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Abstract
In order to study the ion temperature effect on the space-charge structure and the plasma variables on the wall, the ion ther-
mal force has been added to the ion motion equation in the plasma fluidal model. In the eigenvalue problem of plasma, the 
plasma equations are numerically solved in a whole area from the plasma center to the wall and it is displayed that the ion 
temperature has significant effects on the plasma structure and floating variables. However, the fluidal theory of plasmas 
introduces a singular point among the space charge of plasma boundary layer if the static pressure and the inertial mass of 
the thermal ions are taken into account at the same time. Finding a full numerical solution for the thermal plasma equations 
needs to cross the singular point. The singular point and how crossing the point will be depicted too.

Keywords Isothermal drag · Ion temperature · Full solution · Singularity point

Introduction

The subject of plasma boundary layer is nearly as old as the 
subject of plasma body and is very important in many fields 
of plasma physics and plasma technology including fusion 
researches, plasma diagnostics and material plasma process-
ing [1–4]. For example, in plasma immersion ion implanta-
tion (PIII) that is an effective technique for semiconductor 
fabrication and material processing, knowing the structure 
of plasma boundary layer plays the main role [5–7].

The mathematical examination of plasmas near walls 
and electrodes has attracted considerable interest and has 
been turned to the main issue of many explorations [8–19]. 
Among the several parameters that their effects have been 
studied on the plasma variables and structure, the ion tem-
perature effects in thermal plasmas are significant and have 
been examined by many authors [20–35].

It is apparent that the plasma fluid equations introduce 
singularities among the quasi-neutral plasma core if the 

static pressure and the inertial mass of the thermal ions are 
taken into account at the same time [20, 21, 36]. Since the 
quasi-neutral one-fluid equations represent an acceptable 
smooth solution without any singularity, it follows that the 
singularity represented in the two-fluid equations of thermal 
plasmas should be obliterable [20, 36–38].

Friedman and Levi [36] have solved the two-fluid equa-
tions of thermal plasmas using a so-called neutral approach. 
Using a perturbation method, Franklin [20] has analyzed the 
same equations, and he got the ratio �i∕�e as the perturba-
tion parameter with �i and �e as the ion and electron absolute 
temperature, respectively. Valentini [21] has tried to remove 
the irregularities at the singular point and its near proxim-
ity, and has represented a systematic method to prevail the 
singularity problems via numerical calculations.

In the present paper, using the boundary conditions at 
the plasma center and on the wall, the two-fluid equations 
are solved throughout the whole plasma for some values of 
the ion temperature in order to obtain a precise description 
of the plasma boundary layer structure. In order to find a 
smooth solution, using an approximation method, the main 
equations are analyzed in an velocity interval around the 
singular point. The effects of ion temperature and ion gen-
eration rate are investigated on the boundary layer structure 
and its floating variables.

In “Model and equations” section of this inquiry, warm 
plasmas incorporating the ion isothermal drag are for-
mulized. The asymptotic limits of plasma including the 
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plasma asymptotic and sheath asymptotic limits are intro-
duced and are analytically solved in the plasma and sheath 
scales, respectively, in “Asymptotic and full solutions” sec-
tion. Also the plasma full equations in the plasma scale, 
including the smallness parameter � and their numerical 
solutions will be presented in this section. The summary 
and results section summarizes paper derivations.

Model and equations

A thermal plasma confined between two metal plane walls 
located at z = ±L is considered to investigate the thermal 
behavior of plasma variables. Whereas the electrodes are flat 
and there are no sidewalls, a one-dimensional study is con-
sidered. Indeed, the plasma vessel is unlimited laterally and 
a longitudinal plasma is formed just between the electrodes, 
so the plasma is wasted at the both ends on the electrodes 
and there is not any lateral instability for plasma. The warm 
ions are modeled using the fluidal approximation of plasma. 
Since they are in thermal equilibrium, the electrons are 
described using the Boltzmann’s relation. Also the plasma 
is symmetrical around the central plane z = 0 ; therefore, it 
is studied in the half-space 0 ≤ z ≤ L . Then, the two-fluid 
model of plasma is represented by [16, 21, 30, 32, 34, 36];

These equations are the ion continuity and ion momentum 
conservation equations [Eqs. (1) and (2), respectively], the 
Boltzmann relation for the electron density [Eq. (3)], and the 
Poisson’s equation [Eq. (4)] in which ni and mi are the ion 
number density and ion mass, respectively, Pi is the static 
pressure of ions, Ez = −d�∕dz is the z-component of electric 
field, � is the electric potential and vz is the z-component 
of ion velocity. Also, ne is the electron number density, 
no = neo = nio is the plasma density (ion or electron density) 
at the plasma center, kB is the Boltzmann constant, � is the 
ionization rate and �o stands for the vacuum permittivity.

