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Abstract In this work, we study the two and triplet static

correlation functions in plasma when the ions interact via

the Debye screened potential and via the Deutsch screened

potential. The latter takes into consideration the possible

quantum effects at short distances. The ratio of the mean

distance between two ions and the thermal De Broglie

wavelength ri=kT gives the measure of these effects. Our

investigation is developed in the conditions of weak cou-

pling parameter (C\1). The pair and the triplet correlation

functions are calculated numerically and compared to the

correlation functions due to the Kirkwood superposition

approximation (KSA). Some applications to the ion

velocity auto-correlation function D(t) and the electric field

auto-correlation function C(t) at an ion (assumed to be an

impurity) and the diffusion coefficient D are calculated for

the two kinds of potentials in different plasma conditions.

The comparison with other results found in the literature

shows a well satisfactory agreement, for the static as well

as the dynamic properties.

Keywords Static pair correlation � Triplet correlation �
Time auto-correlation function � Velocity � Electric field �
Diffusion coefficient

Introduction

The equilibrium properties of a plasma considered as a

liquid of charged particles (in the hydrodynamical

description) are fully described by a set of probability

density functions gðr1; . . .; rnÞ of location of particles at

points r1; . . .; rn, when the total potential energy of a liquid

is given by a sum of isotropic pair potentials [1], and the

physical properties (pressure, energy density, etc.) [2] are

defined by the pair correlation function gðr1; r2Þ. However,
even in the approximation of pair interaction, higher order

correlation functions are of interest. Information on the

triplet correlation function gðr1; r2; r3Þ is of importance in

calculating the properties of the medium (entropy, thermal

expansion coefficients, etc.) [3]. Explicit knowledge of

triplet correlations is also required in perturbation theories

for static fluid properties [4] and in the theories of transport

properties [5]. The triple distribution function can be

computed either via computer simulation methods like (the

Monte Carlo method, molecular dynamics method) [6–8],

or via the theoretical methods [9]. It can also be determined

experimentally [3, 4, 10].

In this paper the obtained results are based on theoretical

studies of the structure functions and the transfer phe-

nomena in the plasmas in terms of two-particle and three-

particle correlation. We have theoretically obtained three-

particle correlation functions and analyzed them and

compared with the superposition approximation [11].

Overall in this paper we use two kinds of screened

potentials: the screened Debye potential VðrÞ ¼
q expð�r=kDÞ=r and the screened Deutsch potential

VSDðrÞ ¼ q expð�r=kDÞð1� expð�r=kTÞÞ=r [12], where r

is the interparticle spacing, kD is the screening Debye

length, kT the thermal Broglie wave length and q is the ion
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charge. C ¼ q2=kBTri is the coupling parameter, where

ri ¼ ð3=4pqÞ1=3 is the mean interparticle spacing, q the

particles density whereas kB is the Boltzmann constant and

T is the equilibrium temperature of the system. Our paper is

organized as follows: in the next section, we present some

theoretical implementations describing the pair correlation

functions, following which the theoretical derivation of the

three correlation functions for different plasma conditions

for both kinds of potential is presented. In the subsequent

section, we present some applications of the static structure

functions on the calculation of the dynamical properties as

the time auto-correlation functions of the ions velocity and

of the electrical micro-field on an ion (considered as an

impurity), and the related transport quantities. The results

with discussion are reported before the concluding sec-

tion. The final section contains conclusion with some

perspectives.

Static pair correlation functions

To define the pair correlation functions g(r) that represents

a static structure function, we introduce the probability of a

configuration of N particles in a volume V in equilibrium

with a thermal bath at temperature T,

gðr1; r2Þ ¼ V2 1� 1

N

� �R
expð�bVNðrNÞÞdr3. . .drN

ZN
ð1Þ

For the case where N ! 1 such as N=V ¼ q is finite

(thermodynamical limit):

