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Abstract A relativistic traveling wave tube with thermal

plasma-filled corrugated waveguide is driven by a finite

solid electron beam with the entire system immersed in a

strong longitudinal magnetic field that magnetized plasma

and electron beam. The dispersion relation for the relativ-

istic traveling wave tube is obtained by linear fluid theory.

The numerical results show that the growth rate decreases

by increasing plasma temperature, waveguide radius,

plasma density and electron beam energy. As show in this

paper the effect of electron beam density and corrugation

period is to increase growth rate.

Keywords RTWT � Solid electron beam �
Thermal plasma � Dispersion relation � Growth rate

Introduction

Relativistic traveling wave tube (RTWT) is an important

high-power microwave (HPM) apparatus which has been

developed in the past 20 years [1–3]. Most of the TWT

mathematical analysis has been done by John Robinson

Pierce and his colleagues at Bell Labs [4–6] and then have

been developed by Chu, Jackson and Freund [7–9]. In

TWT, sinusoidal corrugated slow wave structure (SWS) is

used to reduce the phase velocity of the electromagnetic

wave to synchronize it with the electron beam velocity, so

that a strong interaction between the two can take place

[10, 11]. TWT is extensively applied in satellite and air-

borne communications, radar, particle accelerators,

cyclotron resonance and electronic warfare system. The

plasma injection to TWT has been studied recently which

can increase the growth rate and improve the quality of

transmission of electron beam. We investigate the effect

of thermal plasma and electron beam on the growth rate

[12–17].

In this paper, RTWT with magnetized thermal plasma-

filled corrugated waveguide with solid electron beam is

studied. The dispersion relation of corrugated waveguide is

derived from a solution of the field equations. By numer-

ical computation, the dispersion characteristics of RTWT

are analyzed in detail with different cases of various geo-

metric parameters of slow wave structure.

In ‘‘Physical model’’, the physical model of RTWT fil-

led with thermal plasma is established in an infinite lon-

gitudinal magnetic field. In ‘‘Dispersion equation’’, the

dispersion relation of RTWT is derived. In ‘‘Numerical

result and discussion’’, the dispersion characteristics of the

RTWT are analyzed by numerical computation.

Physical model

The analysis presented in this paper is based on the SWS

shown in Fig. 1. The SWS is a sinusoidal cylindrical

waveguide that consists of an axially symmetric.

R zð Þ ¼ R0 þ h cosðj0zÞ; ð1Þ
Kn ¼ kz þ nj0; ð2Þ

j0 ¼
2p
z0

; ð3Þ
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Cylindrical waveguide, whose wall radius R zð Þ; varies

sinusoidal according to the relation (1), h is the corrugation

amplitude, j0 ¼ 2p=z0 is the corrugation wave number,

and z0 is the length of the corrugation period, R0 is the

waveguide radius and kz is the axial number wave.

A finite solid relativistic electron beam with density nb

and radius Rb goes through the cylindrical waveguide,

which is loaded completely with thermal, uniform and

collisionless plasma of density np. The entire system is

immersed in a strong, longitudinal magnetic field, which

magnetizes both the beam and the plasma. Because of

being anisotropic of dielectric constant it will be a tensor.

In the beam-plasma case in a linearized scheme, the

dielectric tensor in cylindrical coordinates may be given

by:

e½ � ¼ e0

e1 e2 0

�e2 e1 0

0 0 e3

2
4

3
5; ð4Þ

We assume that B0 is very strong that e1 ¼ 1 and e2j j is

negligibly small.

e½ � ¼ e0 �

1 0 0

0 1 0

0 0 1� x2
b

c3 x� Knvð Þ2�3K2
n v2

thb

�
x2

p

x2 � 3K2
n v2

thp

2
6664

3
7775;

ð5Þ

e3 ¼ 1� x2
b

c3 x� Knvð Þ2�3K2
n v2

thb

�
x2

p

x2 � 3K2
n v2

thp

ð6Þ

Here, xp ¼ ðnpe2

me0
Þ1=2

is the plasma frequency, xb ¼
ðnbe2

me0
Þ1=2

is the beam frequency, x is the angular frequency

of the electromagnetic wave, c is the electron beam energy,

vthp
¼

ffiffiffiffiffiffi
KTp

m

q
is the thermal velocity of the plasma, vthb

¼
ffiffiffiffiffiffi
KTb

m

q
is the thermal velocity of the beam, v is the velocity

of the beam, Tb is the beam temperature, Tp is the plasma

temperature and K is the Boltzmann constant.

