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Calculation of state energy of (2n+1)-fold wells
using the spectral properties of supersymmetry
shape-invariant potential
Marjan Tavakkoli
Abstract

Shape invariance is an important factor of many exactly solvable quantum mechanics. Several examples of
shape-invariant ‘discrete quantum mechanical systems’ are introduced and discussed in some detail. We present
the spectral properties of supersymmetric shape-invariant potentials (SIP). Here we are interested in some
time-independent integrable systems which are exactly solvable owing to the existence of supersymmetric
shape-invariant symmetry. In 1981 Witten proposed (0+1)-dimensional limit of supersymmetry (SUSY) quantum
field theory, where the supercharges of SUSY quantum mechanics generate transformation between two
orthogonal eigenstates of a given Hamiltonian wit degenerate eigenvaluesfor the non-SIP as very few lower
eigenvalues can be known analytically, which are small to calculate spectral fluctuation.
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Introduction
Many exactly solvable quantum mechanical systems, for ex-
ample, the harmonic oscillator without/with a centrifugal
potential, the Coulomb problem, etc., are shape invariant
[1]. Energy level statistics is one of the most important and
well-studied characteristics of quantum systems. This prob-
lem has recently attracted new interest in different contexts
because it indicates the type of motion in a quantum sys-
tem. One of the main problems involved in many physical
processes is the energy state difference between the ground
state and first excited state for potential wells. This is gener-
ally solved using the approximation methods [1]. In this
paper, we calculate these difference values for threefold,
fivefold, and sevenfold potential wells using supersymmetry
in quantum mechanics (SUSYQM). We finally generalize it
to find a relation for (2n+1)-fold wells.
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Factorization of SUSY Hamiltonian and shape
invariance condition
Let us now explain precisely what one means by shape in-
variance. If the pair of SUSY partner potentials V1,2(x) de-
fined in Equation 1 is similar in shape and differs only in
the parameters that appear in them, then they are said to
be shape invariant [2-5]. The Hamiltonian of SUSYQM is
given by

H ¼ H1 0
0 H2

� �
ð1Þ

where

H1;2 ¼ � d2
dx2

þ V1;2 xð Þ ð2Þ

V1;2 ¼ W 2∓ _W xð Þ: ð3Þ

W(x) is called superpotential. Then the supercharges
are as follows:

Q ¼ 0 0
A 0

� �
Qþ ¼ 0 Aþ

0 0

� �
ð4Þ

and
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A ¼ d
dx

þW xð Þ Aþ ¼ � d
dx

þW xð Þ: ð5Þ

Then it is easy to present H1,2 as the factorization

H1 ¼ AþA H2 ¼ AAþ ð6Þ

W xð Þ ¼ � _ψ1
0

ψ1
0 xð Þ ð7Þ

and

Qþ;Qþf g ¼ Q;Qf g ¼ 0 Q;Qþf g ¼ H : ð8Þ

More precisely, if the partner potentials V1,2 (x,a1) sat-
isfy the condition

V2 x; a1ð Þ ¼ V1 x; a2ð Þ þ R a1ð Þ ð9Þ

where a1 is a set of parameters, a2 is a function of a1 (a2 = f
(a1)), and the remainder R(a1) is independent of x, then V1

(x,a1) and V2(x,a1) are said to be shape invariant. The shape
invariance condition is an integrability condition [6,7].

Shape invariance and solvable potentials
We start from the SUSY partner Hamiltonians H1 and H2

whose eigenvalues and eigenfunctions are related by
SUSY. Since SUSY is unbroken, we know that

E1
0 a1ð Þ ¼ 0;ψ1

0 x; a1ð Þ

¼ Nexp �
Zx
0

W1 y; a1ð Þdy
2
4

3
5: ð10Þ

We now show that the entire spectrum of H1 can be
very easily obtained algebraically using the shape invari-
ance condition (10). To that purpose we construct a
series of Hamiltonians Hs, s = 1,2,3,. . .. On repeatedly
using the shape invariance condition, it is then clear that

Hs ¼ � d2

dx2
þ V1 x; asð Þ þ Σs�1

k¼1R akð Þ ð11Þ

where as = f s−1(as), i.e., the function f applied s − 1
times. Let us compare the spectrum of Hs and Hs+1. In
view of Equations 9 and 10, we have
Hsþ1 ¼ � d
dx2

þ V1 x; asþ1ð Þ þ Σs
k¼1R akð Þ

¼ � d
dx2

þ V2 x; asð Þ þ Σ � 1sk¼1R akð Þ: ð12Þ

Thus, Hs and Hs+1 are SUSY partner Hamiltonians and
hence have identical bound state spectra for the ground
state of Hs whose energy is

Es
0 ¼ Σs�1

k¼1R akð Þ: ð13Þ

This follows from Equation 12 and the fact that E0
1 = 0.