gðr1; r2Þ ¼ V2

R
expð�bVNðrNÞÞdr3. . .drN

ZN
ð2Þ

where b ¼ 1=kBT , ZN and VNðrNÞ are the configuration

integral and the total potential energy, respectively, given

by

ZN ¼
Z

expð�bVNðrNÞÞdr1. . .drN ð3Þ

VNðrNÞ ¼
X

1� ihj�N

vðrijÞ ð4Þ

where vðrijÞ is the binary interaction between the ith and jth

ions. By substituting (4) in (2), we find

gðr1; r2Þ ¼ V2

R
exp �b

P
1� i\j�N vðrijÞ

� �
dr3. . .drN

ZN

ð5Þ

When we extract away the first term vðr12Þ from the sum

present at the exponential, because it is not concerned by

the integration, we find

gðr1; r2Þ ¼
V2

ZN
expð�bvðr12ÞÞ

�
Z

exp �b
X

i� 1;j� 3ðihjÞ

vðrijÞ

0
@

1
Adr3. . .drN

ð6Þ

¼V2

ZN
expð�bvðr12ÞÞ

Z Y
i� 1;j� 3ðihjÞ

expð�bvðrijÞÞdr3. . .drN

ð7Þ

then, the pair correlation function becomes

gðr1; r2Þ ¼
V2

ZN
expð�bvðr12ÞÞ

Z Y
i� 1;j� 3ði\jÞ

ð1þ fijÞdr3. . .drN

ð8Þ

where

fij ¼ expð�bvðrijÞÞ � 1: ð9Þ

As we have the product expansionY
ij

ð1þ fijÞ ¼1þ
X
i\j

fij þ
X

i\j;k\l

fijfkl þ � � � ð10Þ

�1þ
X
i�j

fij þ
X

i\j;k\l

fijfkl ð11Þ

we can develop the pair correlation as the following

gðr1; r2Þ ¼
V2

ZN
expð�bvðr12ÞÞ

�
Z

1þ
X

i� 1;j� 3ði\jÞ
fij þ

X
i� 1;j� 3ði\jÞ;k� 1;l� 4ðk\lÞ

fijfkl

0
@

1
A

dr3. . .drN ð12Þ

The integrals in Eq. (12) can be formally written asZ
dr3. . .drN ¼ VN�2 ð13Þ

Z X
i� 1;j� 3ði\jÞ

fijdr3. . .drN ¼ VN�2 q
N

2
b1

� �
ð14Þ

Z X
i� 1;j� 3ði\jÞ;k� 1;l� 4ðk\lÞ

fijfkldr3. . .drN

¼ VN�2 N2

8
q2b21 þ qbðr1; r2Þ

� � ð15Þ

where q is the ion density and

b1 ¼
Z

ðexpð�bvðrÞÞ � 1Þdr ¼
Z

f ðrÞdr ð16Þ

bðr1; r2Þ ¼
Z

f13f23dr3 ¼
1

ð2pÞ3r12

Z
kdkjf ðkÞj2 sinðkr12Þ ð17Þ
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where f(k) is the Fourier transform of f(r)

f ðkÞ ¼
Z

f ðrÞ expðik:rÞdr ð18Þ

When we replace formula (13)–(15) in Eq. (12), we obtain

gðr1; r2Þ by the following result

gðr1; r2Þ ¼
expð�bvðr12ÞÞVN

ZN

1þ qbðr1; r2Þ þ
N

2
qb1 þ

N2

8
q2b21

� � ð19Þ

Using the condition of the weakness coupling (1 	 qb1
2
),

we estimate in the same manner the partition function ZN
which appears in (19):

ZN ¼ VN 1þ qb1
N

2
þ N2

8
b21q

2

� �
¼ VN 1þ qb1

2

� �N

’ VN

ð20Þ

When we drop the last two terms in (19), we can write the

pair correlation function gðr1; r2Þ as

gðr1; r2Þ ¼ expð�bvðr12ÞÞð1þ qbðr1; r2ÞÞ ð21Þ

If the interparticle interaction is spherically symmetric and

if the system is treated as an isotropic fluid, then gðr1; r2Þ
depends only on the distance r12 ¼ jr1 � r2j between ions

1 and 2. We adopt the notation gðrÞ ¼ gðr12Þ and define the
radial distribution function g(r) as

gðrÞ ¼ expð�bvðrÞÞð1þ qbðrÞÞ ð22Þ

The last formula gives a correction to the commonly

known formula gðrÞ ¼ expð�bvðrÞÞ (Boltzmann factor

formula), usually used by many authors for representing an

acceptable approximation of the radial distribution

function.

