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Abstract The most general reaction–diffusion model on

a Bethe Lattice with nearest-neighbor interactions is

introduced, which can be solved exactly through the

empty-interval method. The stationary solutions of such

models are discussed. For some special choice of reaction

rates the dynamics of the system is also studied.
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Introduction

Reaction–diffusion systems have been studied using var-

ious methods including analytical techniques, approxima-

tion methods, and simulation. Approximation methods are

generally different in different dimensions, as for example

the mean filed techniques, working good for high dimen-

sions, generally do not give correct results for low-di-

mensional systems. A large fraction of analytical studies

belong to low-dimensional (especially one-dimensional)

systems, as solving low-dimensional systems should in

principle be easier [1–11].

The Cayley tree or Bethe lattice is a tree (a lattice

having no loops) where every site is connected to n nearest

neighbor sites. This no—loops property may allow exact

solvability for some models, for general coordination

number n Reaction diffusion models on the Cayley tree are

studied in, for example [12–17]. In [12, 13, 16] diffusion-

limited aggregations, and in [14] two-particle annihilation

reactions for immobile reactants have been studied. There

are also some exact results for deposition processes on the

Bethe lattice [17].

The empty interval method (EIM) has been used to

analyze the one dimensional of diffusion-limited coales-

cence [18–21]. Using this method, the probability that n

consecutive sites are empty has been calculated. This

method has been used to study a reaction–diffusion process

with three-site interactions [22]. EIM has been also gen-

eralized to study the Kinetics of the q-state one-dimen-

sional Potts model in the zero-temperature limit [23]. In

[18–21] one-dimensional diffusion-limited processes have

been studied using EIM. There, some of the reaction rates

have been taken infinite, and the models have been worked

out on continuum. For the cases of finite reaction—rates,

some approximate solutions have been obtained.

In [24, 25], all the one-dimensional reaction–diffusion

models with nearest neighbor interactions which can be

exactly solved by EIM have been found and studied.

Conditions have been obtained for the systems with finite

reaction rates to be solvable via EIM, and then the equa-

tions of EIM have been solved. In [25], general conditions

were obtained for a single-species reaction–diffusion sys-

tem with nearest neighbor interactions, to be solvable

through EIM. Here solvability means that evolution for En

(the probability that n consecutive sites be empty) is

closed. It turned out there, that certain relations between

the reaction rates are needed, so that system is solvable via

EIM. The evolution equation of En is a recursive equation

in terms of n, and is linear. It was shown that if certain

reactions are absent, namely reactions that produce parti-

cles in two adjacent empty sites, the coefficients of the

empty intervals in the evolution equation of the intervals

are n-independent, so that the evolution equation can be

easily solved. The criteria for solvability, and the solution
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of the empty-interval equation were generalized to cases of

multi-species systems and multi-site interactions in [26–

28].

In this article, the most general single-species reaction–

diffusion model with nearest-neighbor interactions on a

Cayley tree is investigated, which can be solved exactly

through the empty interval method. The scheme of the

paper is as follows. In Sect. 2, the most general reaction–

diffusion model with nearest neighbor interactions on a

Cayley tree is studied, which can be solved exactly through

EIM. The evolution equation of En, the probability that a

connected collection of n sites be empty is also obtained. In

Sect. 3 the stationary solutions of such models are

discussed.

The dynamics of the system for special choice of reac-

tion rates is studied in Sect. 4. Finally, Sect. 5 is devoted to

concluding remarks.

Models solvable through the empty interval method

on a Cayley tree

The Cayley tree (a lattice without loops) where every site is

connected to n sites (Figs. 1, 2). Two sites are called

neighbors if they are connected through a link. Consider a

system of particles on a Cayley tree. Each site is either

empty or occupied by one particle. The interaction (of

particles and vacancies) is nearest neighbor. The prob-

ability that a connected collection of n sites be empty is

denoted by En. It is assumed that this quantity does not

depend on the choice of the collection. An example is a tree

where the probability that a site is occupied is p and is

independent of the states of other sites. Then

En ¼ 1 � pð Þn: ð1Þ

The following graphical representations help express

various relations in a more compact form. An empty

(occupied) site is denoted by o (•). A connected collection

of n empty sites is denoted by On.

There is no loop in a Cayley tree, so each site can only

be connected to a single existing cluster site, by a single

link. An empty cluster expands or shrinks through inter-

action on its boundary. It can also be destroyed through

particle generations in the bulk. Assume that the interac-

tions are nearest neighbor (two-site) of the following kinds,

with the rates indicated.

