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Abstract Based on the transfer-matrix method, this paper

has investigated the electrical transport properties in

monolayer and bilayer graphene superlattices modulated

by a homogeneous electric field. It is found that the angular

range of the transmission probability can be efficiently

controlled by the number of barriers. In addition, current

density has an oscillatory behavior with respect to external

field and Fermi energy. In other words, the current density

in monolayer and bilayer graphene superlattices can be

controlled by changing either the external field or the Fermi

energy. Meanwhile, in the bilayer system unlike monolayer

structure the value of current density can be zero. So, for

designing electronic devices, bilayer graphene is more

efficient.
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Introduction

Graphene is a monoatomic layer of graphite densely

packed into a two-dimensional (2D) honeycomb lattice, sp2

bonded, with two nonequivalent triangular sublattices.

Graphene sheet was first fabricated by Novoselov et al. [1–

4]. Charge carriers, i.e., electrons and holes close to the

Dirac points K and K 0, in graphene are described by the

massless Dirac equation where Fermi velocity

(vF � 106 m/s) plays the role of speed of light [2, 5]. The

Fermi velocity in graphene is almost 100 times the velocity

in normal metal and thus the coulomb interaction is surely

negligible comparing to kinetic energy in graphene [6, 7].

Due to the massless Dirac equation for charge carriers in

graphene, tunneling through a barrier in graphene is

described by Klein tunneling mechanism [8–11]. Graphene

exhibits numerous novel electronic and transport proper-

ties, for example, half-integer and unconventional quantum

hall effect [4], ultrahigh carrier mobility [3], optical effect

[12, 13], finite minimal electrical conductivity [4, 14, 15],

special Andreev reflection [16] and so on.

The charge carriers in clean bilayer graphene have

parabolic energy spectrum, which means they are massive

quasiparticle, similar to the conventional nonrelativistic

electrons. Based on the arrangement of layers, a bilayer

graphene can be categorized into two types of AA and AB.

In AA arrangement, both graphene layers are stacked

directly on top of each other which yield a metastable

configuration [11], whereas AB arrangement in which the

two layers are stacked alternatively is more stable struc-

ture. One of the most important phenomena in monolayer

graphene is the Klein tunneling (KT) that exhibits perfect

transmission through the classically forbidden region for

normal incident. It occurs due to required conservation of

pseudospin [12, 13]. KT causes the monolayer graphene

not to be so useful for the electronic devices based on the

monolayer graphene materials. The KT can be avoided if a

gap is induced in the electronic spectrum. A gap in the

spectrum of monolayer graphene can be induced by con-

trolled structural modification of the graphene channel

[14], by interaction of the sample with the substrate [15]

and by patterning it into nanoribbons [16]. Nevertheless,

these ways are expensive and it may not be possible to

scale up the processes to mass production level. On the

other hand, the absence of the KT, presence of the very
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high carrier mobility and easy to induce an energy gap in a

bilayer graphene make it to have a great potential for

application in nano-material electronic device.

In 1970, the superlattice was proposed by Esaki and Tsu

[17], which was attracted a great deal of researches over the

past decades years on the transport properties of the super-

lattice. Transport properties in several superlattices have

been studied and lots of interesting results have been

achieved [18–28]. The transport properties in graphene su-

perlattice structure were first studied in Ref. [23] the authors

found that the conductivity of the graphene superlattice

depends on the superlattice structural parameters. The con-

ductance of a disordered graphene superlattice was investi-

gated in Ref. [24], and the authors found that the

conductance vanishes when the sample size becomes very

large. In Ref. [27], the spin transport properties of magnetic

graphene superlattice in the presence of Rashba spin–orbit

interaction was studied and found that the magnetoresis-

tance ratio shows a strong dependence on the number of

magnetic barriers. In all mentioned works the transport

properties in graphene superlattice were studied in absence

of the external electric field. Therefore, it would be worth-

while to investigate the electrical transport properties in

monolayer and bilayer graphene superlattices modulated by

a homogeneous electric field. We show that angular range of

the transmission through graphene superlattice can be effi-

ciently controlled by the bias voltage and the number of

barriers. Our probes show that for bilayer system unlike

monolayer structure the value of current density can be zero.

