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Abstract A formalism which enables one to strictly
conserve the number of particles when taking into account
the isovector pairing correlations is presented in the case of
odd-mass nuclei. With this aim, we had to first establish the
expression of the projector for such systems. Expressions
of the ground state and its energy have been exhibited. The
model has been numerically tested in the framework of a
schematic model.

Keywords Neutron—proton pairing - Particle-number
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Background

During the past two decades, many works have been
devoted to the study of neutron—proton (np) pairing cor-
relations (see, e.g. [1-17]). Indeed, the region of N ~ Z
medium mass nuclei is now accessible to experiments and
this fact led to renewed interest of theoreticians for this
kind of nuclei. In the latter, one expects that neutrons and
protons occupy the same levels and thus that the np pairing
effect would be important. This effect is often treated
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within the BCS approximation [1-8]. However, it is well
known that the major defect of the BCS theory is its vio-
lation of the particle-number conservation symmetry, in the
pairing between like-particles case [18-22] as well as in the
np pairing case.

The particle-number symmetry may be restored using a
projection method. Several methods have been already
proposed in the np pairing case, as the quasiparticle ran-
dom phase approximation (QRPA) [23-31], the Lipkin-
Nogami method [32], the generator coordinate method
[33], and the PBCS-type projection methods [34], of
FBCS-type [35] or the isospin and particle-number pro-
jection one [36]. In previous papers [37—40], we proposed
and applied a generalization of the SBCS (sharp-BCS)
projection method [41-43]. However, this generalization is
valid only for even—even nuclei and has not been yet
extended to odd-mass systems. The goal of the present
work is to propose a formalism which could be applied to
odd-mass nuclei. It is based on the Wahlborn blocking
method [44, 45].

For a seek of coherence, the method for the diagonal-
ization of the Hamiltonian and the BCS formalism are
recalled in the first two sections. The particle-number
conservation method is then presented in the next section.
The formalism is numerically applied to a schematic model
in the ’Numerical results and discussion’ section. Main
conclusions are summarized in last section.

Hamiltonian: diagonalization
Let us consider a system constituted by N neutrons and
Z protons. In the second quantization and isospin formal-

ism, the Hamiltonian which describes this system is given,
in the isovector pairing case, by [5], [8]:
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H= E ev(ayay + ajaq)
v> 001
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v,u>0

where the subscript ¢ corresponds to the isospin component
(t = n, p) and a; and a,,, respectively, represent the cre-
ation and annihilation operators of the particle in the state
[vt), of energy e&,; |vt) is the time-reverse of |vt) and Gy
characterizes the pairing-strength (one assumes that G, is
constant and G,, = G,,). The neutrons and protons are
supposed to occupy the same energy levels.

In order to conserve, on average, the number of particles (i.e.
neutrons and protons), let us introduce the Lagrange parame-
ters A, (t = n, p) and diagonalize the auxiliary Hamiltonian

H-> AN, (2)
t

where N, are the particle-number operators given by

N, = X:O<a ay +at a;,) t=n,p 3)
V>

Using the Wick theorem, the linearized part of the auxiliary
Hamiltonian (2), denoted H', may be written, in a matricial
form:

ayp

' + + Qyp
H = EO + E fvt + E (avp ay, Qip Qi )Av a+ 3

V>0, v>0 vp

at

(4)

where E is the constant term, A, is the excitation matrix
given by

évp 0 - App —Snp

A
0 ¢, —A —A
Av _ vn np nn 5
*App - Anp - ivp 0 ( )
¢

- Anp - Ann 0 “Swn

and where we set:

. 1 r .
Eyp = &y — EZG”(I + 5rt)a$av"t7 &y = (8vt - it) (6)
and
Ay = Gtt’zawa”/ Gtt’za\tavl’ (7)
v>0 v>0

Using the generalized Bogoliubov—Valatin transformation

OC:; = Z (uvrta:; + vv‘rtaﬁt)

t=n.p
t=1,2 8
Oyr = Z (M\"Etavt + V‘;naé;) ’ ( )
t=np

o
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the Hamiltonian (4) becomes

Ey, O 0 0

: 0 E, 0 0
H=E+ &t'Vl g ¢ g

0 \%4
v >0,
0 0 0 —E

with the notations
1
E =3 KEQ +E, +2A§],) (- 1)1\/R—v}7 t=1,2

R‘, = (Egp [éméw [’1’]:|
E‘zvt = é%x + Am

m) +4A; [Ez +E2 —

t=np

BCS formalism
Ground state

The BCS ground state is obtained by eliminating all the
quasiparticles from the actual vacuum, i.e. |¥') o< [ ay|0).