On going back from Hs to Hs−1 etc., we would eventually
reach H2 and H1 whose ground state energy is zero and
whose nth level is coincident with the ground state of the
Hamiltonian Hn [5,6]. Hence, the complete eigenvalue
spectrum of H1 is given by

E�
n a1ð Þ ¼ Σn

k¼1R akð Þ; E�
0 a1ð Þ ¼ 0: ð14Þ

In Table 1, we give expressions for the various shape-
invariant potentials V1(x), superpotentials W(x), parameters
a1and a2, and the corresponding energy eigenvalues En

1.
Two remarks are in order at this time [8-12]:

1. In this section, we have used the convention of ℏ = 2
m = 1. It would naively appear that if we had not put
ℏ = 1, then the shape-invariant potentials as given in
Table 1 would all be ℏ -dependent. However, it is
worth noting that in each and every case, the ℏ -
dependence is only in the constant multiplying the x-
dependent function so that in each case we can
always redefine the constant multiplying the function
and obtain an ℏ -independent potential.

2. It may be noted that the Coulomb and the harmonic
oscillator potentials in n-dimensions are also shape-
invariant potentials.

From 1987 until 1993, it was believed that the only
shape-invariant potentials were those given in Table 1
and that there was no more shape-invariant potentials.
Many of these potentials are reflectionless and have an
infinite number of bound states. So far, none of these
potentials have been obtained in a closed form, and they
are obtained only in a series form [3,13-15].

State energy of (2n+1)-fold wells using the
spectral properties of supersymmetry shape-
invariant potential
We see that spectral properties of supersymmetry shape-
invariant potential are a necessary condition for unbroken



Table 1 Expressions for various shape-invariant potentials, superpotentials, parameters a1 and a2, and the
corresponding energy eigenvalues

Potential W(x) V1(x,a1) a1 a2 Eigenvalue En
1 Variable y Wave function ψn(y)

3-D
oscillator

1
2wr � lþ1ð Þ

r
1
4w

2r2 þ l lþ1ð Þ
r2 � l þ 3

2= Þwð L l +
1

2nw y ¼ 1
2wr

1 y
lþ1ð Þ
2 exp � 1

2 y
� 	

L
Lþ1

2
n yð Þ

Coulomb e2
2 lþ1ð Þ � lþ1ð Þ

r � e2
r þ l lþ1ð Þ

r2 þ e4

4 lþ1ð Þ2
L l +

1

e4

4 lþ1ð Þ2 � e4

4 nþlþ1ð Þ2 y ¼ re2
nþlþ1ð Þ ylþ1exp � 1

2 y
� 	

L 2lþ1ð Þ
n yð Þ

Morse A − Bexp
(−αx)