The rest of the paper is organized as follows. Model and

theory are present in ‘‘Model and method’’ section, the

results are discussed in ‘‘Numerical result and discussion’’

section, and finally we end the paper with a brief ‘‘Sum-

mary’’ section.

Model and method

In the present study, we consider two kinds of systems,

MGS and BGS. Where MGS and BGS indicate monolayer

and bilayer graphene superlattices, respectively. Each

system includes N square barriers modulated by a homo-

geneous electric field. The schematic of the structures in

the presence of an external electric field ðE0Þ applied

between x ¼ lð1Þ and x ¼ lð2NÞ as shown in Fig. 1. The

potential profile of the systems along the growth direction

(the x-axis) has the multiple quantum well structure which

is given by:

V 0ðxÞ ¼ V0 � eE0x for barrier

�eE0x elsewhere,

�

where, V0 represents height of the potential barrier.

To neglect the strip edges, we focus on the case where

the width of the graphene strip in the y-direction is much

larger than the width of barriers, namely b.

Tunnelign in MGS

The charge carriers in graphene superlattice are described

by the Dirac equation in which Homiltonian of carriers is

written as Ĥ ¼ Ĥ0 þ V 0ðxÞ, where Ĥ0 ¼ �hvFr̂ � k~. k~ repre-

sents wave vector of quasiparticles, r̂ is 2D Pauli matrix

and vF � 106 m/s is Fermi velocity. To study the transport

problem in a monolayr graphene superlattice, we shall first

solve the Dirac equation. For this purpose, we suppose that

incident electron with energy E, propagates at angle /

along x-axis. General solution to the Hamiltonian Ĥ ¼
Ĥ0 þ V 0ðxÞ in the ith strip can be written in the following

form [22–25].

wi
1 ¼ aie

ikixx þ bie
�ikixx

� �
eikyy;

wi
2 ¼ si aie

ikixxþi/i þ bie
�ikixx�i/i

� �
eikyy:

ð2Þ

Here wi
1 and wi

2 are the components of the Dirac spinor,

ai and bi are the transmission and reflection coefficients,

respectively; kx and ky are the wave vectors along x and y-

direction, respectively can be read as follows

Kix ¼
qx ¼

E � V0 þ eE0x

�hvF

cos h; for barrier,

kx ¼
E þ eE0x

�hvF

cos u; elsewhere:

8>><
>>:

ð3Þ

Kiy ¼
qy ¼

E � V0 þ eE0x

�hvF

sin h; for barrier

ky ¼
E þ eE0x

�hvF

sin u; elsewhere

8>><
>>:

ð4Þ

si ¼ sgnðE � V 0ðxÞÞ ð5Þ

Fig. 1 The potential profile for the graphene superlattice with N

electrostatic barriers of width b, (N - 1) wells of width w, and the

system length of lð2NÞ ¼ ðLÞ: a Without electric field and b under the

applied electric field
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where, h ¼ tan�1ðky=qxÞ is angle of refraction, i.e., the

corresponding angle inside the barriers. Since the system

used in this modeling is homogeneous along y-direction,

the momentum parallel to y-axis is conserved [29].

By applying continuity of wave function at boundaries

for the system consisting of N barriers, b1 and að2Nþ1Þ are

obtained which represent reflection and transmission

coefficients, respectively. Angular dependent transmission

probability can be evaluated by:

Tð/Þ ¼ cos /n

cos /
að2Nþ1Þ
�� ��2: ð6Þ

Note that un is emergence angle of the electron from the

right side in graphene superlattice, which is different from

the incident angle (u).

Tunnelign in BGS

In low energy regime, the charge carriers in bilayer

graphene are described by an off-diagonal Hamiltonian like

below [3].