B e s i d e s ,  t h e  t h e r m a l  d r a g  o f  i o n s  i s 
dPi∕dz = �kB�i(ni∕no)

(�−1)(dni∕dz) in which � is the ion poly-
trophic coefficient. In the case of ion isothermal flow ( � = 1 ), 

(1)
d(nivz)

dz
= �ne,

(2)mi

d(niv
2
z
)

dz
= eniEz −

dPi

dz
,

(3)ne = no exp

(

e�

kB�e

)

,

(4)
d2�

dz2
= −

e

�o

(

ni − ne
)

.

the ion thermal drag is simplified to dPi∕dz = kB�i(dni∕dz) 
[21, 28, 30, 32].

It is efficient to represent some normalized variables 
and parameters as; Z = (�∕cs)z , T = �i∕�e , � = (�∕cs)�D , 
� = (ecs∕kB�e�)Ez , � = −(e∕kB�e)� , V = vz∕cs , I = ni∕no 
and E = ne∕no in which � = d�∕dZ  stands for the nor-
malized electric field, kB�e is the electron thermal energy, 
cs =

√

kB�e∕mi  introduces the ion sound velocity and 
�D =

√

�okB�e∕noe
2 defines the Debye length at the plasma 

center. Therefore, Eqs. (1), (2) and (4) will be turned to;

along with E = exp(−�) for the normalized electron den-
sity. These equations must be integrated for proper boundary 
conditions at the plasma center and on the wall for some dif-
ferent values of the both parameters T and � . By integrating 
from the plasma center ( Z = 0 ) to the position Z = Zf where 
the floating boundary condition � = �f is satisfied, one can 
simply solve the eigenvalue problem ( Zf and �f are called the 
floating width and floating potential, respectively).

In the special case � → 0 the Poisson’s equation (7) gives 
rise to I = E = exp(−�) which is named the quasi-neutrality 
with no space charge. In other words, a neutral plasma and 
a very thin sheath with positive space charge are formed in 
front of the electrodes. In order to form a thick sheath layer 
attached to each electrode in which the Poisson’s equation 
plays a critical role, it is essential to exchange the space 
coordinate Z to � = (Z − Zf)∕� with � as the new high reso-
lution coordinate and Zf as the origin of the new coordi-
nate. In the new coordinate space, set Eqs. (5)–(7) will be 
exchanged to

where E = exp(−�) . There are apparent differences between 
set Eqs. (5)–(7) and (8)–(10) in the special case � → 0 ; how-
ever, there is not any difference between them in the case 
𝛼 > 0 except for the space coordinate.

(5)
d(IV)

dZ
= E,

(6)V
dV

dZ
= � −

EV

I
−

T

I

dI

dZ
,

(7)�2 d
2�

dZ2
= I − E,

(8)
d(IV)

d�
= �E,

(9)V
dV

d�
= � − �

EV

I
−

T

I

dI

d�
,

(10)
d2�

d�2
= I − E,
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Asymptotic and full solutions

Applying the limit condition � = 0 in the set Eqs. (5)–(7) or 
(8)–(10) creates the asymptotic equations. In this case, the 
plasma asymptotic equations created from Eqs. (5)–(7) are

that can be combined and simplified to

Subscription "o", representing the outer asymptotic 
solution, has been added to the variables V, I and � . These 
equations are just held in the quasi-neutral plasma and their 
analytical solutions are

These funct ions  are  authent ic  in  the  in ter-
val 0 ≤ Vo ≤

√

1 + T  . A singular point, located in 
Vs =

√

1 + T = VB , is introduced by Eqs. (14) and (15) and 
is called the general Bohm criterion. The singular point 
Vs represents the sheath edge where the breakdown of the 
plasma quasi-neutrality is commenced. Using the general 
Bohm criterion in Eqs. (16)–(18), the other variables at the 
sheath edge �s = ln 2 = 0.6931 , Zs =

√

1 + T(�∕2 − 1) and 
Is = exp(−�s) = 1∕2 are attained in which the subscription 
"s" refers to the sheath edge. One can easily find the well-
known amounts Vs = 1 and Zs = �∕2 − 1 = 0.5708 in the 
cold plasmas [18].