A2 þ B2exp �2ð αxÞ
�2B Aþð α=2Þexp �ð αxÞ

A A –
α

A2 − (A − nα)2 y ¼ 2B
α
e�αxs ¼A



α ys�nexp � 1

2 y
� 	

L2s�2n
n yð Þ

Scarf I Atan αx −
Bsec αx

�A2 þ B2 þ A2�ð AαÞsec2αx
�B 2A�ð αÞtanαx secαx

A A
+α

(A+nα)2 − A2 y ¼sin αr
s ¼ A

α; λ ¼ B
α=


 1� yð Þ
s� λð Þ
2 1þ yð Þ

sþ λð Þ
2

�P

s� λ� 1
2

;
sþ λ� 1

2

� �
n yð Þ

Scarf II Atanh αx +
Bsechαx

A2 þ B2 � A2�ð AαÞsech2αx
þB 2Aþð αÞsech αx tanh αx

A A −
α

A2 − (A − nα)2 y ¼sinh αx
s ¼ A

α; λ ¼ B
α=


 in 1þ y2ð Þ
�s
2 e�λtan�1

�P
i
s� λ� 1

2
;
isþ λ� 1

2

� �
n yð Þ

Shape-invariant potentials with (n = 1, 2) in which the parametersa2and a1are related by translation (a2 = a1 + β). The energy eigenvalues and eigenfunctions are
given in units ℏ = 2m = 1. The constants A, B, α, β, and l are all taken as ≥0. Unless otherwise stated, the range of potentials is −∞ ≤ x ≤∞, 0 ≤ r ≤∞. For spherically
symmetric potentials, the full wave function is φnlm(r, θ, φ) = φnl(r)Ylm(θ, φ). In the table, s1 = s − n + a, s2 = s − n − a, s3 = a − n − s, s4 = − (s + n + a) [9].
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SUSY, and when this condition is satisfied, then H1,2 have
identical spectra, including zero modes. In this case, using
the known eigenfunctions ψn

1(x) of V1(x), one can imme-
diately write down the corresponding (un-normalized)
eigenfunctions ψn

2(x) of V2(x).
Several comments are in order at this stage:

a. State energy of threefold wells

At first we write the eigenfunction for one threefold
well that oscillates between −x0 and +x0. This well is
symmetric.

ψ1
0 xð Þ ¼ e� x�x0ð Þ þ e�x2 þ e�a xþx0ð Þ2 ð15Þ
V1 xð Þ ¼
�2e� x�x0ð Þ2 þ �2xþ 2x0ð Þ2e� x�x0ð Þ2 � 2ae�a xþx0ð Þ2 þ

�
e� x�x0ð Þ2 þ e� xþx0ð

V2 xð Þ ¼
2 �2xþ 2x0ð Þe� x�x0ð Þ2 � 2a xþ x0ð Þe�a xþx0ð Þ2 � 2x
��

e� x�x0ð Þ2 þ e�a xþx0ð Þ2 þ e�x2
� �2

� ð�2e� x�x0ð Þ2 þ �2xþ 2x0ð Þ2e� x�x0ð Þ2 � 2ae�a xþx0ð Þ

e� x�x0ð Þ2 þ e�a xþð
Superpotential W(x):

W xð Þ ¼ �ψ
0
0 xð Þ

ψ0 xð Þ

¼ �2 x� x0ð Þe� x�x0ð Þ2 � 2xe�x2 � 2a xþ x0ð Þe�a xþx0ð Þ2

e� x�x0ð Þ2 þ e�x2 þ e�a xþx0ð Þ2

ð16Þ
Partner potential V1(x) and V2(x) show to this firm

V2;1 xð Þ ¼ W 2 xð Þ �W
0
xð Þ ð17Þ

That
4a2 xþ x0ð Þ2e�a xþx0ð Þ2 � 2e�x2 þ 4x2e�x2
�

Þ2 þ e�x2
ð18Þ

e�x2
�2
�

2 þ 4a2 xþ x0ð Þ2e�a xþx0ð Þ2 � 2e�x2 þ 4x2e�x2

x0Þ2 þ e�x2
ð19Þ
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and we calculate

H2
1
ψ1
0
¼ H2

1

e
�
Z

W xð Þdx
¼ H2e

þ
Z

W xð Þdx

¼ � d2

dx2
þ V2

� �
e
þ
Z

W xð Þdx

¼ � d
dx

e

Z
W xð Þdx

W xð Þ

0
B@

1
CA

þ V2e

Z
W xð Þdx

¼ � W
0
e

Z
W xð Þdx

þW 2e

Z
W xð Þdx

8><
>:

9>=
>;

þ V2e

Z
W xð Þdx

¼ � W
0 þW 2

n o
e

Z
W xð Þdx

þ W 2 þW
0

n o
e

Z
W xð Þdx

¼ 0 ¼ E
1
ψ1
0
⇒E ¼ 0

ð20Þ
From the last equation, we have seen that if the
excited state energy of a Hamiltonian H2 is zero,
then it can always be written in a factorizable form
as a product of a pair of linear differential operators