Ĥ ¼ �h2

2m�
0 ðkx � ikyÞ2

ðkx þ ikyÞ2 0

� �
; ð7Þ

which yields a gapless semiconductor with chiral electrons

and holes having a finite mass osf m�. Here m� is 0:035 me;

where me is the mass of bare electron. Thus, it would be

possible to describe the Hamiltonian of charge carriers in

the BGS under the applied electric field as follows:

Ĥ ¼ �h2

2m�
0 ðkx � ikyÞ2

ðkx þ ikyÞ2 0

� �
þ V 0ðxÞ: ð8Þ

General solution to Eq. (8), for the ith strip can be

expressed by the following formulation [8, 23, 30]

wi
1ðx; yÞ ¼ aie

ikxrx þ bie
�ikxrx þ cie

jixrx þ die
�jixrx

� �
eikiyry;

wi
2ðx; yÞ ¼ si

�
aie

ikxrxþ2i/i þ bie
�ikxrx�2i/i

� cihie
jixrx � di

hi

e�jixrx

�
eikiyry; ð9Þ

where ai, bi, ci, and di are the transmission amplitudes, and

�hkixr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m�jE � V 0ðxÞj

p
cos /i;

�hkiyr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m�jE � V 0ðxÞj

p
sin /i;

jixr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

ixr þ 2k2
iyr

q
;

hi ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ sin2 /i

q
� sin /iÞ2;

si ¼ sgnðV 0ðxÞ � EÞ:

ð10Þ

One significant difference in wave function between

monolayer and bilayer graphenes is that there are four

possible solutions in the latter case as shown in Eq. (9). By

appling continuity of wave function as well as their

derivatives at the boundaries for a system consisting of

N barriers and using the transfer-matrix method, one can

obtain the angular dependent transmission probability in

BGS.

Using transmission probability, the current density (I) in

MGS and BGS due to a bias voltage ðVb ¼ E0LÞ along the

x-direction is given by [31–34].

I ¼ � 2evF

h2

Zp=2

�p=2

Tð/Þ½f ðEÞ � f ðE þ eVbÞ�E dE cosð/Þd/;

ð11Þ

Where f(E) is the Fermi function, for low temperatures, the

function ½f ðEÞ � f ðE þ eVbÞ� can be approximated by

�eVbdðE � EFÞ. Thus, one can find the expression for the

low temperature current density as

I ¼ kVb

Zp=2

�p=2

Tð/ÞE dE cosð/Þd/; ð12Þ

where k ¼ 2e2EFvF=h2 and EF is the Fermi energy.

Numerical results and discussion

In this section, we present our numerical results using the

methods described in the previous section. In all the cases,

the energy E of the incident electron, barrier height V0,

well width w, and barrier width b are taken to be 80,

200 meV, 5 and 10 nm, respectively for MGS, while these

parameters are chosen 17, 50 meV, 5 and 10 nm for BGS,

unless otherwise specified. At first, the transmission prob-

ability of charge carriers T as a function of incident angle /
and bias voltage ðVb ¼ E0LÞ are plotted in Figs. 2 and 3 for

MGS and BGS, respectively.

As it is obvious in Fig. 2, perfect transmission with Tr ¼
1 at normal incident i.e., / ¼ 0 is observed for monolayer

structure. This is due to the massless Dirac fermions and

directly attributed to Klein tunneling. It can be seen from

Fig. 3, for a small external field, i.e., bias voltage lower

than height of barrier, a perfect reflection (T = 0) is

observed at normal incident due to chiral symmetry in the

bilayer graphene superlattice. This is completely different

from the behavior observed for monolayer graphene su-

perlattice. Further, some resonant peaks appear in Figs. 2

and 3. Resonant peaks originate from interference of

incident and scattered waves in the barrier and well

regions. Also, the number of the resonant peaks increases

by increasing the number of barriers. This indicates that the

number of barriers plays a key role in transmission for the
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graphene superlattice. But for high external field

ðVb � b=wÞ[ ðN � V0 � 2EÞ, the transmission probability

is raised by increasing the bias voltage. Because in the high

regime of the external field, the x component of electron

wave vector in the barrier (qx) is a real value for most

incident angles, which is proportional to the propagated

wave inside the barrier. However, transmitting window for

the incident angles is limited with the condition that qx is

real. According to the abovementioned discussions, it is

clear that one can control the transmission probability in

graphene superlattice by the external electric field.