Dispersion equation

In the above physical model, its Maxwell equations can be

written as:

r� B ¼ �ix
c

e:E; ð7Þ

r � E ¼ ix
c

B; ð8Þ

r � B ¼ 0; ð9Þ
r � D ¼ 0: ð10Þ

Suppose that every variable can be regarded as:

A ¼ AeiðKnz�xtÞ: ð11Þ

From Eqs. (7) and (8), we can obtain:

rr � E �r2E ¼ x2

c2
e � E ð12Þ

r2Ez � ½r r � Eð Þ�z þ
x2

c2
e3Ez ¼ 0; ð13Þ

Now Substituting Eq. (6) into Eq. (13), we have:

r2Ez� ½r r � Eð Þ�z þ
x2

c2

� 1� x2
b

c3 x�Knvð Þ2�3K2
n v2

thb

�
x2

p

x2� 3K2
n v2

thp

 !
Ez ¼ 0

ð14Þ

From Eq. (10), we have:

r � e3Ez ¼ 0: ð15Þ

Substituting Eq. (6) into Eq. (15), we obtain:

r � Ez ¼
o

oz
Ez

x2
b

c3 x� Knvð Þ2�3K2
n v2

thb

þ
x2

p

x2 � 3K2
n v2

thp

" #
:

ð16Þ

From Eqs. (13) and (16), the wave equation is obtained

in the area of plasma beam as follows:

r2
? þ

x2

c2
�K2

n

� ��

� 1� x2
b

c3 x�Knð Þ2�3K2
n v2

thb

�
x2

p

x2� 3K2
n v2

thp

 !#
Ez; ð17Þ

r2
? ¼ r2 � o2

oz2
: ð18Þ

Ez r; zð Þ ¼ Ezn rð Þei Knz�xtð Þ; ð19Þ

Er r; zð Þ ¼ iKn

x2

c2 � K2
n

eiðKnz�xtÞ dEzn

dr
: ð20Þ

Fig. 1 Slow wave structure model of a plasma-filled relativistic

traveling wave tube
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We investigate a ground state (n = 0) to solve the

equation. With substituting Eq. (19) into Eq. (17), we

have:

Ezn ¼
A0J0 T1rð Þ 0� r�Rb;
B0J0 T2rð Þ þ C0N0 T2rð Þ Rb� r�R zð Þ;

�
ð21Þ

T2
1 ¼

x2

c2
� K2

n

� �

� 1� x2
b

c3 x� Knvð Þ2�3K2
n v2

thb

�
x2

p

x2 � 3K2
n v2

thp

 !
;

ð22Þ

T2
2 ¼

x2

c2
� K2

n

� �
1�

x2
p

x2 � 3K2
n v2

thp

 !
: ð23Þ

The field components must satisfy the following conti-

nuity equations (first boundary condition):

Ez r ¼ R�b
� �

¼ Ez r ¼ Rþb
� �

; ð24Þ

Er r ¼ R�b
� �

¼ Erðr ¼ Rþb Þ: ð25Þ

As a result, the field components are obtained as follows:

B0 ¼ �
p
2

Rbs0A0; ð26Þ

C0 ¼ �
p
2

Rbl0A0; ð27Þ

where

s0 ¼ T2J0ðT1RbÞN1ðT2RbÞ � T1J1ðT1RbÞN0ðT2RbÞ; ð28Þ
l0 ¼ T1J0ðT2RbÞJ1ðT1RbÞ � T2J0ðT1RbÞJ1ðT2RbÞ: ð29Þ

At the perfectly conducting corrugated waveguide sur-

face (Second boundary condition), the tangential electric

field must be zero,

Ez r ¼ R zð Þð Þ þ Er r ¼ R zð Þð Þ dR zð Þ
dz
¼ 0: ð30Þ

With substituting Eqs. (19), (20) and (21) into Eq. (30),

we investigate second boundary condition in ground state

(n = 0) to achieve the dispersion equation.