On the other hand, applying the condition � = 0 in the 
set Eqs. (8)–(10) generates the sheath asymptotic equations

(11)
d(IoVo)

dZ
= Eo,

(12)V0

dVo

dZ
=

d�o

dZ
− Vo −

T

Io

dIo

dZ
,

(13)Io = Eo = exp(−�o),

(14)
d�o

dZ
=

2Vo

1 + T − V2
o

,

(15)
dVo

dZ
=

1 + T + V2
o

1 + T − V2
o

.

(16)�o = ln

(

1 +
V2
o

1 + T

)

,

(17)Zo = 2
√

1 + T arctan

�

Vo
√

1 + T

�

− Vo,

(18)Io = Eo = exp(−�o) =
1 + T

1 + T + V2
o

,

The additional subscription "i" has been added to the 
variables V, I, � and � to introduce the inner asymptotic 
solution. These equations are just held in the positive space-
charge sheath. These equations are not included the ioniza-
tion term any more. Using Eqs. (19) and (22) in Eq. (20) and 
integrating of the obtained equation from the sheath edge to 
a general point in the sheath region results to;

for the ion velocity and ion density as functions of the elec-
tric potential �i . These equations are lessened to the specified 
relations;

in a nonthermal plasma [16].
Following some separate discussions on the both plasma 

asymptotic limit (introduced by the quasi-neutrality condi-
tion) and sheath asymptotic limit (with no ionization), it is 
the time to study the behavior of the whole plasma in the 
body and near the wall simultaneously. It means that the 
plasma Eqs. (5)–(7) should be solved for some small finite 
amounts of � . It is easy to verify that set Eqs. (5)–(7) give 
rise to the first-order differential equations

(19)
d(IiVi)

d�
= 0,

(20)Vi

dVi

d�
= �i −

T

Ii

dIi

d�
,

(21)
d�i

d�
= Ii − Ei,

(22)
d�i

d�
= �i.

(23)
(
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−
2T

V2
s

ln

(

Vi
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)

= 2
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V2
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+ 1,
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(
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)2

−
2T
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ln

(
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)

= 2
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2
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,
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2
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,

(27)
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=

1
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E
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E
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,
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Numerical solution of these equations, from the plasma 
center to the wall, is the main goal of the rest of this paper. 
The required boundary conditions at the plasma center are 
computed using power series expansions for the variables I, V 
and � at that point. Evidently, the plasma variables I and � are 
even functions of the space coordinate Z, whereas ion velocity 
V is an odd function. Therefore, they might be introduced by

and consequently

in which there are six unknown coefficients i1 , i2 , f1 , f2 , v1 
and v2 that must be determined. Applying these approximate 
relations in Eqs. (27)–(30) and comparing the coefficients 
of the two lowest order in Z in the both sides of the acquired 
relations result in,

and

Starting with i1 = 1 as the initial amount and utilizing 
relation (31) iteratively, one can find the principle factor 
i1 ; the other coefficients are determined using i1.

By finding the boundary conditions in a near vicinity of 
the plasma center, say Z = 0.01 , one can proceed to solve 

(28)dI

dZ
=

2VE − I�

V2 − T
,

(29)
d�

dZ
=

I − E

�2
,

(30)
d�

dZ
= � .

I ≈ i1 + i2Z
2,

� ≈ (f1 + f2Z
2)Z2,

V ≈ (v1 + v2Z
2)Z,

� =
d�

dZ
≈ (2f1 + 4f2Z

2)Z,

E = exp(−�) ≈ 1 − f1Z
2 +

(

f 2
1

2
− f2

)

Z4,

(31)i1 = 1 +
2(i3

1
+ 12�2)�2

[4i3
1
+ (T − 3)i2

1
+ 2(4T + 3)�2]i2

1

,

i2 =
f1i1 − v1

T
, v1 =

1

i1
, f1 =

i1 − 1

2�2
,

f2 =
i2 + f1

12�2
, v2 = −

f1 + 3i2v1

3i1
.