φ xð Þ ¼

Z 1

x
ψ1
0 yð Þ� �2

dy

2I1ψ1
0 xð Þ x > 0

ð21Þ

φ xð Þ ¼ 1
2ψ0 xð Þ �x0 < x < x0 ð22Þ

φ xð Þ ¼

Z x

�1
ψ1
0 yð Þ� �2

dy

2I2ψ1
0 xð Þ x < x0

ð23Þ

that

I1 ¼
Z1
x0

ψ1 yð Þ� �2
dy

I2 ¼
Zx0
�1

ψ1 yð Þ� �2
dy

: ð24Þ

One of the main problems involved in many
physical processes is the energy state difference
between the ground state and first excited state for
potential wells. The ground state wave energy is E1

and the first excited state energy is E2, as a result

H2 ¼ H0 þ δH

¼ H0 þ
ψ1
0 x0ð Þ� �2
I1

δ x� x0ð Þ

þ ψ1
0 �x0ð Þ� �2
I1

δ xþ x0ð Þ ð25Þ

In other words,

E1 ¼

Z þ1

�1
φ xð Þ δHð Þφ xð ÞdxZ þ1

�1
φ2 xð Þdx

¼

Z þ1

�1
φ xð Þ ψ1

0 x0ð Þ½ �2
I1

� �
δ x� x0ð Þφ xð ÞdxZ þ1

�1
φ2 xð Þdx

þ

Z þ1

�1
φ xð Þ ψ1

0 �x0ð Þ½ �2
I1

� �
δ xþ x0ð Þφ xð ÞdxZ þ1

�1
φ2 xð Þdx

¼ 1
4

1
I1
þ 1
I2

� �
1Z þ1

�1
φ2 xð Þdx

ð26Þ

E2 ¼ �

(
Z�x0

�1
dx

E1

Z x

�1
φ2 xð Þdx

φ xð Þ

2
664

3
775
2

þ
Zþx0

�x0

dx

E1

Z x

�x0

φ2 xð Þdx
φ xð Þ

2
664

3
775
2

þ
Zx
x0

dx
E1

Z 1

x
φ2 xð Þdx

φ xð Þ

2
664

3
775
2
)

ð27Þ

Thus,

ΔE ¼ E1 þ E2: ð28Þ

In this relation, ΔE is the energy state difference
between the ground state and first excited state for
potential fivefold well.

b. State energy of fivefold well
For calculation of the state energy of fivefold well, we
start from eigenfunction, and then we have shown



�1

Figure 1 V1(x) when a = 1, x0 = 2 for threefold wells.

Fig
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that E is an eigenvalue of the Hamiltonian H with
eigenfunction ψ.

ψ1
0 xð Þ ¼ e� x�2x0ð Þ2 þ e� x�x0ð Þ2 þ e�x2

þ e�a xþx0ð Þ2 þ e�a xþ2x0ð Þ2 : ð29Þ

In this relation, a is the rate of antisymmetry
(asymmetry) potential well, and if a = 1, potential well
will be symmetric. Five potential wells for the
oscillators that oscillate between −2x0 and +2x0 and
eigenvalue for H are as follows:
ure 2 V1(x) when a = 1.5, x0 = 2 for threefold wells. Fig
E1 ¼

Z þ1

�1
φ xð Þ ψ1

0 2x0ð Þð Þ2δ x�2x0ð Þφ xð Þdx
IþZ

φ2 xð Þdx

þ

Z þ1

�1
φ xð Þ ψ1

0 �2x0ð Þð Þ2δ xþ2x0ð Þφ xð Þdx
IþZ

φ2 xð Þdx

þ

Z þ1

�1
φ xð Þ ψ1

0 x0ð Þð Þ2δ x�x0ð Þφ xð Þdx
IþZ

φ2 xð Þdx

þ

Z þ1

�1
φ xð Þ ψ1

0 �x0ð Þð Þ2δ xþx0ð Þφ xð Þdx
IþZ

φ2 xð Þdx
ð30Þ

The equation E1 can be interpreted in the following
two different ways depending on the superpotential
W(x) or the ground state wave function.
In this equation,

Iþ ¼
Z1
2x0

ψ1
0 yð Þ� 	2

dy I ¼
Z�2x0

�1
ψ1
0 yð Þ� 	2

dy; ð31Þ

then

E1 ¼ 2
1

1
Iþ

þ 1
I

� �
1Z þ1
φ2 xð Þdx

: ð32Þ
ure 3 V1(x) when a = 1, x0 = 3 for threefold wells.



Figure 5 V2(x) when a = 1, x0 = 2 for threefold wells.

Figure 6 V2(x) when a = 1.5, x0 = 2 for threefold wells.

Figure 4 V1(x) when a = 1.5, x0 = 3 for threefold wells.
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From the last equation, we have seen that if the
ground state energy of a Hamiltonian H1 is zero,
then it can always be written in a factorizable form
as a product of a pair of linear differential operators.