Using the Bogoliubov—Valatin transformation (8), this state
may be written, after normalization, in the particle

representation:
¥) = 1) (9)
j>0
with
;) = [BJA;,A+ BJA, + BIA',
(10)
+Bj(abva +ava ) —1—31} |0)
Jp

where A = ﬂa* refers to the creation operator of a
particle pa1r

However, the state (9) can only describe even—even
systems since it is a superposition of even states. For an
even—odd system, if one assumes that the blocked level is
vI (T = n or p), the ground state is given by [46, 47]

V) = a7 [T 1)), (11)

j>0
J#AV
where “Pj> is defined by (10).

It is worth noticing that in the latter expression, the
coefficients B} that appear in (10) depend on v; this
dependence has not been explicited in order to simplify the
notations.

Let us note that the limits when A,,, — 0 of all expres-
sions in the np pairing case are given in “Appendix A”.
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Gap equations—Energy
Even—even system

The gap equations, as well as the energy expression, are
well established in the framework of the BCS formalism
for an even—even system. In the following, we will briefly
recall them so as to show later the differences with the
even—odd systems.

The total particle-number operator is defined by N =

> N,. Using Eq. (9), the particle-number conservation
t

condition reads:

(PIN|¥P) = Z[

ji>0

2 -\ 2 ] 2
(B +B) ()| (12)
In the same way, the gap parameters defined by (7) become

j>0

Awp = —Gyp ZBA{ (Bf - B;) (13)

j>0
Finally, the system energy is given by

Eo_zz{[

+Z[ (B)) e~ 5.Gu (8 )2+(Bf)2)]

1

~ 3Gy [(B{)2 T 2(31)2} }

+ (BY) } (& + &in)-

- S S ) s i
>0 t
j#

200 - )0 ) | 14
where 7 # t (i.e. ¥ = n(p) if t = p(n)).
Even—odd system

In the case of an even—odd system, the particle-number
conservation condition reads, using the state (11)
N2 . 5
OTINDT) =142 [2(3/)2 + (B;,) +(BI)*+2(B) ]
j>0
v

(15)

As for the gap parameters, they are given by

A =—Gy> (B{BI+BB)) (t=np, #1)

j>0
J#v
A, =2G,) Bj(B] - Bi) (16)
j>0
j#v

The system energy is given, in this case, by

BT o+ zz{ (07 + )] (5 + ).

j>0
J#V

+ Z,: [(Bf)zﬁﬁ - %G”((B{)z " (B{)zﬂ

5G| 81 +2(})]

-> {Z G.(B{B) + B/B!)(B'B. + B'B)
Jl>0 t
JAAY

26, B(B] — BI)BL (B — B) } 1)

where ¢ # t. Expressions (15-17) are similar to their
homologues (12-14) of the even—even case. One can
clearly see that the blocked level is occupied by the single
particle and that the index v is excluded from the sum-
mations over j.

Particle-number projection
Ground state

It is well established that the states (9) and (11) are not
eigenstates of the particle-number operator. However, the
particle-number symmetry may be restored using a particle-
number projection method. In the present work, we use the
sharp-BCS (SBCS) one [37-40].

Even—even system

The operator that enables one to project the conventional
BCS state (i.e. in the pairing between like-particles case)
on the good particle number is given by [45]:
! 2n
P= 1 | expliolN ~2¢)do (18)
0

P being the number of pairs of particles and N the particle-
number operator of the considered system.
Its discrete form is given by [42]

o
% @ Springer



118 Page 4 of 15

J Theor Appl Phys (2014) 8:118

P, = {Wiékzk H[l +afai(\Va — 1)} + c.c},

J

where:

ikt
Zr = exp 1 and

1

f=1{3 ifk=0ork=m+1
=
1

(20)
otherwise

m is a non-zero integer which represents the extraction
degree of the false components and “c.c” means the
complex conjugate with respect to z.