Eqs. (27)–(30). But, it is apparent that there is a singularity 
in these equations. It is essential to transmit the singular-
ity point smoothly when solving the equations. To cross 
this singular point correctly and smoothly, an approximate 
technique are utilized. In this method, a velocity interval is 
symmetrically chosen around the singular point V =

√

T  in 
which the both following equations are worked out instead 
of Eqs. (27) and (28)

Equations (32) and (33) are the direct consequences of 
Eqs. (5) and (6). In this method, the gradient of the ion 
density I and the ion velocity V have been specified just 
before the interval; therefore, they can be used in Eqs. 
(32) and (33) to find I and V and their gradients in the next 
step and this sequences stay on to the end of the interval. 
Again, we will come back to the singular Eqs. (27) and 
(28) at the end of the interval. It is important to mention 
that there is no need to replace Eqs. (29) and (30) since 
they are not singular.

In order to find the full solution of Eqs. (27)–(30), it is 
essential to end the computations at a suitable location. 
Floating point, in which the ion directional current is equal 
to the electron random current, is selected as the right loca-
tion. The floating point is specified by; nifvzf = nefce∕4 in 
which nif is the ion density, vzf is the ion velocity and nef is 
the electron density at that point, and ce =

√

8kBT∕�me is 
the electron thermal velocity [16]. The recent floating rela-
tion can be rewrite in the normalized form as follows

leading to

in which, � =
√

mi∕2�me . We have done the computations 
with � = 108.0832 calculated for the electropositive gas 
Argon. Relation (34) is known as the floating condition and 
�f is called the floating potential.

As noted at the outset, in the plasma asymptotic limit 
(with � = 0 ), the sheath region is infinitely thin. Then, in 
the full solution approach and for � = 0 , all of the variables 
behave such as the step function. Therefore, in this limit-
ing case, using the sheath width Zs =

√

1 + T(�∕2 − 1) as 
the floating width Zf is reasonable [16]. Moreover, relation 
(24) results in

(32)
dV

dZ
=

�

V
−

E

I
−

T

VI

dI

dZ
,

(33)
dI

dZ
=

E

V
−

I

V

dV

dZ
.

IfVf = Ef

√

mi

2�me

=

√

mi

2�me

exp(−�f),

(34)�f = ln

(

�

IfVf

)

,
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By using relation (35), one can determine the 
floating ion density If by iteration and starting with 
If = Is[1 + 2(�f − �s)∕V

2
s
]−1∕2 as the initial value. Finally, 

using the relation VfIf = VsIs it is easy to find the floating 
ion velocity Vf.

The spatial variations of the plasma variables in the full 
solution approach are shown in Fig. 1. It is clear from this fig-
ure that the spatial distribution of the ion density I is broken 
at the beginning of the ion velocity interval selected symmet-
rically around the singular point V =

√

T ; similarly, the spa-
tial distribution of the ion velocity V suffers a small rippling 
at that point. At the end point of the interval, however, the 
both distributions display complete smoothness. Also there 
is not any unevenness or breaking at the spatial distributions 
of the both electric potential � and electron density E.

Figures 2, 3, 4, 5, 6, 7 and 8 exhibit some of the plasma 
variables including; the floating ion density If , floating 
electron density Ef , central ion density Ic , floating electric 
potential �f , spatial distribution of electric potential � , float-
ing ion velocity Vf and floating width Xf (extended from the 
plasma center to the floating point) as functions of the ion 
temperature T and smallness parameter � , respectively. The 
equations have been solved for � = 0 to 0.2 and T = 0 to 1..

(35)If = Is

[

1 + 2
�f − �s

V2
s

+
2T

V2
s

ln

(

Is

If

)]−1∕2

.

According to Figs. 2 and 3, floating ion and electron 
densities are increasing functions of the both ion tempera-
ture and smallness parameter. Since smallness parameter 
� is the only factor for plasma generation in the boundary 
layer, so it is reasonable that the plasma density become 
an increasing function of this parameter throughout the 
boundary layer [21].

