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Abstract The objective of this study is to investigate both

the contact area and the interfacial separation between two

surfaces. Both surfaces are considered to be rough, one of

them being elastic and the other one hard. The work is

based on an extended version of Persson’s model of contact

mechanics to study the behavior of the contact area, the

interfacial separation and the pressure distribution. The

results are compared with the case merely the hard sub-

strate is rough. It is seen that introducing a roughness in the

elastic surface decreases the real contact, if the surfaces are

uncorrelated. A positive (negative) correlation increases

(decreases) the real contact. A reverse pattern occurs for

the width of the pressure distribution, as well as the

interfacial separation (at equal pressures).

Keywords Self-affine fractal � Cross-correlation � Surface

effects

Introduction

All of the surfaces occurring in nature and industry are

rough, provided they are observed with sufficiently high

magnifications (small length scales) [1, 2]. So, for two

contacting solid surfaces, microscopically, there are many

non-contact regions (the interfacial separation), and micro-

scopic contact occurs only at a fraction of the macroscopic

contact. This fraction of real contact, as well as the inter-

facial separation, are affected by the roughness of the sur-

faces, and play important roles in the mechanical properties

of the system. The area of real contact characterizes the

frictional properties of the contact, as well as the strength of

adhesion and the amount of wear [3–5]. Some other phe-

nomena are affected by the interfacial separation, among

which are the heat transfer, the contact resistivity, lubrica-

tion, and sealing [5–8]. The effect of the surface roughness

on the area of real contact has been studied by two classes of

analytical models. The first class involves multiasperity

contact theories (originally formulated by Greenwood and

Williamson (GW) [9–13]), where the contact between the

surfaces is modeled as an ensemble of randomly distributed

Hertzian contacts between the asperities. The second class is

based on Persson’s model of contact mechanics [1, 2], where

the probability distribution of the contact pressure is shown

to be governed by a diffusive process in terms of the mag-

nification at which the interface is observed. Numerical

studies [14–17] have shown that, in the case of non-adhesive

contacts, when a flat elastic body is brought into contact

with a rough surface, the real contact area increases pro-

portional to the applied normal squeezing pressure (applied

load). In [18], it has been shown that the GW-type theories

predict linearity only for vanishingly small contact areas,

corresponding to vanishingly small applied normal squeez-

ing pressures. When the applied normal squeezing pressure

is increased, the theoretical predictions rapidly deviate from

the asymptotic linearity. This behavior is not seen in Pers-

son’s model, which predicts linearity between contact area

and applied normal squeezing pressure for real contact

values of up to about 15–20 percent of nominal contact area.

This is in agreement with some experimental and numerical
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results. Under full contact conditions, Persson’s model is

exact, but in the case of partial contact, some numerical

results [16, 19] regarding non-adhesive contacts between

rough surfaces indicate an underestimation of the contact

area in Persson’s model, while the results of the model still

qualitatively agree with numerical calculations [20].

In all of these works, the area of real contact between a

smooth elastic solid surface and a hard substrate with

randomly rough surface has been studied. As stated earlier,

however, there are essentially no surfaces which are

smooth on atomic scales. Here, the elastic solid is assumed

to have a rough surface as well, and the effect of roughness

on the area of real contact and the interfacial separation is

studied. The contacts are assumed to be frictionless and

non-adhesive, and the roughness of both surfaces is

assumed to be random. An extended version of Persson’s

model of contact mechanics is used to investigate the area

of real contact, as well as the interfacial separation between

two surfaces.

The outline of the paper is as follows. In Sect. 2, Pers-

son’s model of contact area and interfacial surface sepa-

ration is reviewed. In Sect. 3, an extended version of

Persson’s model of contact mechanics is used to calculate

the contact area and the interfacial surface separation for

randomly rough elastic solids and hard substrates with

randomly rough surfaces in contact with each other.

Numerical results corresponding to the randomly rough

self-affine fractal surfaces are presented in Sect. 4. Sec-

tions 3 and 4 contain the main results. The novelty, which

is described in these sections, is the introduction of a

second rough surface and the investigation of the effects of

both surfaces being rough and also the effect of their cor-

relation. Section 5 contains the concluding remarks.

The contact area, and the interfacial surface
separation

The main topics of the Persson’s model of contact mechanics

are reviewed in this section. The model is based on the

investigation of the interfacial at different magnifications f,

[1, 2]. The system’s saturation length is L, the length scale is

k, and the wave numbers q and qL correspond to the length

scale and the size of the system, respectively:

q ¼ 2 p
k

;

qL ¼ 2 p
L

;

f ¼ L

k
;

¼ q

qL
;

ð1Þ

The goal is to find the probability distribution Pðr; fÞ of the

normal stress r at the interface under the magnification f.