Three correlation functions

In the canonical ensemble in which particles interact by a

pair potential v(r), the triplet correlation function is defined

as [1]

gð3Þðr1; r2; r3Þ ¼ V3

R
expð�bVNðrNÞÞdr4. . .drN

ZN
ð23Þ

where ri is the position vector of the ith particle. The

function gð3Þðr1; r2; r3Þ defines the probability of simulta-

neous detection of three particles in the vicinity of points

r1, r2; r3. Unlike the binary function g(r), the

gð3Þðr1; r2; r3Þ depends on three space coordinates and,

accordingly, enables one to obtain an additional informa-

tion about the structure of particles. the Kirkwood

superposition approximation (KSA) [11] is most frequently

employed to approximate the three-particle correlation

function

gð3Þðr1;r2;r3Þ ’ g
ð3Þ
SAðr1;r2;r3Þ ¼ gðr1;r2Þgðr2;r3Þgðr1;r3Þ

ð24Þ

We calculate the function gðr1;r2;r3Þ in the same way for

computing g(r) (see Eq. (21)), and we have acquired the

result

gð3Þðr1; r2; r3Þ ¼ e�bðvðr12Þþvðr23Þþvðr13ÞÞ

ð1þ qðb1ðr12Þ þ b2ðr23Þ þ b3ðr13ÞÞ
ð25Þ

where

b1ðr12Þ ¼
Z

f14f24dr4 ¼
1

2pð Þ3r12

Z
k f ðkÞj j2sinðkr12Þdk

ð26Þ

b2ðr23Þ ¼
Z

f24f34dr4 ¼
1

ð2pÞ3r23

Z
kjf ðkÞj2 sinðkr23Þdk

ð27Þ

b3ðr13Þ ¼
Z

f14f34dr4 ¼
1

ð2pÞ3r13

Z
kjf ðkÞj2 sinðkr13Þdk

ð28Þ

and

f ðkÞ ¼ 1

k

Z
rf ðrÞ sinðkrÞdr ð29Þ

Numerical calculations of the function b [formula (17)],

b1, b2 and b3 [formula (26)–(28)], for both kinds of

potentials, allow us to compute the static structure func-

tions as shown in Figs. 1 and 2. Now, we are able to apply

the above results to compute the dynamic properties and

the transport coefficients.

Application to dynamic and transport properties

By following the theory presented in [13], we have

obtained the velocity and the micro-field auto-correlation

functions D(t) and C(t) as the sum of three exponentials

DðtÞ ¼
X

Die
Zit; CðtÞ ¼

X
Cie

Zit ð30Þ

where the coefficients Di and Ci are given by

Di ¼ �ðx0=ZiÞCi ð31Þ

and

C1 ¼ Kþ Z1ð ÞZ1 Z3 � Z2ð Þ=D ð32Þ

C2 ¼ Kþ Z2ð ÞZ2 Z1 � Z3ð Þ=D ð33Þ
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C3 ¼ Kþ Z3ð ÞZ3 Z2 � Z1ð Þ=D ð34Þ

D ¼ Z1 � Z2ð Þ Z2 � Z3ð Þ Z3 � Z2ð Þ ð35Þ

and the Zif g are solutions to the cubic equations (relative to
Debye and Deutsch potentials respectively)

Z3 þ KDebyeZ
2 þ x2

1Z þ KDebyex
2
0 ¼ 0

Z3 þ KDeutschZ
2 þ X2

1Z þ KDeutschX
2
0 ¼ 0

ð36Þ

The analysis made up to this point applies for arbitrary

interaction potentials and plasma composition. To illustrate

the physical content of our investigation, we consider the

special case of a OCP one-component plasma with an

impurity ion of the same mass and the same charge (m, q)

for one component of the plasma ions. Before starting the

evaluation of the three necessary parameters to solve the

above cubic equation, remember the well-known useful

Green–Kubo relation that gives the self-diffusion coeffi-

cient D from the velocity auto-correlation function D(t)

D ¼ 1

mb

Z 1

0

DðtÞdt ð37Þ

Determination of parameters

To calculate the auto-correlation functions D(t) and C(t) we

need to know the three Zi roots which are connected to

parameters x0, x1, K which in turn must be calculated.