In the isovector pairing case, the ground-state (9) is
simultaneously projected on the good neutron and proton
numbers, i.e. [38-40]:

‘\Pmm’> = ,P”,PP|T>
m+lm +1
mmZZ€kék {Zk "2 W), (21)
k=0’ =0
+5. W @ 7)) + c.c}
where
|\P(Zkazk')> = H’Tj(zkvzk/)> (22)
j>0
with

pjn
+/zzy By ax pajn +a’ na]p) + B! } |0)

C,,, is the normalization constant.

Wiz, zp)) = {Zkzk’B ALAS + 2 BIAT + uBA;,

Even—odd system

In the pairing between like-particles case, for an odd sys-
tem, constituted of (2P + 1) particles, the projector on the
good particle-number is given by

2n

P= 2—;/ exp(ip(N — 2P — 1))dg (24)
0

Its discrete form is given by

Pn {mi:lfk % H[l +a; Fai(Va — 1)} +c.c}

(25)

One then obtains

o
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m+lm/+1

|VTmm' > = Cvmm' Z Z 5k£k'a:rT{Zk7PNZ]ZPZ |IIJ(Z/<7 2y ) >v

k=0 k' =0
+5. 3 Wz rec), T=np  (26)

where

Wz, 20)),= [ ] 1%z 2) (27)
j>0
v

|‘Pj(zk,zk/)> being defined by (9). Let us however recall
that in this case the coefficients B} depend on v. C,,m 18 the
normalization constant.

Expectation values
Even—even system

The calculation of the expectation value of a given operator
O that conserves the particle number is simplified by the
use of the property [37]:

(¥

1)<m,+ ) mni’ lI}|O|lymml>
(28)

In particular, if O is the identity operator, the normalization
condition of the wave-function (21) leads to

m+lm/+l

Clr=4m+1)(m +1)> Y &&y
k=0 k' =0
X {szNz,;PZ HAJ-(Zk,Zk/) (29)
j>0

+Z/:PNZ/;PZ HAJ(Z_ka ) + C~C}

j>0

with the notation

. N2 .
Aj(zi zy) :{Zka’ (B{)2+zk/ (B,J)> +2k (B,i)2
(30)

+2 iz (B +(8)}

Zr being the complex conjugate with respect to z;. Py
(respectively, P;) represents the number of pairs of neu-
trons (respectively, protons).

In the same way, the expectation value of the Hamil-

tonian (1) over the state "I’mmr> reads
m+1m +1
k=0’ =0

o E(Z ) + c.c

x [Zk PNZ “E(zi,zy) + 50" ”
(31)
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with

E(z,z¢) = Z [E(])(Zka ) — GnnEr{ (z) — G/JPEI{(Zk)
j>0

- anEip(Zkv Zk’)} HAi(ZM Zy)
i>0

i

- Z [Gnnsz;J;(Zk’)Fi () + Gppzy F;{(Zk)Fé(Zk)

Jl>0
i#

+ ZG”P V Zkzk,Fr{p (Zk7 Ly )Fip(ziﬁ Ly ):| HAi(Zk7 Zkl)

i>0

i

where

(32)
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—

+

. i\ 2 i\ 2
El,(az0) = Vazy |(B]) vazs +2(Bl)]
Fy,(zk,2¢) = By (Bl V/azy — B3), (33)

and where A;(z, zy) is given by Eq. (30).
The real parts of Egs. (29) and (31) are given in
“Appendix B”.
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Fig. 1 Variation of the various gap parameters as a function of the ratio G,,/G,, within the one-level model using Q =12 and

Gy = Gy, = 0125 MeV, for Z=6 withN —Z2=0,1,2,3
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Even—odd system

In case of an even—odd system, using an expression similar
to (28), one obtains for the normalization condition of the
state (26):

m+lm/+l

Coly =4m+1)(m +1)> 388,

k=0 ' =0

—Py_—P

X3 % NZ/(’ ZHAJ(Zkvzk’)
j>0
J#v

(34)

_ Py _—P _
+z Vgt HAj(Zk7Zk’) +c.c
j>0
j#v

Aj(zk,zy ) being defined by (30).
The energy of the system is obtained using the wave-
function (26), i.e.