The equation governing this distribution is shown to be a

diffusion equation. For a non-adhesive contact, the

boundary condition is [21]

Pðr ¼ 0; fÞ ¼ 0; ð2Þ

and for the resulting probability distribution [14, 22]

Pðr; fÞ ¼ 1

2 ðpGÞ1=2
exp �ðr� pÞ2

4G

" #
� exp �ðrþ pÞ2

4G

" #( )
;

ð3Þ

where p is the nominal squeezing pressure and

GðqÞ ¼ p
4

E

1 � t2

� �2 Z q

qL

dq0 q03 Cðq0Þ; ð4Þ

with E and t being the elastic modulus and the Poisson’s

ratio of the elastic block, respectively. C(q) is the auto-

spectral density function [23] of the hard randomly rough

substrate. Denoting the actual (microscopic) and the

nominal (macroscopic) contact areas by A and A0,

respectively, the relative contact area is

A

A0

¼
Z 1

0þ
drPðr; fÞ;

¼: PðqÞ:
ð5Þ

So,

A

A0

¼ 1

ðpGÞ1=2

Z p

0

dr exp � r2

4G

� �
;

¼ erf
p

2G1=2

� �
:

ð6Þ

The error function can be approximated by a linear func-

tion of its argument, for the case the argument is small. The

result is

A

A0

� p

ðpGÞ1=2
; p � G1=2: ð7Þ

Regarding the interfacial surface separation, let us consider

an elastic block squeezed against a flat hard surface. The

separation between the average surface plane of the block

and the average surface plane of the substrate is denoted by

�u, which is nonnegative. Due to the external pressure p

required to produce this separation, an elastic energy is

stored in the block. Denoting this by Uel, one arrives at

Uelð�uÞ ¼
Z 1

�u

duA0 pðuÞ;

p ¼ � 1

A0

dUel

du
:

ð8Þ
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When the elastic block is soft and the hard substrate is

rough, Persson’s model results in the following for the

elastic energy [2, 24–26].

Uel � A0 E
� c

p
2

Z qa

qL

dq q2 PðqÞCðqÞ; ð9Þ

E� ¼ E

ð1 � t2Þ ; ð10Þ

where qa is the largest surface-roughness wave vector, and

C(q) is the auto-spectral density function of the hard ran-

domly rough surface. In cases where the applied normal

squeezing pressure p is small, the surface asperities do not

fully penetrate the elastic block and only a partial contact is

realized. So, the full contribution of the auto-spectral

density function is not received by the elastic energy. In

(9), this has been addressed through the factor cPðqÞ,
where P(q) is the relative contact area for elastic nonad-

hesive contact and is given by [1, 21]

PðqÞ ¼ 1ffiffiffi
p

p
Z SðqÞ p

0

dx expð�x2Þ: ð11Þ

SðqÞ ¼ wðqÞ
E� : ð12Þ

wðqÞ ¼ p
Z q

qL

dq0 q03 Cðq0Þ
� ��1=2

: ð13Þ

c is less than one (but of the order one), when the squeezing

pressures are small, and this factor takes into account the

fact that the elastic energy stored in the contact region is

less than the average elastic energy for full contact [22].

Substituting (9), (10), (11), and (13) in (8), after some

calculations, it is shown that for nonadhesive interactions

and small applied pressures, the relation between the

average interfacial separation �u and the small applied

normal squeezing pressure p is [22, 24].

p � bE� exp � �u

u0

� �
;

�u � u0 log
bE�

p

� �
;

ð14Þ

where

u0 ¼
ffiffiffi
p

p
c
Z qa

qL

dq q2 CðqÞwðqÞ; ð15Þ

b ¼ e exp �

Z qa

qL

dq q2 CðqÞwðqÞ log½wðqÞ�Z qa

qL

dq q2 CðqÞwðqÞ

8>><
>>:

9>>=
>>;; ð16Þ

e ¼ exp

Z 1

0

dx 2 x log x expð�x2Þ
� �

;

� 0:7493:

ð17Þ

An extension to the case of two randomly rough
surfaces in contact with each other

As stated before, usually both of surfaces which are in

contact with each other are rough. Here, Persson’s model

of contact mechanics is extended to such cases.