E2 ¼ �

(
Z�2x0

�1
dx

E1

Z �2x

�1
φ2 yð Þdy

φ xð Þ

2
664

3
775
2

þ
Z�x0

�2x0

dx
E1

Z �x

�2x
φ2 yð Þdy

φ xð Þ

2
664

3
775
2

þ
Zx0
�x0

dx
E1

Z x

�x
φ2 yð Þdy

φ xð Þ

2
664

3
775
2

þ
Z2x0
x0

dx
E1

Z 2x

x
φ2 yð Þdy

φ xð Þ

2
664

3
775
2

þ
Z1
2x0

dx
E1

Z 1

2x
φ2 yð Þdy

φ xð Þ

2
664

3
775
2
)

ð33Þ

It is then clear that if the ground state energy of a
Hamiltonian H1is E0

1 with eigenfunction ψ0
1, then in
view of Equation 32, it can always be written in
the form

ΔE ¼ E1 þ E2: ð34Þ
In this relation, ΔE is the energy state difference
between the ground state and first excited state for
potential fivefold well.

c. State energy of sevenfold well
This case is similar to the state energy of fivefold
well, but in this case, there are sevenfold wells
oscillating between −3x0, and +3x0.



Figure 7 V2(x) when a = 1, x0 = 3 for threefold wells.
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ψ1
0 xð Þ ¼ e� x�3x0ð Þ2 þ e� x�2x0ð Þ2 þ e� x�x0ð Þ2

þ e�x2 þ e�a xþx0ð Þ2 þ e� x�2x0ð Þ2

þ e�a xþ3x0ð Þ2 ð35Þ

d. State energy of (2n+1)-fold wells
We shall now point out the key steps that go into
the classification of SIPs in this case. Firstly, one
notices the fact that the eigenvalue spectrum of the
Schrodinger equation is always such that the nth
eigenvalue En for large n obeys the constraint.
Figure 8 V2(x) when a = 1.5, x0 = 3 for threefold wells.
We calculate these difference values for a fivefold and
sevenfold potential wells using SUSYQM. We finally
generalize it to find a relation for (2n+1)-fold wells

E1 ¼ n
4

1
Iþ

þ 1
I

� �
1Z þ1

�1
φ2 xð Þdx

ð36Þ

E2 ¼ �

(
Z�nx0

�1
dx

E1

Z �nx

�1
φ2 yð Þdy

φ xð Þ

2
664

3
775
2

þ
Znx0
�nx0

dx
E1

Z nx

�nx
φ2 yð Þdy

φ xð Þ

2
664

3
775
2

þ
Z1
nx

dx
E1

Z 1

nx
φ2 yð Þdy

φ xð Þ

2
664

3
775
2
)

ð37Þ

and

Iþ ¼
Z1
nx0

ψ1
0 yð Þ� 	2

dy; I ¼
Z�nx0

�1
ψ1
0 yð Þ� 	2

dy ð38Þ

We show V1(x) and V2(x) in Figures 1, 2, 3, 4, 5, 6,
7, 8 for threefold well. It is immediately obvious
that there are some quite significant differences
between the two charts, for example, when a = 1,
x0 = 2, and a = 1.5, x0 = 2. These figures have been
drawn by the software Matlab.
In these figures, one of the main problems involved
in many physical processes is the energy state
difference between the ground state and first excited
state for potential wells. This is generally solved
using the approximation methods. In these figures,
we show these difference values for threefold
potential wells using supersymmetry in quantum
mechanics. We finally generalize it to find a relation
for (2n+1)-fold wells. In these figures ‘a’ shows the
symmetry of the potential wells. If a = 1, wells will
be symmetric, and if a ≠ 1, wells will be
antisymmetric. In these figures, x0 is the oscillation
range (amplitude). For example, x0 = 2 means
oscillator oscillation between +2 and −2.
Conclusions
Shape invariance is an important factor of many exactly
solvable quantum mechanics. In this paper, several ex-
amples of shape invariance are introduced and discussed
in some detail. It is a well-established fact that systems with
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more than one degree of freedom have completely random
energy level spacings. Lots of theoretical and numerical evi-
dences are put forward in this context. One of the main
problems involved in many physical processes is the energy
state difference between the ground state and first excited
state for potential wells. This is generally solved using the
approximation methods. In this paper, we calculate these
difference values for fivefold and sevenfold potential wells
using supersymmetry in quantum mechanics. We finally
generalize it to find a relation for (2n+1)-fold wells.
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