16
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Fig. 2 Same as Fig. | for Z=8 with N - Z=0,1,2,3
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(35)
where we set

E'(z,2p) = Z [Eé(zszk/) — GuE; (z) = GppE;{(Zk)

j>0
J#Y
_anEr{p (2ks 2 )} HAi(Zka Z)
i>0
i#v
= > (GuanF (e )y (a) + Gz Fy(@) Fy ()
>0
J#L
v
+ 26 AT Fly 2t 20 )y o 20)) [ [ AdCo )
i >0
oy
i#v
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Table 1 Variation of the overlap between the projected and non-
projected states, as a function of the extraction degrees of the false
components, for an even—even system such as Z=6, N =6,

Table 3 Variation of the overlap between the projected and non
projected states, as a function of the extraction degrees of the false
components, for an odd system such as Z=6,N="7, G,, =

G,p, = 0.125 MeV, G,,, = 0.150 MeV and G,, = 0.137 MeV 0.125 MeV, G,, = 0.150 MeV and G,,, = 0.137 MeV
m m, <‘.II | ‘.Pmm,> m m/ <LII | \Pmm’> m m/ <VT | VTmm'> m m/ <VT | VTmm’>
0 0 0.267 1 0 0.224 0 0 0.249 1 0 0.195
0 1 0.224 1 1 0.222 0 1 0.195 1 1 0.189
0 2 0.223 1 2 0.222 0 2 0.195 1 2 0.189
0 3 0.223 1 3 0.223 0 3 0.194 1 3 0.189
2 0 0.223 3 0 0.223 2 0 0.197 3 0 0.198
2 1 0.222 3 1 0.223 2 1 0.189 3 1 0.189
2 2 0.223 3 2 0.224 2 2 0.190 3 2 0.190
2 3 0.224 3 3 0.224 2 3 0.190 3 3 0.190

Table 4 Same as Table 3 for Z=8, N=9
Table 2 Same as Table 1 for Z =8, N =38

, , m m OT [ VT, ) m m OT [vT,,0)

m m <\P | \Pmm'> m m <\P | \Pmm’>

0 0 0.249 1 0 0.193
0 0 0.268 1 0 0.217

0 1 0.192 1 1 0.184
0 1 0.217 1 1 0.216

0 2 0.191 1 2 0.184
0 2 0.216 1 2 0.216

0 3 0.191 1 3 0.184
0 3 0.216 1 3 0.216

2 0 0.194 3 0 0.194
2 0 0.216 3 0 0.216

2 1 0.184 3 1 0.184
2 1 0.217 3 1 0.217

2 2 0.184 3 2 0.184
2 2 0.217 3 2 0.217

2 3 0.184 3 3 0.184
2 3 0.217 3 3 0.217

The terms Ei'i(zk7zk’)7 Fij(Zk’)7 Fi‘i(zk) and Fi'i(zkazk’)
(i = n, p, np) are given by the same expressions as in the
even—even case, i.e. by Egs. (33). Let us note that the
blocked particle does not contribute to the pairing energy,
but its energy which is due to the occupation of the |v) level
of the single-particles model appears in the total energy.

Numerical results and discussion

The previously described formalism has been tested within
the schematic one-level model. In the latter, it is assumed
that there is only one level of energy ¢, =0V v and for
t = n, p. In all that follows, we used the total degeneracy
of levels value Q = 12.

Gap parameters

We have first studied the variations of the various gap
parameters as a function of the ratio G,,,/G,,, in the even—
even case as well as in the odd one. We used the values
Z = 6 (see Fig. 1) and Z = 8 (see Fig. 2) with (N — Z) =
0, 1, 2, 3. In each case, the neutron and proton pairing-
strength values are G,, = G,, = 0.125 MeV. The behav-
ior of the A,,, A,, and A,, parameters in the even—even

case (upper part of Figs. 1, 2) is similar to those of several
works (see, e.g. References [3—5] and [7]). One notes that
there exists a critical value of G,,, (which will be hereafter
denoted (G,,).), under which there is no np pairing (i.e.
A,p = 0 and the A, and A, values are those of the pairing
between like-particles case).