The contact area

The relation between the Fourier transform of the normal

stress rzðqÞ and that of the normal displacement field uzðqÞ
of the surface of the elastic solid is [26]:

uzðqÞ ¼ MzzðqÞ rzðqÞ; ð18Þ

MzzðqÞ ¼ � 2 ð1 � t2Þ
E q

: ð19Þ

When a randomly rough elastic surface is in contact with

the randomly rough surface of a hard substrate, Eq. (18)

still holds, but now, if the contact between the surfaces is

full, the normal displacement field of the elastic solid is

equal to the difference of the heights of the surfaces

[27, 28]

uzðqÞ ¼ h2ðqÞ � h1ðqÞ; ð20Þ

so that

h2ðqÞ � h1ðqÞ ¼ MzzðqÞ rzðqÞ: ð21Þ

So, the relative contact area and pressure distribution at the

interface ðr[ 0Þ change. The change could be imple-

mented through a substitution of the autocorrelation func-

tion C with the autocorrelation corresponding to ðh2 � h1Þ,
that is [27, 28]

C ! ðC1 þ C2 � 2 g
ffiffiffiffiffiffiffiffiffiffiffiffi
C1 C2

p
Þ; ð22Þ

where C1ðqÞ and C2ðqÞ are the auto-spectral density

functions for the rough substrate and the rough elastic

block, respectively, and g is the coherence function

[29, 30]. The surfaces are assumed to be homogeneous and

isotropic, so (4) is transformed into:

GðqÞ ¼ p
4

E

1 � t2

� �2 Z q

qL

dq0 q03 C1ðq0Þ þ C2ðq0Þ½

�2 g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1ðq0ÞC2ðq0Þ

p i
:

ð23Þ

This new form of G is to be put in (6) and (7), to obtain the

contact area. Here, g is considered to be a constant (inde-

pendent of q), and the results for this simple case are

presented. Special cases are g ¼ 0 (uncorrelated surfaces),

g ¼ þ1 (completely positive correlated surfaces), or g ¼
�1 (completely negative correlated surfaces).
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The interfacial surface separation

When a randomly rough elastic solid is squeezed against a

randomly rough surface of a hard substrate, the elastic

energy is similar to (9), but with C substituted according to

(22) [27, 28]:

Uel �
pE A0 c

2 ð1 � t2Þ

Z qa

qL

dq q2 PðqÞ C1ðqÞ þ C2ðqÞ½

�2 g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1ðqÞC2ðqÞ

p i
:

ð24Þ

The relative contact area for elastic nonadhesive contact is

obtained from (11) with

wðqÞ ¼ p
Z q

qL

dq0 q03 C1ðq
0 Þ þ C2ðq

0 Þ � 2 g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1ðq0 ÞC2ðq0 Þ

q� �� ��1=2

:

ð25Þ

Using (11),

oP

o�u
¼ 2ffiffiffi

p
p SðqÞ expf�½SðqÞ�2 p2g dp

d�u
: ð26Þ

Substituting (24) and (26) in (8) results in:

d�u ¼�
ffiffiffi
p

p
c
Z qa

qL

dq q2 C1ðqÞ þ C2ðqÞ � 2 g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1ðqÞC2ðqÞ

ph i

� wðqÞ exp � wðqÞ p
E�

� �2
( )

dp

p
:

ð27Þ

Integrating this from �u ¼ 0 (full contact, corresponding to

p ¼ 1) to �u gives:

�u ¼
ffiffiffi
p

p
c
Z qa

qL

dq q2 C1ðqÞ þ C2ðqÞ � 2 g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1ðqÞC2ðqÞ

ph i

� wðqÞ
Z 1

p

dp0

p0
exp � wðqÞ p0

E�

� �2
( )

:

ð28Þ

For very low squeezing pressures, one has

p � bE� exp � �u

u0

� �
; ð29Þ

u0 ¼
ffiffiffi
p

p
c
Z qa

qL

dq q2 C1ðqÞ þ C2ðqÞ � 2 g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1ðqÞC2ðqÞ

ph i
wðqÞ;

ð30Þ
b ¼ e exp

�

Z qa

qL

dq q2 C1ðqÞ þ C2ðqÞ � 2 g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1ðqÞC2ðqÞ

ph i
wðqÞ log½wðqÞ�Z qa

qL

dq q2 C1ðqÞ þ C2ðqÞ � 2 g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1ðqÞC2ðqÞ

ph i
wðqÞ

8>><
>>:

9>>=
>>;;

ð31Þ

with e being obtained from (17).

Numerical results

In all cases, it is assumed that the randomly rough elastic

solid surface and the randomly rough surface of the hard

substrate are both self-affine fractal surfaces with the auto-

spectral density functions described by [24]:

CðqÞ � H

p
hrms

qL

� �2
q

qL

� ��ð2Hþ2Þ
; ð32Þ

where H is the Hurst exponent, and it is assumed that qa is

much larger than qL, which usually is. For the hard sub-

strate and the elastic block, these values have been used.

qL ¼ 2 � 108 m�1; qa ¼ 4 � 1010 m�1; ð33Þ

H1 ¼ 0:8; hrms 1 ¼ 1 nm;

H2 ¼ 0:7; hrms 2 ¼ 1 nm;
ð34Þ

E ¼ 77:2 GPa; t ¼ 0:42: ð35Þ

Contact area

Figure 1 shows the contact area ratio A=A0 calculated from

(6) and (23), as a function of the normalized pressure p=E�

for the magnification f ¼ 4.