Figure 4 depicts the current density as a function of bias

voltage ðVb ¼ E0LÞ for MGS at different values of Fermi

energy. As can be seen from Fig. 4 the current density is an

oscillating function of Vb. It is because the transmission

probability T for incident angles / 6¼ 0 is an oscillating

function of qx, while qx is determined from V 0ðxÞ (see

Eq. (4)). For instance, at the limit of high barrier

V0j j[ [ E, for monolayer graphene superlattice with

single barrier this equation is suggested:

T ¼ cos2 /=½1� cos2ðqxbÞ sin2 /�. It is also evident from

Fig. 4 that the oscillation amplitude of the current density

increases by reducing the Fermi energy. Different values of

Fermi energy can be selected by n doping [35]. However,

the current density increases monotonically by decreasing

the external electric field. This is quite expectable since the

transmission probability is increased by increasing the

external field. The presence of Klein tunneling causes the

minimum current density in MGS to be always greater than

zero. However, Klein tunneling makes the monolayer

graphene materials not so useful for nanoelectronic devi-

ces. On the other hand, absence of the Klein tunneling and

presence of the very high carrier mobility in a bilayer

graphene, make it of a great potential for applications in

nanoelectronic tunneling devices.

Figure 5 shows the current density as a function of the

bias voltage for BGS at different values of the Fermi

energy. Same as MGS, the current density for BGS is also

Fig. 2 The transmission probability as a function of bias voltage and incident angle for monolayer graphene superlattice. a For N = 2; b N = 4

and c N = 6

84 J Theor Appl Phys (2015) 9:81–87

123



an oscillating function of Vb. Meanwhile, the current den-

sity increases monotonically by decreasing the external

field. Furthermore, zero value of current density can occur

in BGS, which means that for all incident angles the

transmission probability is zero. In the discussions above

and from Fig. 5 it is clear that the current density has a gap,

which increases when E is decreasing. This is due to the

evanescent wave in the barrier region. This means that

bilayer graphene is a native quantum switch of ballistic

electrons.

A comparison between the results for MGS and BGS

indicate that the presence of the Klein tunneling makes the

transmission probability and the current density in the

MGS do not zero. But in the BGS these parameters can be

zero under suitable conditions due to the absence of the

Klein tunneling. This means that BGS is a native quantum

switch of ballistic electrons.

The most striking feature of Figs. 4 and 5 is that in some

ranges of the external field, the current density is decreased

by increasing the external field, which means that the

graphene superlattice displays a negative differential

resistance for some ranges of the external field.

Summary

Based on the transfer-matrix technique, the transport

properties of charge carriers are investigated through

monolayer and bilayer graphene superlattices modulated

by a homogeneous electric field. It has been shown that the

transmission probability and the current density sensitively

depend on external field as well as Fermi energy and

number of barriers. This means that both the transmission

probability and the current density in monolayer and

bilayer graphene superlattices can be controlled by modi-

fication of bias voltage and structure parameter. In addi-

tion, current density has an oscillatory behavior with the

external electric field. This finding suggests that the

Fig. 3 The transmission probability as a function of bias voltage and incident angle for bilayer graphene superlattice. a For N = 2, b N = 4 and

c N = 6
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Fig. 4 Current density (in unit

of k) as a function of the bias

voltage Vb (in Volt) for

monolayer graphene

superlattice. a For N = 2,

b N = 4 and c N = 6. Blue

solid line, red-dashed line and

green dot line correspond to

E = 80, 70 and 60 meV,

respectively

Fig. 5 Current density (in unit

of k) as a function of the bias

voltage Vb (in Volt) for bilayer

graphene superlattice. a For

N = 2, b N = 4 and c N = 6.

Blue solid line, red-dashed line

and green dot line correspond to

E = 17, 15 and 13 meV,

respectively
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structures have a negative differential resistance. Author of

this paper hope that their theoretical result can stimulate

some interests in experimental efforts to design electronic

devices based on graphene materials.

Open Access This article is distributed under the terms of the

Creative Commons Attribution License which permits any use, dis-

tribution, and reproduction in any medium, provided the original

author(s) and the source are credited.
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