In the odd case (lower part of Figs. 1, 2), the trends of
the three curves are very similar to those of the even—even
case, as underlined in References [46, 47].

Test of the projection method

In order to judge the efficiency of the projection method,
we have studied the overlap between the BCS wave-
function and the projected one in the even—even case
(¥ | ¥,,,)) (see Table 1 for Z= 6, N =6 and Table 2
for Z=8, N=28) as well as in the odd one
((vT | vT,,;)) (see Table 3 for Z= 6, N =7 and Table 4
for Z=8, N = 9) as a function of the extraction degrees
of the false components m and m’. We used in each case
the values G,, = 0.125 MeV, G,, = 0.150 MeV and
G, = 0.137 MeV. One then notices a rapid convergence:
in practice, the convergence is reached as soon as m =
m' =3 for all considered systems.

o
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Table 5 Variation of the projected ground-state energy (in MeV) as a
function of the extraction degrees of the false components, in the case
of an even—even system such as Z=6, N=6, G,
0.125 MeV, G,, = 0.150 MeV and G,, = 0.137 MeV. The BCS

energy is Ey = —7.733 MeV

Table 7 Variation of the projected ground-state energy (in MeV) as a
function of the extraction degrees of the false components, in the case
of an odd system such as Z=6, N=17, G,, =0.125 MeV,
G,, = 0.150 MeV and G,, = 0.137 MeV. The BCS energy is
Ey T = —6.311 MeV

m m E,.. m m - m m ET, m m ET,

0 0 —7.780 1 0 —8.172 0 0 —6.287 1 0 —7.353
0 1 —8.168 1 1 —8.206 0 1 —7.459 1 1 —7.544
0 2 —8.161 1 2 —8.201 0 2 —7.508 1 2 —7.555
0 3 —8.163 1 3 —8.201 0 3 —17.515 1 3 —17.560
0 4 —8.164 1 4 —8.202 0 4 —7.519 1 4 —17.561
2 0 —8.165 3 0 —8.167 2 0 —7.277 3 0 —7.259
2 1 —8.201 3 1 —8.202 2 1 —7.552 3 1 —7.555
2 2 —8.200 3 2 —8.200 2 2 —7.563 3 2 —7.566
2 3 —8.200 3 3 —8.200 2 3 —7.567 3 3 —7.569
2 4 —8.200 3 4 —8.199 2 4 —7.569 3 4 —7.571
4 0 —8.169 4 0 —7.252

4 1 —8.202 4 1 —17.556

4 2 —8.200 4 2 —17.567

4 3 —8.199 4 3 —7.571

4 4 —8.199 4 4 —7.571

Table 6 Same as Table 5 for Z =8, N = 8. The BCS energy is
Ey = —9.349 MeV

Table 8 Same as Table 7 for Z =8, N =9. The BCS energy is
EyT= —7.761 MeV

m m E,.. m m E,. m m ET, m m ET,

0 0 -9.431 1 0 —9.844 0 0 —7.754 1 0 —8.551
0 1 —9.838 1 1 -9.924 0 1 —8.664 1 1 —8.832
0 2 —9.837 1 2 —9.933 0 2 —8.711 1 2 —8.875
0 3 -9.837 1 3 —9.935 0 3 —8.722 1 3 —8.881
0 4 —9.837 1 4 —9.936 0 4 —8.724 1 4 —8.884
2 0 —9.843 3 0 —9.844 2 0 —8.559 3 0 —8.549
2 1 —-9.933 3 1 —9.936 2 1 —8.878 3 1 —8.880
2 2 —9.936 3 2 -9.937 2 2 —8.886 3 2 —8.889
2 3 —9.936 3 3 —9.937 2 3 —8.889 3 3 —8.892
2 4 -9.937 3 4 -9.937 2 4 —8.891 3 4 —8.893
4 0 —9.844 4 0 —8.545

4 1 —9.937 4 1 —8.881

4 2 —9.937 4 2 —8.890

4 3 —-9.937 4 3 —8.893

4 4 —-9.937 4 4 —8.893

Energy

In addition, there exists an important discrepancy
between the projected and non-projected states. Indeed, the
overlap between the projected and non-projected wave-
functions is of the order of 0.22 for the even—even systems
and of 0.19 for the odd ones. This shows the necessity of
eliminating the false components of the BCS wavefunc-
tions when calculating physical observables.