The pressure distribution calculated from (3) and (23),

as a function of the normalized pressure r=E�, is shown in

Fig. 2 for f ¼ 4 and for three different nominal pressures.

In these curves, the circle curve is for the case where

only the substrate is rough. The asterisk, solid, and dotted

curves correspond to the cases where both surfaces are

rough and uncorrelated (g ¼ 0), completely positively

correlated (g ¼ 1), and completely negatively correlated

A/A0 

p/E* 

Fig. 1 The contact area ratio A=A0 as a function of the normalized

pressure p=E� for the magnification f ¼ 4. The circle curve is for the

case where only the substrate is rough. The asterisk, solid, and dotted

curves correspond to the cases where both surfaces are rough and

uncorrelated (g ¼ 0), completely positively correlated (g ¼ 1), and

completely negatively correlated (g ¼ �1), respectively
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(g ¼ �1), respectively. Figure 2 shows that both surfaces

being rough, but uncorrelated, results in a decrease in the

contact area, compared to the case of only one rough sur-

face. If both surfaces are rough, and they are correlated,

depending on the sign of the correlation, an increase or

decrease in the values of the contact area is resulted,

compared to the case of two uncorrelated surfaces and the

case of only one rough surface. A positive correlation

(g ¼ 1) increases the contact area between the two sur-

faces, so that the pressure distribution vanishes in a smaller

normalized pressure, as seen from Fig. 2. For a negative

correlation g ¼ �1, however, the contact area is decreased

compared to the case of uncorrelated surfaces and the case

of only rough surface, so that the pressure distribution

vanishes in larger pressure. It is seen that when both sur-

faces are rough but uncorrelated, the width of the pressure

distribution is larger compared to the case of only one

rough surface. A positive (negative) correlation results in a

decrease (an increase) of the width of the pressure

distribution.

Interfacial surface separation

The logarithm of the normalized average pressure p=E�, as

a function of the separation �u between the average plane of

the substrate and the average plane of the lower surface of

the elastic block is shown in Figs. 3 and 4. Figure 3 cor-

responds to the magnification f ¼ 4, and Fig. 4 corresponds

to the magnification f ¼ 200. In these curves, the circle

curve is for the case where only the substrate is rough. The

asterisk, solid, and dotted curves correspond to the cases

where both surfaces are rough and uncorrelated (g ¼ 0),

completely positively correlated (g ¼ 1), and completely

negatively correlated (g ¼ �1), respectively. It is seen that

the interfacial separation at a fixed pressure is larger when

σ/E* 

logP

logP

logP

ζ = 4 

p/E* = 0.048 

ζ = 4 

p/E* = 0.101 

ζ = 4 

p/E* = 0.208 

Fig. 2 The pressure distribution as a function of the normalized

pressure r=E� for the magnification f ¼ 4 and for three different

nominal pressures. The circle curve is for the case where only the

substrate is rough. The asterisk, solid, and dotted curves correspond to

the case where both surfaces are rough and uncorrelated (g ¼ 0),

completely positively correlated (g ¼ 1), and completely negatively

correlated (g ¼ �1), respectively

log(p/E*) 

u/hrms 1

Fig. 3 The logarithm of the normalized average pressure p=E�, as a

function of the separation �u between the average plane of the substrate

and the average plane of the lower surface of the elastic block for the

magnification f ¼ 4. The circle curve is for the case where only the

substrate is rough. The asterisk, solid, and dotted curves correspond to

the case where both surfaces are rough and uncorrelated (g ¼ 0),

completely positively correlated (g ¼ 1), and completely negatively

correlated (g ¼ �1), respectively
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both surfaces are rough but uncorrelated. A positive (neg-

ative) correlation decreases (increases) the interfacial

separation.

Concluding remarks

An extension of Persson’s model of contact mechanics was

used to study the contact area and the interfacial separation,

when the elastic solid and the hard substrate are both

rough. It was seen that when the two surfaces are rough but

uncorrelated, the real contact decreases compared to the

case where only the substrate is rough, effectively the

roughness has been increased. It was also shown that when

the surfaces are correlated, a positive correlation increases

the real contact area compared to the case of no correlation,

while a negative correlation decreases the real contact area

compared to the case of no correlation. A reverse pattern is

seen for the width of the pressure distribution, as well as

the interfacial separation (at equal pressures): making both

surfaces rough but uncorrelated increases these, and a

positive (negative) correlation results in a decrease (an

increase) in these.
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