We attack now to determine all the parameters neces-

sary in the description of the dynamics. These parameters

allow us, first, to solve the cubic algebraic equation (36).
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Fig. 1 Pair correlation function g(r) calculated by our model for different coupling parameters C ¼ 0:1; 0:5; 1: and different effect quantum

parameters ri=kT and for two interaction potentials (Debye and Deutsch)
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Fig. 2 Comparison between

triplet correlation function

gð3Þðr; r; rÞ1=3 and the triplet

correlation function in the

Kirkwood superposition

approximation for: Debye

potential (C ¼ 0:1Þ at the left,

Deutsch potential for different

ri=kT at the right

66 J Theor Appl Phys (2017) 11:63–70

123



Evaluation of x0;X0

Consider first x0 defined in [14]

x2
0 ¼ ðbq2=3mÞhE2i ¼ �ðbq=3mÞhE � rvðrÞi ð38Þ

where v(r) is the potential of the interaction between the

impurity ion and the surrounding plasma. This expression

(38) can be rewritten, after making a part integral

x2
0 ¼ �ðq=3mÞhr � Ei ð39Þ

It is noted here that the background does not contribute to

x2
0

r0 � Eb ¼ 0 ð40Þ

Then (38) leads to the two results

x2
0 ¼ � 1

3
ðnq=mÞ

Z
drr:eðrÞgðrÞ ð41Þ

where g(r) is the pair correlation functions for the proba-

bility to find a plasma ion of species a at a distance r from

the impurity ion of mass m and charge q, n is the density of

the plasma, and

r � eðrÞ ¼ �DvðrÞ ¼ � o2

or2
þ 2

r

o

or

� �
vðrÞ ð42Þ

Here v(r) must be either the screened Debye potential or

the screened Deutsch potential.

Debye potential case

x2
0 ¼

1

3
x2

p

Z1

0

drrk2De
�kDrgðrÞ; x2

p ¼ 4pqq2=m ð43Þ

Deutsch potential case

X2
0 ¼

1

3

mq

m0q

� �
x2

p

Z1

0

drrðk2De�kDr � ðkD þ kTÞ2e�ðkDþkTÞrÞgðrÞ

ð44Þ

Evaluation of x1;X1

x2
1 ¼ðq2=3mx2

0Þðnm=lÞ
Z

dr½oeaðrÞ=orj
2gðrÞ ð45Þ

þ ð9x2
0Þ

�1 ðnq=mÞ
Z

drr � eaðrÞgaðrÞ
� �2

ð46Þ

þ ðq2=3mx2
0Þ
X
r

ðn2Þ
Z

drdr0½oeðrÞ=or0j
½oeðrÞ=or
 ð47Þ

� fgð3Þðr; r0Þ � gðrÞgðr0Þg ð48Þ

where l ¼ m=2 is the reduced mass. The second term of

the last formula can be simplified to give the form

x2
1 ¼ x2

0 þ ðq2=3mx2
0Þðnm=lÞ

Z
dr½oeðrÞ=orj
2gðrÞ

ð49Þ

þ ðq2=3mx2
0Þðn2Þ

Z
drdr0½oeðrÞ=or0j
½oeðrÞ=or
 ð50Þ

� fgð3Þðr; r0Þ � gðrÞgðr0Þg ð51Þ

To be able to make the last integrals, we need two and three

correlation functions (static structure functions) g2; g3 that

are given in ‘‘Static pair correlation functions’’ and ‘‘Three

correlation functions’’.

Debye potential case

x2
1 ¼ x2

0ð1þ ðm=lI20ÞI1 þ ð3=I20ÞI2Þ ð52Þ

where

I0 ¼
Z1

0

drrk2De
�kDrgðrÞ ð53Þ

and

I1 ¼
Z1

0

drr�4e�2kDr½6þ 12kDr þ 10ðkDrÞ2 þ 4ðkDrÞ3 þ ðkDrÞ4
gðrÞ

ð54Þ

I2 ¼
Z1

0

drdr0rr0k4De
�kDre�kDr

0 fgð3Þðr; r0Þ � gðrÞgðr0Þg

ð55Þ

Deutsch potential case

X2
1 ¼ X2

0ð1þ ðm=lI020 ÞI01 þ ð3=I020 ÞI02Þ ð56Þ

where

I00 ¼
Z1

0

drrðk2De�kDr � ðkD þ kTÞ2e�ðkDþkTÞrÞgðrÞ ð57Þ

I01 ¼
Z1

0

drr�4e�2kDr½A� 2e�kTrBþ e�2kTrC
gðrÞ ð58Þ

and

I02 ¼
Z1

0

drdr0rr0ðk2De�kDr� k2DTe
�kDTrÞðk2De�kDr

0 � k2DTe
�kDTr

0 Þ

�fgð3Þðr;r0Þ�gðrÞgðr0Þg
ð59Þ

where
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A ¼ ðkDrÞ4 þ 4ðkDrÞ3 þ 10ðkDrÞ2 þ 12kDr þ 6 ð60Þ

