractable model for theoretical

studies. We used the boson intrinsic coherent state for-

malism which provides a connection between the IBM and

the geometric collective model (GCM) to calculate the

PESs. We have analyzed the critical points of the shape

phase transitional regions U(5)–SU(3) and U(5)–O(6) in

the space of the model parameters. We have investigated

the first-order quantum phase transition from spherical

U(5) to deformed axial symmetric prolate SU(3) along the

chain of 150�162Gd isotopes and the second-order quantum

phase transition from spherical U(5) to c-unstable rotor

O(6) along the chain of 96�114Ru isotopes. We find that the

critical nuclei characterizing the phase transitions are 154Gd

and 104Ru. To get the optimized parameter of the PES for

each nucleus, a computer-simulated search program is

performed to obtain a minimum root mean squared (rms)

deviation between calculated and some experimentally

selected low-lying energy levels, B(E2) transition rates and

two-neutron separation energies.

Open Access This article is distributed under the terms of the

Creative Commons Attribution License which permits any use, dis-

tribution, and reproduction in any medium, provided the original

author(s) and the source are credited.
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