B0J0 T2R zð Þð Þ þ C0N0 T2R zð Þð Þei K0z�xtð Þ þ iK0

x2

c2 � K2
0

ei K0z�xtð Þ

� d

dR zð Þ B0J0 T2R zð Þð Þ þ C0N0 T2R zð Þð Þei K0z�xtð Þ
h i

� dR zð Þ
dz
¼ 0; ð31Þ

Using the factorization of Eq. (31) and substituting B0

and C0, we obtain:

� ei K0z�xtð Þ p
2

RbA0 1þ iK0

x2

c2 � K2
0

d

dz

 !

� s0J0 T2R zð Þð Þ þ l0N0 T2R zð Þð Þ½ � ¼ 0: ð32Þ

D�A ¼ DnAn ¼ D0A0 ¼ 0; ð33Þ

‘‘A’’ is a vector with element A0 and ‘‘D’’ is a matrix with

element D0. With the help of derivative of Bessel functions,

the dispersion relation can be obtained as, [18–22]

D0 ¼ 1þ iK0

x2

c2 � K2
0

 !
� ½T2hj0 s0J1 sinðj0zð Þ

þ l0N1 sinðj0zÞÞ� ð34Þ

Numerical result and discussion

The analysis of the dispersion relation is obtained by

Eq. 34. First, we consider the dispersion analysis in the

absence of the electron beam.

Fig. 2 Variation of normalized

frequency Re x
cj0

	 

with

normalized wave number kz

j0

	 


for several values of the

corrugation period. The chosen

parameters are as follows: np ¼
3� 1011; R0 ¼ 1:60; h ¼ 0:7

and Tp ¼ 30� 108
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Fig. 3 Variation of normalized

frequency Re x
cj0

	 

with

normalized wave number kz

j0

	 


for several values of the plasma

temperature. The chosen

parameters are as follows: np ¼
3� 1011;R0 ¼ 1:60; h ¼
0:7; Rb ¼ 0:7; z ¼ 0:33 and

z0 ¼ 0:66

Fig. 4 Variation of normalized

frequency Re x
cj0

	 

with

normalized wave number kz

j0

	 


for several values of the

waveguide radius. The chosen

parameters are as follows: np ¼
3� 1011; h ¼ 0:7; Rb ¼
0:7; z ¼ 0:33; Tp ¼ 30� 108

and z0 ¼ 0:66

Fig. 5 Variation of normalized

frequency Re x
cj0

	 

with

normalized wave number kz

j0

	 


for several values of the plasma

density. The chosen parameters

are as follows: R0 ¼ 1:60; h ¼
0:7;Rb ¼ 0:7; z ¼ 0:33; z0 ¼
0:66 and Tp ¼ 30� 108
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Figure 2 shows the variation of normalized frequency

Re x
cj0

	 

versus wave number kz

j0

	 

for several values of

the corrugation period z0ð Þ. As seen in this figure the effect

of z0 is to increase the frequency.

The effect of the plasma temperature on the frequency

of the system as a function of kz is shown in Fig. 3. This

figure shows that the effect of plasma temperature increa-

ses the frequency. This effect is in good agreement with the

thermal plasma dispersion relation x2 ¼ x2
p þ 3k2

z v2
th.

The effect of waveguide radius on the frequency of the

wave as a function of kz is shown in Fig. 4. As illustrated in

this figure, the frequency decreases with increase in the

waveguide radius. The phase velocity of the system

decreases by increasing the radius. It may be cause to the

wave exit from the resonant condition.