B ¼ ðkDkDTÞ2r4 þ 2ðkDk2DT þ k2DkDTÞr3

þ 2ð3kDkDT þ k2D þ k2DTÞr2 þ 6ðkD þ kDTÞr þ 6

ð61Þ

C ¼ ðkDTrÞ4 þ 4ðkDTrÞ3 þ 10ðkDTrÞ2 þ 12kDTr þ 6

ð62Þ

kDT ¼ kD þ kT ð63Þ

It is understood that the integration variables and screening

length k�1
D ; k�1

T are in units of the ion sphere radius,

ri ¼ ð3=4pqÞ1=3.

Evaluation of KDebye;KDeutsch

We use the following expression [13]

KDebye ¼ ððm=lÞI1 þ 3I2Þ=ðI20mbDÞ ð64Þ

and the same formula for Deutsch case using I00;1;2 defined

above (56)–(59). At this stage, we need the self coefficient

diffusion D. To proceed, we calculate D with self-consis-

tent method: we give at first an initial value to D, and

compute K with respect the last formula. Then we have the

three coefficients of the cubic equation (x0, x1 and K). We

are able to solve this equation and then to have the velocity

auto-correlation function D(t). Using the Eq. (37), we get

the self-diffusion coefficient D. Using the obtained value of

D in the equation to have a new value of K, and by solving

the cubic equation, we get the velocity auto-correlation

function D(t). Integrated, the latter gives a new self-diffu-

sion coefficient D. This procedure must be repeated till we

get the convergence.

Results and discussions

We have presented a model for the pair correlation function

and the triplet correlation function given by the Eqs. (22)

and (25) for different coupling parameters C, using the

screened Debye potential and the screened Deutsch

potential

In Fig. 1 we have presented and compared the pair

correlation function g(r) calculated by our model for dif-

ferent coupling parameters C and different ratios ri=kT for

the two potentials. We note, in the case of the Debye

potential, that the curve starts from zero: when the distance

r (between two ions) goes to zero; g(r) goes to zero too.

Whereas when the distance goes to infinity, the pair cor-

relation function g(r) goes to one. For the screened Deutsch

potential, we note that the curve not start from zero

(contrary to Debye case). This means that the correlation

between the ions is more significant in the weak range of

the ratio ri=kT. This indicates that, in this range, the

probability of interaction between two ions is more

important. Readibly, this phenomenon is due to the quan-

tum effects.

Figure 2 shows the triplet correlation function in the

equilateral triangle geometry for the coupling parameter

C ¼ 0:1 for the two potentials. To allow a comparison, we

have taken the cubic root
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gð3Þðr; r; rÞ3

p
and the cubic root

of the triplet correlation function in the Kirkwood super-

position approximation

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g
ð3Þ
SAðr; r; rÞ

3

q
¼ gð2ÞðrÞ [11]. We

have obtained a very good agreement as it is shown in

Fig. 2.

To calculate the time auto-correlation functions D(t) and

C(t) we need to know the frequencies Zi (roots of the

algebraic cubic equations (36)) and the coefficients Ci (or

Di, respectively). They are expressed by three parame-

ters—the diffusion constant D, and the frequencies x0, x1

for the screened Debye potential and X0, X1 for the

screened Deutsch potential. The frequencies x0, X0 are

functions of the pair correlation function g2, whereas the

frequencies x1, X1 are functions of the triplet correlation

function g3. To calculate the frequencies x1 and X1 we

need the knowledge of the triplet correlation func-

tions.Table 1 shows the values of the diffusion coefficients

(D�
Debye and D�

Deutsch) (given in units of xpr
2
i ), for different

values of the coupling parameter C and different values of

the ratio ri=kT. We have compared D�
Debye and D�

Deutsch with

the diffusion coefficient computed by the simulation tech-

nique earlier by (M. A. Berkovsky) [14]. We note a good

agreement between Debye case and M. A. Berkovsky

simulation. So, there is a difference with the Deutsch

potential case. We also note that the coefficient D�
Deutsch

increases when ri=kT decreases in each coupling category

because it is related to the temperature contrary to the case

of Debye potential.

