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Abstract Considering the dynamics of geometry and the

matter fields, dynamical equations of geometry and the

matter fields are re-derived. The solutions of these equa-

tions are studied. We focus on a charged particle and

explain the axiomatic approach to drive the electromag-

netic self-force on its motion, then the energy conservation

is considered. A new mathematical concept, which is

introduced in axiomatic approach in general, is discussed.

Keywords Charged particles motion � Curved space �
Radiation

Introduction

In considering the plasma around a neutron star, we

encounter a charged gas in the curved space. In statistical

formalism of such problem usually we just need the first

velocity moment of Vlasov or Boltzmann equation. In the

equation of first velocity moment we study the average

motion of particles in all elements. It is clear that every

particle’s trajectory is not in full adjustment to the ele-

ment’s trajectory. Some physical phenomena come back to

this mismatching. For example, the first velocity moment

cannot explain the Landau damping. Apart from this, the

very charged particle motion is an important problem that

contains some mathematical complexity. Radiation field of

a charged particle motion in curved space, in general, can

be divided into two parts: electromagnetic field and grav-

itational field. In this paper we only consider the first one.

The solution of Maxwell’s equation depends on several

parameters, e.g., on the presence of other charged particles

and the spacetime geometry. We focus on a particle that,

even small, changes the spacetime geometry. One of the

known ways to solve the differential equations is the use of

Green functions. The Green functions that is appropriate

for our problem are bitensors. Bitensor is a mathematical

object that is defined in two distinct points of a manifold.

The method we specially focus on it using another math-

ematical object: difference of two tensors belonging to two

distinct tangent spaces. In this manner we come to a new

mathematical concept in the formulation of the problem.

These new mathematical concepts need further research

and studies. We discuss some aspects of these new con-

cepts in this paper. Our paper contains following aspects.

First we describe the charge particle motion in the curved

spacetime and discuss some of its complexities then in

Sect. 3, the electromagnetic self-force is discussed by

axiomatic approach. In Sect. 4, the Conservation of energy

is considered that is the extension of energy conservation

theorem to the curved space. Finally, in Sect. 5 we have

discussed the new mathematical concepts that are intro-

duced in the problem.

Particles motion in the curved space

To avoid the complexity of extended charged matters, we

turned to the point particles. We can principally obtain the

extended matter’s fields from point’s field (even it is not
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the case for gravitational waves, because the Einstein

equations are not linear). Choice of the point assumption

causes a problem: the point matters are not compatible with

general relativity, because it creates black hole (a spherical

matter distribution with the fixed mass and charge when its

radius vanishes becomes a black hole). On the other hand,

we have point particle in the world (leptons). Thus the

general relativity is not a complete theory by itself, it needs

to join with the quantum theory, i.e., we need quantum

gravity. So far we have two candidates for quantum grav-

ity: string theory and loop quantum gravity. In the first one,

we exclude the point concept and introduce the extended

object (string). In the second one, we exclude the contin-

uum structure of spacetime and introduce the spacetime

network instead of manifold structure. In the present paper,

we study some small distribution of matter to simplify our

considerations.

In the absence of the interaction between matter field,

particle and radiation, the action is given by:

S ¼ SGravity þ SMatter þ SRadiation þ SSingle Particle

¼ � 1

16pG

Z ffiffiffiffiffiffiffi�g
p

Rdxþ
Z

L
ffiffiffiffiffiffiffi�g

p
dx

þ
Z �1

4
FabF

ab ffiffiffiffiffiffiffi�g
p

dxþ
Z

ds:

ð1Þ

L is the Lagrangian density of the matter field. The

dynamical variable in the SGravity is the metric glm, in the

SMatter is the /ðxÞ (matter field), in the SRadiation is AlðxÞ
(Maxwell field) and in the last term is xðsÞ (particle’s path).
Minimizing the action (1) with respect to glm gives the

Einstein’s equations:

Glm ¼ 8pTlmjMatter þ 8pTlmjRadiation þ 8pTlmjSingle Particle
ð2Þ

Glm is Einstein’s tensor. It is obvious that both matter and

the radiation, and of course the presence of the particle,

contribute in the forming of the metric. Minimizing the

action (1) with respect to /ðxÞ give the Euler–Lagrange

Eq. for /;

dSjwith respect to / ¼ 0 ) ra
oLm

o/;a
� oLm

o/a
¼ 0: ð3Þ

Minimizing the action (1) relative to Al give the Euler

equation for the Maxwell field:

dSjwith respect to A ¼ 0 ) ra
oLr

oA;a
� oLr

oAa
¼ 0

) hAa � Ra
bA

b ¼ 0;

ð4Þ

whereh ¼ gabrarb is the covariant wave operator and R
a
b

is the Ricci tensor. Note the presence of metric in both of

Eqs. (3) and (4). Note also that the matter contributes in the

formation of the metric (Eq. 2). Then even the non-charged

matter creates electromagnetic fields, this was the point

that motivated Einstein to join electromagnetism with the

gravity because one of them creates the other. Minimizing

the action (1) with respect to xðsÞ gives the geodesic of the
glm manifold:

rUU ¼ 0 ) €xa þ Ca
bc _x

b _xc ¼ 0 ðU is the four�velocityÞ:
ð5Þ

It is seen the path of particle is the geodesic of the mani-

fold, namely the manifold that the particle itself contributes

in its metric formation (Eq. 2)! The action (1) is a non-

interacting action, namely the fields are free but, as we

have seen, the nature of gravity is such that even the non-

interacting action has the interacting behaviors: non-grav-

itational fields contribute in the creation of metric and this

metric contribute in the other fields and this is the inter-

action between the fields and the particle with the metric!

However, it is not the only possible interaction. Actually it

is the possible minimum interaction. If the interaction

terms are added, we have:

S ¼ SGravity þ SMatter þ SRadiation þ SSingle Particle

þ SA and x interaction þ SA and / interaction;
ð6Þ

where SA and x interaction is the action term of interaction of

electromagnetic and one charged particle and

SA and / interaction is the action term of interaction of elec-

tromagnetic and matter field. What about the gravity–

gravity interaction term namely SG and G interaction? Let us

first continue without this term. With the interaction (6),

Eqs. (3), (4) and (5) are modified. Note that Eq. (2) is not

changed but Eqs. (3) and (4) will have the right term, for

example Eq. (4) will get the new form

hAa � Ra
bA

b ¼ �4pJaj/ field � 4pJajSingle particle; ð7Þ

namely the charged matter enters as currents to create the

electromagnetic fields. Finally, Eq. (5) became

€xa þ Ca
bc _x

b _xc ¼ e

m
Fa
bU

b: ð8Þ

This means that the particle’s path is no longer a geo-

desic. It is seen that dynamical structure is more funda-

mental than the geometrical concepts! Here the path of

particle is not a geodesic. The path of particle is obtained

by the minimizing the appropriate action. Then the action

approach is more general than the geometrical approach.

We can design a suitable Lagrangian for an electromag-

netic field and represent the whole theory in a mechanical

manner.
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Let us continue. General relativity has introduced the

notions of geodesic and metric instead of acceleration and

force, but we can continue the same classical notions. For

this, we rewrite the geodesic equation in the following

manner:

UlrlU ¼ 0 ¼) dxl

ds
rlU ¼ 0 ¼) dxl

ds
dUa

dxl
þ Ca

lmU
m

� �
¼ 0

¼) d2xa

ds2
þ dxl

ds
Ca
lmU

m ¼ 0 ¼) m0

d2xa

ds2
¼ �m0

dxl

ds
Ca
lmU

m:

ð9Þ

Thus, we can interpret the right hand side as gravitational

force. Note that the radiation, matter and the single particle,

all of these contribute in formation of this force because all

of them contribute in making the Ca
lm tensor. In the pres-

ence of the interaction, from Eq. (8), the particle’s path can

be written as:

rUP
a ¼ eFa

bP
b ¼) m0€x

a ¼ �m0C
a
bc _x

b _xc

þ eFa
bU

b ðPisthefour�momentumÞ:
ð10Þ

It is seen that electromagnetic force has appeared twice:

once, implicitly in determining the C (the first term in the

right) and the second times as the explicit term (second

term in the right). However, in the literature usually when

speaking about the force, it means only the explicit force,

namely:

f ¼ eFa
bU

b ¼ rUP
a: ð11Þ

Now we come back to our question about the

SG and G interaction term. It is known that the gravity has

energy [1], then it can create gravity. It is the one of the

nonlinear features of gravity (other nonlinearity aspect of

gravity is the very nonlinearity of Einstein’s tensor). But

there is no such thing as energy tensor for gravity. This is

because according to equivalence principle, we can choose

a locally flat spacetime such that the gravitational energy

vanishes. But if a tensor is zero in one frame it is so in all

frames. Thus we must take into account the gravitational

energy in some different sort. Such consideration is

important in some cosmological large-scale structure [2].

Here, we work in some smaller scales such that this non-

linearity aspect is absent.

Electromagnetic self-force in axiomatic approach

To obtain first the radiation field of a point charged particle

we must solve Eq. (7) for one particle source, namely:

hAa � Ra
bA

b ¼ �4pJajSingle particle ; ð12Þ

where the source is singular at the particle position and

vanishes elsewhere. The singular behavior of the source

term enters into the solution and the field will be singular at

the position of particle. We can regularize the infinity at the

particle’s mass and obtain normal value for the self-force.

Such procedure is equivalent to using the regular potential

rather than the usual retardation potential [3]:

AR ¼ 1

2
ðAret � AadvÞ; ð13Þ

where Aret and Aadv are the retarded and advanced potential,

respectively. Both of these fields are singular at the parti-

cle’s position, but the AR field is not (because it is the

difference of two singular fields). Actually the regular

potential satisfies the homogenous equation, hence its

regular behavior is not surprising:

hAa
R � Ra

bA
b
R ¼ 0: ð14Þ

Historically Dewitt and Brehme [5] extended the Dirac’ flat

space result for the radiation of charged point particle [4].

Their result in normal coordinate is (corrected by Hobbs

several years after that [6]):

F�
a0b0 ¼ 2e½r�2u½a0Xb0� �

1

2
r�1ðaaXaÞu½a0Xb0 �

þ 1

2
r�1a½a0ub0 � þ

3

8
ðaaXaÞ2u½a0Xb0�

� 1

6
uaubXcXdRacbdu½a0Xb0� �

3

4
ðaaXaÞa½a0ub0 �

þ 1

6
X½b0Ra0 �rasu

aXrXs þ 1

8
u½a0Xb0�a

2 � 1

2
_a½a0Xb0 �

� 2

3
_a½a0ub0� þ

1

12
u½a0Xb0�R� 1

12
u½a0Rb0 �cX

c

þ 1

2
X½a0Rb0 �cu

c þ 1

12
u½a0Xb0 �RcdX

cXd

þ 1

2
R½a0 jcjb0�du

cXd � 1

12
u½a0Xb0 �Rcdu

cud

þ 1

6
u½a0Rb0�cd�u

cudX� � 1

3
u½a0Rb0 �cu

c�

� e

Z �1

s�
r½b0G

�
a0 �a00u

a00 ðs00Þds00 þ OðrÞ

ð15Þ

The last term, tail term, represents the failure of Huygens

principle. In the this equation e is the particle’s charge, r

the distance from particle position (affine parameter of

space-like curve from the particle position to observation

point), a the particle’s acceleration, _a the time derivative of

acceleration and the others are some geometrical quanti-
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ties. At the particle’s position the first three terms of above

equation are singular and the rest are regular. It is seen that

these singular terms depend only on four-velocity and four-

acceleration and nothing else such as curvature or deriva-

tive of acceleration. Thus with the equal velocity and

acceleration, in the difference of two such expression the

singular terms can be eliminated. Actually the force exer-

ted on these two particles have the same infinity structure

such that in the difference they will be canceled. Thus in

our particle size limit we can postulate the following

axioms [7]:

Electromagnetic Axiom 1 (Comparison axiom) Consider

two points, P and eP, each lying on time-like world lines in

possibly different spacetimes which contain Maxwell fields

Fab and eFab sourced by particles of charge e on the world

lines. If the four-accelerations of the world lines at P and eP
have the same magnitude, and if we identify the neigh-

borhoods of P and eP via Riemann normal coordinates such

that the four-velocities and four-accelerations are identi-

fied, then the difference in the electromagnetic forces f aEM

and ef aEM is given by the limit as r ! 0 of the Lorentz force

associated with the difference of the two fields averaged

over a sphere at geodesic distance r from the world line

at P.

f aEM � ef aEM ¼ limr!0ðehFab � eFabiÞub ð16Þ

As an application of above axiom, we can compare the

force applied on a charged particle in an arbitrary space-

time to Minkowski spacetime. It is a good choice to con-

sider field which its force approaches to zero. The

symmetry consideration shows that the force of the sym-

metric field, Fab ¼ 1
2
ðF�

ab þ Fþ
abÞ, may vanish. Thus we

accept the following axiom [7]:

Electromagnetic Axiom 2 (flat spacetime axiom) If

ðM; gabÞ is Minkowski spacetime, the world line is uni-

formly accelerating, and Fab is the half-advanced, half-

retarded solution, Fab ¼ 1
2
ðF�

ab þ Fþ
abÞ then f a ¼ 0 at every

point on the world line.

To obtain the Fab, we can simply use Eq. (15) with the

tail term and delete all terms that contain the curvature.

Then we obtain the following expression for a charged

particle self-force in an arbitrary spacetime:

f aEM ¼ eðFinÞabub þ
2

3
e2ð _aa � a2uaÞ

þ 1

3
e2ðRa

bu
b þ uaRbcu

bucÞ

þ e2ub

Z s�

�1
r½bðG�Þa�c

0
uc0 ðs0Þds0

ð17Þ

where ðFinÞab ¼ Fab � ðF�Þab: Equation (17) is the same

as the result that Dewitt and Brehme [5] gave before, but

here we derive it with the less and easy manipulation.

With the given force we can simply drive an expression

for acceleration:

a ¼ f aEM
m

ð18Þ

But the right hand side depends on acceleration too! There

is a known recipe to solve it. In the same manner as Born

series in scattering, we can substitute the acceleration in the

right side from the left side and iterate this work. Then we

obtain the following expression for the first several terms in

that series:

aa ¼ e

m
ðFinÞabub þ

2

3

e2

m
ð e
m
ucrcðFinÞabub

þ e2

m2
ðFinÞabFin

bcu
c � e2

m2
uaðFinÞbcucFin

bdu
dÞ

þ 1

3

e2

m
ðRa

bu
b þ uaRbcu

bucÞ

þ e2

m
ub

Z s�

�1
r½bðG�Þa�cucðs0Þds0 ð19Þ

Conservation of energy

In our problem the total energy of the system is:

ETotal ¼ EParticle þ EGravity þ EElectromagnetism

þ EInteraction of one particle to EM field:
ð20Þ

For the energy concept to be a reasonable concept, the

spacetime must have the time-like Killing vector [8]. Even

for such spacetime it is practically hard to write explicitly

an energy expression for every term in the right had side of

Eq. (20). For example, for EParticle we need to exactly know

spacetime metric, one metric that the particle has some role

in creation of it! However, in some asymptotical case, there

exists a simple relation. For example, for asymptotically

flat spacetime in the comparison of the initial and final

energy we have:

DEParticle þ DEElectromagnetism þ DEParticle�Electromagnetism Interaction ¼ 0:

ð21Þ

It have been proved that [9]:Z
Iþ

taTabe
b
cde �

Z
I�

taTabe
b
cde ¼

Z
M

tafads; ð22Þ

where ta is time-like Killing vector, Iþ(I�Þis space-like

hyper-surface at t ! þ1(t ! �1), Tab the particle’s

energy momentum tensor and fa the electromagnetic self-

force, i.e., Eq. (17). The left hand side of this equation is

the change in particle’s energy and the right hand side is

the work done on it. It simply means:

DEParticle þ DEParticle�Electromagnetism Interaction ¼ 0: ð23Þ
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There is no electromagnetic energy change and no gravi-

tational energy change: MEG ¼ 0;MEEM ¼ 0:

Results and discussion

The radiation of charged particles in curved space is an

important subject in general relativistic kinetic theory. In

formulating it, we see the nonlinear nature of general rel-

ativity that comes through two ways. We have seen that

even the non-interacting particles have some kind of

interaction: the particle changes the geometry and the new

geometry acts on other particles motion. The general rel-

ativity replaces geodesic with old Newtonian concept, i.e.,

the force. However, we can use the force concept as before.

This issue is based on a fundamental fact: the algebraic

methods (the mechanical approach) is more generic than

geometric method. Where the Einstein’s geodesic method

fails, the dynamical approach works. The radiation of

charged particle in curved space like any plasma problem is

the simultaneous solving of several equations: the set of

Maxwell equations, the particles motion equations and the

geometry equations. With some conditions, like the fixed

background assumption, we need to solve the two sets of

these three sets. However, we can solve these sets with the

usual methods such as the Green function method and so

on; we confront a new mathematical concept in the Green

function method, the bitensor. In general, the physical

quantities are the local concepts that belong to the tangent

space of every spacetime points. Even the definition of

derivative that is the comparison of quantities at two dif-

ferent points must be changed to become a local quantity.

But the bitensors are not a local quantity. A bitensor is not

built simply by juxtaposing of two tangent space quantities

but these quantities multiplied as the numbers, thus this

juxtaposing is not the direct product or tensor product!

These new manipulations of geometrical quantities enter

again in the axiomatic approach. In this paper, we focused

on axiomatic approach to obtain the self-electromagnetic

force. We have seen in this approach we need to subtract

the geometrical quantities belong to two different mani-

folds. In the bitensor approach, the product quantities

belong to different points of one manifold, but in the

axiomatic approach these two points belong to different

manifolds. Thus the operations are not simply juxtaposing

the quantities or anything else but the difference of these

quantities! In physical point of view, when we can subtract

two quantities which are the same kinds also must have

equal dimension. Thus here that we are subtracting two

things belong to different manifolds, we come to a new

concept that needs more investigations. This is a new

geometrical concept. We may ask some questions: can we

make these subtracted quantities a new tensorial quantity

by suitable assumptions about each quantity? If such

extension is present, what is the derivative of it?... We see

that there are some technical questions about these new

quantities that need some further researches.

Conclusions

To obtain electromagnetic radiation of a charged particle in

curved space, we must solve the differential equation of

electromagnetic potential AlðxÞ with the single particle

source term. The traditional ways to do it are the method of

Green function and the conformal mapping method [10].

Since the self-field and the self-force become infinity, we

must then regularize them by renormalized mass. After that

we obtain finite values for the field and force. The energy

conservation can be obtained with some subtlety. In curved

space we can reobtain the energy work theorem. In a

parallel and equivalent manner with some assumption

about space-time manifold, we can obtain aforementioned

result but with very less calculation. This parallel approach

is the axiomatic approach. In this approach, we compare

tensorial object belonging to two different manifolds. The

comparison of tensorial object belonging to a specific

manifold are well known. But comparison of quantities that

belong to two different manifolds is new. This new phe-

nomenon is very interesting and valuable for further

researches.
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