� � ! ��; r1

��; r2

� �
; �� ! ��; r2

��; r1

� �
; ��

! ��; r3

��; r3

� �
; ð2Þ

And

�� !
��; r

��; r0

��; r0

8<
:

9=
;: ð3Þ

The closeness of the evolution equation for En requires

that the rate of change of anything to ��ð Þ becomes zero.

The probability of finding an empty cluster connected to an

occupied site P (• - On) can be written in terms of En and

En?1:

P � � Onð Þ þ P � � Onð Þ ¼ P Onð Þ ) P � � Onð Þ
¼ En � Enþ1: ð4Þ

To study the evolution of En, one considers states which

can transform to On (the sources) and states On can trans-

form to them (the sinks). These are the followings.

Sources: � � � �On�1; � � � � On�1;

Sinks: � �On; � � On;On:
ð5Þ

Using these, the time evolution equation for E1 (n[ 1)

is seen to beFig. 1 The Cayley tree (Bethe lattice) with n = 3

Fig. 2 An empty cluster with the links at the boundary, on a Cayley

tree with n = 3
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dEn

dt
¼ Rn½r2P � � � � On�1ð Þ þ r3P � � � � On�1ð Þ�

� Rn r1 þ r2ð ÞP � � Onð Þ � Rn r þ r0ð ÞP � � Onð Þ
� n� 1ð Þ r þ 2r0ð ÞP Onð Þ; ð6Þ

where Rn is the number of sites adjacent to a collection of n

connected sites. A simple induction in [29] shows that

Rn ¼ n n� 2ð Þ þ 2: ð7Þ

Using [4] and

P � � � � On�1ð Þ þ P � � � � On�1ð Þ ¼ P � � On�1ð Þ;
ð8Þ

equation [6] recasts to

dEn

dt
¼ Rn½r2 En�1 � Enð Þ þ r3 � r2ð ÞP � � � � On�1ð Þ

� r1 þ r2ð Þ En � Enþ1ð Þ � r þ r0ð ÞEnþ1�
� n� 1ð Þ r þ 2r0ð ÞEn; n[ 1: ð9Þ

In order that the evolution for En be closed, it is needed

that

r3 ¼ r2: ð10Þ

It is also seen that the evolution for E1 takes a form

similar to that of En (n[ 1), provided one defines

E0 ¼ 1: ð11Þ

Then we have

dEn

dt
¼ Rn½r2 En�1 � Enð Þ � r1 þ r2ð Þ En � Enþ1ð Þ

� r þ r0ð ÞEnþ1� � n� 1ð Þ r þ 2r0ð ÞEn n� 1:

ð12Þ

along with the boundary condition [11].

The stationary solution

The stationary solution of the system (Es, for which the

time derivative vanishes), satisfies

0 ¼ Rnr2E
s
n�1 � ½Rn r1 þ 2r2ð Þ þ n� 1ð Þ r þ 2r0ð Þ�Es

n

þ Rn r1 þ r2 � r � r0ð ÞEs
nþ1; n� 1; ð13Þ

with the boundary condition

Es
0 ¼ 1: ð14Þ

Consider two cases separately.

r ¼ r0 ¼ 0

One has

r2E
s
n�1 � r1 þ 2r2ð ÞEs

n þ r1 þ r2ð ÞEs
nþ1 ¼ 0: ð15Þ

This is a second order linear difference equation with

constant coefficients. To solve this, one puts the ansatz

Es
n ¼ C1z

n
1 þ C2z

n
2; ð16Þ

In [15], and obtains

Es
n ¼ C1 þ C2

r2

r1 þ r2

� �n

: ð17Þ

The constants C1 and C2 depend on the initial condi-

tions. So the stationary solution is not unique. Note that the

result is independent of coordination number n. So the

stationary behavior of the system, reaction diffusion model

on a Cayley tree with arbitrary coordination number n, is

similar to that of a reaction diffusion model on a one-

dimensional lattice (n = 2), provided of course that there is

no process which creates particles from two neighboring

vacant sites. Using [17] for n = 0, and n = 1, together

with the boundary condition [14], the constants C1 and C2

can be expressed in term of Es
1

r 6¼ 0 or r0 6¼ 0

It is a difficult task to obtain a closed form for Es
n. Things

become, however, simpler for large n’s. One puts the

ansatz

Es
n ¼ Cnz

n; ð18Þ

In [13], assuming that Cn is slowly varying with respect

to n. Keeping only the largest powers in n, one arrives at

f zð Þ ¼ 0: ð19Þ

where f is defined through

f zð Þ : ¼ n� 2ð Þ r1 þ r2 � r � r0ð Þz2

� n� 2ð Þ r1 þ 2r2ð Þ þ r þ 2r0ð Þ½ �zþ n� 2ð Þr2:

ð20Þ

There are two solutions for z, each giving rise to a sta-

tionary solution. The general stationary solution would be

linear combination of these. A stationary solution however,

is acceptable only if it is nonnegative and nonincreasing for

all n’s. Such a solution should not blow up at

n ? ?, which shows that for acceptable solutions

zj j � 1: ð21Þ

Using

f 0ð Þ ¼ n� 2ð Þr2 [ 0;

f 1ð Þ ¼ � n� 2ð Þ r þ r0ð Þ � r þ 2r0ð Þ\0;
ð22Þ

It is seen that one of the roots of [20] (let’s call it z1)

satisfies

0\z1\1: ð23Þ
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For the other root, two cases occur:

(i) r1 ? r2[ r ? r0.

Here f (?)[ 0, and z2 [ 1: Hence this root gives

rise to r0 an unphysical solution. So the stationary

solution is unique.

(ii) r1 þ r2\r þ r0:

Here f (?)\ 0, and z2\0. Using

z1 þ z2 ¼ n� 2ð Þ r1 þ 2r2ð Þ þ r þ 2r0

r1 þ r2 � r � r0

\0; ð24Þ

One arrives at

z1j j\ z2j j: ð25Þ

This shows that in any combination C1nz
n
1 þ C2nz

n
2, with

C1n and slowly varying, for large n;s the second term is the

dominant term unless it is identical to zero. But the sign of

this term changes with n for large n. So the sign of the

whole combination changes with n for large n;s unless the

second term vanishes identically. Hence any combination

of stationary solutions with a nonzero contribution corre-

sponding to z2 is unphysical. The stationary solution is

again unique. Note that if one considers the evolution

equation [12] on its own, without taking into account the

fact that Ens are not totally independent of each other and

cannot be negative, then there would be two stationary

solutions. What eliminates one of these is that only special

initial values are possible for En’s, so that in the large time

limit only one of the stationary solutions survives.

To summarize, if r or r
0

are nonvanishing, the stationary

solution is unique, so the solution for large times is inde-

pendent of the initial conditions.

There are two special subcases where [13] is simplified.

In these cases [13], it is reduced to a first order difference

equation.

r2 ¼ 0

Here

Es
n ¼ dn0 ð26Þ

is a solution to [13] and [14], and as the stationary solution

is unique, this is the stationary solution.

r1 þ r2 ¼ rþ r0

In this case [13] becomes a first order recursive equation

for Es
n0 from which on obtains

Es
n ¼

nQ
j ¼ 1

n� 2ð Þr2jþ 2r2

n� 2ð Þ r1 þ 2r2ð Þ þ r þ 2r0ð Þ½ �jþ 2r2 þ r

ð27Þ

Dynamical solutions

It is a difficult task to obtain the dynamical solution in

general. One may seek solutions with exponential time

dependence:

Ee
n tð Þ ¼ Ee

n exp etð Þ ð28Þ

Putting this in [12], one arrives at

0 ¼ Rnr2E
e
n�1 � ½Rn r1 þ 2r2ð Þ þ n� 1ð Þ r þ 2r0ð Þ þ e�Ee

n

þ Rn r1 þ r2 � r � r0ð ÞEe
nþ1; n� 1:

ð29Þ

The boundary condition corresponding to [11] is

Ee
0 ¼ 0: ð30Þ

In general, it is difficult to solve these for large n,

however, one can use arguments similar to those used in

the previous section. Using an ansatz similar to [19], it is

seen that e does not change the equation governing z. Again

the root z2 (which is either greater than one or negative)

give rise to unphysical solutions. The reason is that

although the dynamical solution [29] need not be non-

negative and decreasing in n by itself, the sum of such a

solution and the stationary solution can be a complete

physical solution to [11] and [12] and hence should satisfy

these conditions. For sufficiently large n, a contribution

coming from z2 would be dominant and either blows up or

becomes negative. So the whole solution either blows up or

becomes negative, unless there is no contribution corre-

sponding to z2 in the dynamical solutions. This leaves only

one physical solution for (30). Such a solution does not

necessarily satisfy (31). The condition (30) may be satisfied

only for special values of e. Hence the spectrum of the

evolution operator is discrete, in other words the system

has a finite relaxation time.