On the other hand, Fig. 4 shows that the ion density at the 
plasma center decreases by rising the ion temperature, while 

Fig. 1  The spatial distributions of ion density I, electron density E, 
ion velocity V and electric potential � as functions of the space coor-
dinate Z for T = 0.5 and � = 0.1 . The quantities on the V axis are the 
singular point V =

√

T ≈ 0.71 and the symmetrical interval around it 
(and their corresponding locations on the Z-axis)

Fig. 2  Floating ion density I
f
 as a function of the ion temperature T 

and smallness parameter �

Fig. 3  Floating electron density E
f
 as a function of the ion tempera-

ture T and smallness parameter �
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Fig. 2 displays that the ion temperature raises the floating 
ion density. It means that the ion temperature expands the 
plasma and extends it from the center to the outside of the 
plasma. Moreover, these figures show that smallness param-
eter � intensifies the ion temperature effect [21].

Figure 5 exhibits the spatial distribution of electric poten-
tial � from the plasma center to the floating point for � = 0.1 
and some values of ion temperature. It is apparent that the 
ion temperature decreases the electric potential distribution 
throughout the boundary layer. Also Fig. 6 shows that the 

floating electric potential �f is a descending function of the 
both ion temperature and smallness parameter. It means that 
the more plasma heating and the more plasma generating, the 
less floating potential.

Figure  7 displays the dependency of the floating ion 
velocity Vf to the ion temperature T and smallness param-
eter � . According to this figure, ion temperature increases 
and smallness parameter decreases the ion velocity and ion 
kinetic energy on the floating wall. Indeed, growing the ion 

Fig. 4  The ion density at the plasma center Ic as a function of the ion 
temperature T and smallness parameter �

Fig. 5  Spatial distribution of electric potential � for � = 0.1 and some 
different values of ion temperature T 

Fig. 6  Floating electric potential �
f
 as a function of the ion tempera-

ture T and smallness parameter �

Fig. 7  Floating ion velocity V
f
 as a function of the ion temperature T 

and smallness parameter �
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temperature amplifies the thermal force on the ions and accel-
erates them outward to the wall. As a result of this process, the 
ion density on the floating wall increases and causes to pull out 
more electrons from the plasma center to the wall according 
to the electrostatic absorption. Moreover, the increased elec-
tron density on the floating wall reduces the floating potential 
according to the Boltzmann relation.

Finally, it can be seen from Fig. 8 that the ion temperature T 
and smallness parameter � increase the floating width Zf . This 
is a result of growing the ion and electron density by increasing 
the ion temperature and the ion generation rate (or smallness 
parameter � ) in the boundary layer [21].

It is important to note that the width of the ion velocity 
interval adjusted symmetrically around the singular point 

√

T  
has no effect on the floating variables and the general aspects 
of the boundary layer structure. Indeed, the velocity interval 
has been specified at the least possible amount to ensure the 
least unevenness in the spatial distribution of variables.

Summary and results

A fluidal treatment has been used to investigate how the 
ion temperature and the ion production rate affect on the 
plasma boundary layer structure as well as on the floating 
variables. First, the thermal plasma equations have been 
stated in two plasma and sheath scales and in the spe-
cial case � = 0 (no ion generation in the boundary layer) 
have been analytically solved. Furthermore, in the more 
common case 𝛼 ≳ 0 the equations have been numerically 

solved from the plasma center to the wall in the plasma 
scale which is named the full solution approach.

In the full solution approach, the warm plasma equa-
tions including the smallness parameter � and ion tempera-
ture T which are singular at V =

√

T  have been analyzed 
in the plasma scale. In order to pass the singular point, an 
approximate method has been introduced. On the basis of 
this procedure, the full solution of the plasma equations 
introduces a breaking point near the singular point in the 
ion density distribution. This fracture is appeared much 
more faintly in the ion velocity distribution and is disap-
peared in the electric potential distribution.

The computations show that the ion temperature 
increases the floating width and all of the other variables 
at the floating point except the electric potential which is 
decreased by temperature. In addition, floating ion and 
electron densities and floating width are in direct relation 
with the ion generation rate (or smallness parameter) but 
the ion velocity and electric potential at the floating point 
are descending functions of this parameter.
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