Table 1 C Dependence of the diffusion coefficients D� is given in

units of xpr
2
i

C ri=kT q T � 104 D�
Deutsch D�

Debye D� [14]

0.1 5.64 2�1020 15.73 277.59 153.29 –

1.33 1.14�1024 281 705.54

0.78 2.85�1025 821 1659.04

0.5 1.33 9.12�1021 11.26 44.83 7.80 8.71

0.78 2.28�1023 32.92 92.18

1.0 1.33 1.14�1021 2.81 13.89 2.787 2.64

0.78 2.85�1022 8.21 29.24

0.62 1.14�1023 13.05 41.48
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Table 2 shows the C dependence of x0, X0, x1 and X1

(in units of the OCP plasma frequency xp) and K. We show

that the results for the case of the Debye potential are

different from those obtained in the case of the screened

Deutsch potential. The comparison was made for different

values of the coupling parameter C and for different values

of the ratio ri=kT.
Figure 3 shows the time auto-correlation function of the

electric micro-field C(t) for different coupling parameter C
and different values of the ration ri=kT. We notice that the

time auto-correlation function of the electric micro-field C(t)

increases when the ratio ri=kT decreases. Furthermore, we

note that C(t) decreases up to zero in small time. This

indicates that the ratio ri=kT is small when the correlation

between the ions is very strong. Figure 4 shows the velocity

auto-correlation function D(t) for different coupling

parameters C and different ratios ri=kT. As it is clear, D(t)

increases when the ratio ri=kT decreases. Here we note that

the time auto-correlation function of the velocity D(t)

decreases up to zero in a long time. This indicates that the

ratio ri=kT is small when the correlation between the ions is

very strong. Therefore, the diffusion coefficient increases

when the time auto-correlation function of the velocity

D(t) is larger, because the diffusion coefficient D is equal to

the integral of D(t) [see Green–Kubo formula (37)].

Conclusion and perspectives

In this work, we have presented a model for the pair and

the triplet correlation function theoretically of a one-com-

ponent plasma at for weak and intermediate coupling C� 1

and for ri=kT � 1. This is done using the screened Debye

potential and the screened Deutsch potential. We have

Table 2 C dependence of x0,

x1 , are given in units of ion

plasma frequency xp

C ri=kT X0Deutsch x0Debye X1Deutsch x1Debye KDeutsch KDebye

0.1 5.64 0.254 0.553 16.416 92.92 49.89 573.63

1.33 0.102 7.39 15.74

0.78 0.067 6.008 19.44

0.5 1.33 0.172 0.538 4.65 11.58 10.79 39.46

0.78 0.113 4.28 10.29

1.0 1.33 0.202 0.498 3.75 6.04 8.19 17.49

0.78 0.134 3.63 8.27

0.62 0.111 3.81 9.38
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Fig. 3 Time dependence of the electric field correlation function for different coupling parameters C ¼ 0:1; 0:5; 1: and for different ri=kT and

different potentials. The time t is given in units of x�1
p
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found that the pair correlation function g2ðrÞ, for both

potentials, are rather close, but start to deviate from each

other when the coupling parameter C increases with a

decreasing ri=kT. Nevertheless, the use of the Deutsch

potential is preferable because it considers in more realistic

physics the short distance collisions, i.e. the collisions

occurring at distances smaller than the De Broglie wave-

length. In other hand, we have computed the dynamical

properties: the time auto-correlation function of the

velocity D(t) and the time auto-correlation function of the

electric micro-field C(t). We have noticed, when the ratio

ri=kT is small the correlation between the ions is very

strong. Therefore, the velocity auto-correlation function

D(t) and the electric field auto-correlation function C(t) are

large for a weak value of ri=kT. As a consequence, the self-
diffusion coefficient D is more important for the strongly

coupled plasmas.
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