For two special choices of parameters, however, one can

go further. These are the cases discussed in the previous

section when the evolution equation becomes first order

in n.

r2 = 0

Here the reactants are immobile, and the coagulation rate is

also zero. But there are nonzero rates for birth and deco-

agulation. So, one expects at large times all the sites to be

occupied, and in the stationary states all the E0
ns are zero as

it was shown to be the case in the previous section. The

evolution equation can be solved exactly for a special

choice of initial condition, Eq. (12) recasts to

dEn

dt
¼ �ðRnr1 þ n� 1ð Þ r þ 2r0ð Þ�En

þ Rn r1 � r � r0ð ÞEn þ 1; n� 1:
ð31Þ
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Putting the ansatz

En tð Þ ¼ E1 tð Þ½b tð Þ�n�1; ð32Þ

In (32), one arrives at

db

dt
¼ � n� 2ð Þ þ r þ 2r0½ �bþ n� 2ð Þ r1 � r � r0ð Þb2;

dE1

dt
¼ n �r1 þ r1 � r � r0ð Þb½ �E1:

ð33Þ

These are readily solved and one obtains.

b tð Þ ¼ b 0ð Þ exp �btð Þ
1 þ ab 0ð Þ½1 � exp �btð Þ�;

E1 tð Þ ¼ E1 0ð Þ exp �nr1tð Þ 1

1 þ ab 0ð Þ½1 � exp �btð Þ�

� � n
n�2

;

ð34Þ

where

a :¼ n� 2ð Þ r þ r0 � r1ð Þ
n� 2ð Þr1 þ r þ 2r0

b :¼ n� 2ð Þr1 þ r þ 2r0:

ð35Þ

Using these, one obtains

En tð Þ ¼ En 0ð Þ exp �nr1t � B n� 1ð Þt½ �

	 1

1 þ ab 0ð Þ½1 � exp �btð Þ

� � n
n�2

þn�1

ð36Þ

It is seen that for times, all Ens tend to zero. In fact they

decay like

En tð Þ
 exp �nr1t � b n� 1ð Þt½ �: ð37Þ

A special case where the ansatz (33) works is the case of

initially uncorrelated sites, so that each site is occupied

with probability q regardless of other sites.

One has then

En 0ð Þ ¼ ð1 � qÞ^n; ð38Þ

So that

E1 0ð Þ ¼ 1 � q;

b 0ð Þ ¼ 1 � q:
ð39Þ

r1 þ r2 ¼ rþ r0

In this case (12) becomes

dEn

dt
¼ Rnr2En�1 � Rn r1 þ 2r2ð Þ½

� n� 1ð Þ r þ 2r0ð Þ�En; n� 1 ð40Þ:

This set of equations, together with the boundary con-

dition [11], can be solved iteratively. The equation for E1(t)

becomes

dE1

dt
¼ nr2 � n r1 þ 2r2ð ÞE1; ð41Þ

the solution to which is

E1 tð Þ ¼ r2

r1 þ 2r2

þ E1 0ð Þ � r2

r1 þ 2r2

� �
exp �n r1 þ 2r2ð Þt½ �:

ð42Þ

So, at large times each site is occupied whit the

probability

1 � En 1ð Þ ¼ r1 þ r2

r1 þ 2r2

ð43Þ

and the average density relaxes to this value with the

relaxation time

r ¼ 1

n r1 þ 2r2ð Þ ð44Þ

Concluding remarks

The most general one-dimensional single-species exclusion

model on a Cayley tree was considered, for which the evo-

lution of the empty—intervals is closed. The stationary so-

lutions of such models were discussed. It was shown that

except for special values of rates, the stationary solutions are

unique, hence independent of initial conditions. The dy-

namics of such systems were also studied and it was shown

that generally the spectrum is discrete and depends on n. For

special choices of reaction rates, the dynamics was studied in

more detail and closed form for the empty interval prob-

abilities were obtained. Among the questions remaining one

can mention the statics and dynamics of systems with arbi-

trary rates, as well as the possible existence of phase tran-

sitions. One can also investigate Cayley trees with

boundaries, with injection and extraction at the boundaries.

Open Access This article is distributed under the terms of the

Creative Commons Attribution License which permits any use, dis-

tribution, and reproduction in any medium, provided the original

author(s) and the source are credited.
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stochastic systems. J. Phys. A28, 6335 (1995)

7. Henkel, M., Orlandini, E., Santos, J.: Reaction-diffusion pro-

cesses from equivalent integrable quantum chains. Ann. Phys.