Variations of the frequency as a function of the wave

number for different values of the plasma density are

shown in Fig. 5. It is clear that from the Fig. 5, the effect of

plasma considerably increases the frequency. This effect is

in good agreement with the simple relation of the plasma

(x2 ¼ x2
p þ 3k2

z v2
th).

Now, we consider the analysis of the growth rate in the

presence of the electron beam.

It is clear that from Fig. 6, the growth rate increases by

increasing the corrugation period. The increase in the

corrugation period helps the wave to be included in the

resonant condition and finally increases the growth rate.

Fig. 6 Variation of the

normalized growth rate Im x
cj0

	 


with normalized wave number
kz

j0

	 

for several values of the

corrugation period. The chosen

parameters are as follows: c ¼
1:001; h ¼ 0:7;R0 ¼ 1:6;Rb ¼
0:7; z ¼ 0:33; nb ¼
10� 1011; np ¼ 3� 1011;Tp ¼
30� 108 and Tb ¼ 20� 107

Fig. 7 Variation of the

normalized growth rate Im x
cj0

	 


with normalized wave number
kz

j0

	 

for several values of the

plasma temperature. The chosen

parameters are as follows: np ¼
3� 1011; h ¼ 0:7;R0 ¼
1:6; z ¼ 0:33; c ¼ 1:001; z0 ¼
0:66; nb ¼ 10� 1011 and

Tb ¼ 20� 107
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It is clear that from Fig. 7, the plasma temperature

considerably decreases the growth rate. By increasing the

plasma temperature, the electrons exit from the resonant

condition and finally decrease the growth rate.

As seen in Fig. 8, the growth rate decreases by

increasing the R0. The waveguide radius has the

important role in the determination of wave phase

velocity. According to the Fig. 4, the phase velocity

decreases by increasing the radius, and as seen in Fig. 8

the growth rate decreases by increasing the radius. By

decreasing the phase velocity the wave exits from res-

onant condition.

The effect of the plasma density on the growth rate of

the system as a function of the wave number is shown in

Fig. 9. It is clear that in this frequency range the effect of

plasma density is to decrease the growth rate of the sys-

tem. According to the Fig. 5, the phase velocity increases

by increasing the plasma density. By increasing the

plasma density the wave exit from the resonant condition

and finally the growth rate decreases.

It is clear that from Fig. 10, because of bunching effect,

the increasing e-beam density increases the growth rate. As

seen from Fig. 11, because of the synchronism condition, the

effect of electron beam energy is to decrease the growth rate.

Fig. 8 Variation of the

normalized growth rate Im x
cj0

	 


with normalized wave number
kz

j0

	 

for several values of the

waveguide radius. The chosen

parameters are as follows: np ¼
3� 1011; h ¼ 0:7; Tp ¼
30� 108;Rb ¼ 0:7; z ¼
0:33; c ¼ 1:001; z0 ¼ 0:66; nb ¼
10� 1011 and Tb ¼ 20� 107

Fig. 9 Variation of the normalized growth rate Im x
cj0

	 

with normalized wave number kz

j0

	 

for several values of the plasma density. The chosen

parameters are as follows: R0 ¼ 1:6; h ¼ 0:7;Tp ¼ 30� 108;Rb ¼ 0:7; z ¼ 0:33; c ¼ 1:001; z0 ¼ 0:66; nb ¼ 10� 1011 and Tb ¼ 20� 107
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Conclusions

In this paper, useful results are obtained as:

1. In the absence of the electron beam, the frequency

increases by increasing the length of the corrugation

period, plasma temperature and plasma density.

2. The frequency decreases by increasing the waveguide

radius in the absence of the electron beam.

3. In the presence of the electron beam, the increase in

the corrugation period and e-beam density help the

wave to be included in the resonant condition and

finally increase the growth rate.

4. The growth rate decreases by increasing the plasma

temperature, waveguide radius, plasma density and

e-beam energy and decreases the phase velocity. By

decreasing the phase velocity the wave exits from

resonant condition.

Open Access This article is distributed under the terms of the

Creative Commons Attribution License which permits any use, dis-

tribution, and reproduction in any medium, provided the original

author(s) and the source are credited.
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