259, 163 (1997)

8. Lushnikov, A.A.: Binary reaction 1?1?0 in one dimension. Sov.

Phys. JETP 64, 811 (1986). [Zh. Eksp.Teor.Fiz.91(1986)1376]

9. Alimohammadi, M., Karimipour, V., Khorrami, M.: Exact solu-

tion of a one-parameter family of asymmetric exclusion pro-

cesses. Phys. Rev. E57, 6370 (1998)

10. Alimohammadi, M., Karimipour, V., Khorrami, M.: A two-

parametric family of asymmetric exclusion processes and its

exact solution. J. Stat. Phys. 97, 373 (1999)

11. Aghamohammadi, A., Khorrami, M.: Similarity transformation in

one-dimensional reaction-diffusion systems: the voting model as

an example. Phys. A33, 7843 (2000)

12. Vannimenus, J., Nickel, B., Hakim, V.: Models of cluster growth

on the Cayley tree. Phys. Rev. B30, 391 (1984)

13. Krug, J.: Surface structure of random aggregates on the Cayley

tree. J. Phys. A21, 4637 (1988)

14. Majumdar, S.N., Privman, V.: Annihilation of immobile reactions

in the Bethe lattice. J. Phys. A26, L743 (1993)

15. Kelbert, M.Y., Suhov, Y.M.: The Markov branching random

walk and systems of reaction-diffusion (Kolmogorov–Petrovskiı̌–

Piskunov) equations. Commun. Math. Phys. 167, 607 (1995)

16. Majumdar, S.N.: Traveling front solutions to directed diffusion

limited aggregation, digital search trees and the Lempel–Ziv data

compression algorithm. Phys. Rev. E68, 026103 (2003)

17. Cadilhe, A., Privman, V.: Random sequential adsorption of

mixtures of dimers and monomers on a pre-treated Bethe lattice.

Modern Phys. Lett. B18, 207 (2004)

18. Burschka, M.A., Doering, C.R., Ben-Avraham, D.: Transition in

the relaxation dynamics of a reversible diffusion-limited reaction.

Phys. Rev. Lett. 63, 700 (1989)

19. Ben-Avraham, D.: The method of interparticle distribution

functions for diffusion-reaction systems in one dimension. Phys.

Lett. B9, 895 (1995)

20. Ben-Avraham, D.: Nonequilibrium statistical mechanics in one

dimension. In: Privman, V. (ed), pp. 29–50. Cambridge Univer-

sity Press (1997)

21. Ben-Avraham, D.: Complete exact solution of diffusion-limited

coalescence, A ? A ? A. Phys. Rev. Lett. 81, 4756 (1998)

22. Henkel, M., Hinrichsen, H.: Exact solution of a reaction-diffusion

process with three-site interactions. J. Phys. A34, 1561–1568

(2001)

23. Mobilia, M., Bares, P.A.: Generalized empty-interval method

applied to a class of one-dimensional stochastic models. Phys.

Rev. E64, 066123 (2001)

24. Aghamohammadi, A., Khorrami, M.: Models solvable through

the empty-interval method. Eur. Phys. J. B47, 583586 (2005)

25. Alimohammadi, M., Khorrami, M., Aghamohammadi: Exactly

solvable models through the empty-interval method. Phys. Rev.

E64, 056116 (2001)

26. Khorrami, M., Aghamohammadi, A., Alimohammadi, M.: Ex-

actly solvable models through the empty interval method, for

more-than-two-site interactions. J. Phys. A36, 345 (2003)

27. Aghamohammadi, A., Alimohammadi, M., Khorrami, M.: Ex-

actly solvable models through the generalized empty interval

method, for multi-species interactions. Eur. Phys. J. B31, 371

(2003)

28. Aghamohammadi, A., Khorrami, M.: Exactly solvable modeles

through the generalized empty interval method: multi species and

more-than-two-site interactions. Int. J. Modern Phys. B18, 2047

(2004)

29. Rozikov, U.A.: A contour method on Cayley trees. J. Stat. Phys.

130, 801–813 (2008)

98 J Theor Appl Phys (2015) 9:93–98

123


	Exactly solvable reaction diffusion models on a Bethe Lattice through the empty-interval method
	Abstract
	Introduction
	Models solvable through the empty interval method on a Cayley tree
	The stationary solution
	 {\varvec r} = {\varvec r}_{0} = 0 
	 {\varvec r} \ne 0 {\hbox{ or}}\; {{\varvec r}}_{0} \ne 0 
	 {\varvec r}_{2} = 0 
	 {\varvec r}_{1} + {\varvec r}_{2} = {\varvec r} + {\varvec r}_{0} 


	Dynamical solutions
	r2 = 0
	 {\varvec r}_{1} + {\varvec r}_{2} = {\varvec r} + {\varvec r}_{0} 

	Concluding remarks
	Open Access
	References