o
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We have first studied the convergence of the method for the
projected ground-state energy. As it can be seen in
Tables 5 and 6 (respectively, Tables 7 and 8) where we
reported the variations of E,, / (respectively, E;';,) as a

nm’
function of the extraction degrees of the false components
m and m', in the case of even—even systems (respectively,
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Fig. 3 Variation of the energy as a function of the ratio G,,,/G,,,, within the one-level model using Q = 12 and G,,, = G, = 0.125 MeV, before
(dashed lines) and after (solid lines) projection, for Z=6 withN —Z =10, 1,2, 3

odd systems), the convergence is also rapidly reached in
the case of the energy (as soon as m = m' =4 in all the
considered cases). However, the convergence seems to be
slightly faster in even—even cases than in the odd ones.
As a second step, we have studied the variations of the
energy, before [E,, (respectively, E3N)] and after (E, i s
[respectively, E;Zn,)] the projection as a function of the ratio
G,,,/G,,p. The corresponding results are shown in Fig. 3 for
Z =6 (respectively, Fig. 4 for Z=8) with (N —
Z) =0, 1, 2, 3. From these figures, one may conclude that
the behavior of the energy as a function of G,,, (before and
after the projection) is similar in the even—even case and the
odd one. Here again, there appears two regions, i.e. when
Gup <(Gyp), and when G,, > (G,),. The slope variation
in the E, (respectively, Ey') and E, / (respectively, E'T )
curves corresponds to the value G, = (G,),. The fact that
the energies are not constant when G, < (G,,) ., evenif A,,

and A, are constant is due to the additional term in G,,, in
Egs. (36), (38), (40) and (41).

Moreover, in every case, the projection effect leads to a
lowering of the energy. One may also notice that the dis-
crepancy between the BCS and projected energy values is
constant for a given region. We reported in Table 9
(respectively, Table 10) the values of the relative discrep-
ancy OE (%) between the projected and non-projected
energies, as a function of (N — Z), for Z=6 and Z = 8§
when G ,,, = 0.75 G, (respectively, when G ,, = 1.5 G,,,)
to illustrate the region G, < (G,,,,)C
Gup > (Gup),)- It then appears that the projection effect is
more important in the first region. It also appears that the
projection effect is more important in odd systems than in
the even—even ones. Indeed, the average value of JF is,
and 4%

G,y > (an) in the even—even case, whereas it is 17 %

c
when G, < (G,,), and 15 % when G,;, > (G,), in the odd
case. From the above, we can conclude on the necessity of
the elimination of the false components in the BCS states in
the odd-mass systems.

(respectively,

respectively, 8 % when G"P<(G"l7)c when

@ Springer
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Fig. 4 Same as Fig. 3 for Z=8 withN -Z2=0,1,2,3

Table 9 Variation of the relative discrepancy 0E (%) between the

projected and non projected energies, as a function of (N — Z), for
Z = 6 (left part) and Z = 8 (right part) when G,, = 0.75 G,

N-Z OE (%) N-Z OE (%)
Z=6 0 8.03 Z=38 0 7.89

1 21.93 1 15.94

2 7.94 2 7.79

3 18.71 3 13.85
Table 10 Same as Table 9 when G, = 1.5 G,,

N-2Z SE (%) N-—2Z SE (%)
Z=6 0 3.02 Z=38 0 3.18

1 19.09 1 13.58

2 5.19 2 5.08

3 15.71 3 10.58
Conclusion

A formalism that enables one to take into account
the isovector pairing interaction, with inclusion of the
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particle-number conservation, in odd systems has been
established. The Wahlborn blocking method has been
used [44, 45].

The most general form of the isovector pairing Hamil-
tonian has been approximately diagonalized using the
Wick theorem. A discrete expression of the projection
operator has been constructed. A projection of the BCS
wave function on both the good proton and neutron num-
bers has been performed. The expression of the ground-
state projected energy has been deduced.

The method has been numerically tested using the one-
level schematic model. The convergence of the method as
a function of the extraction degrees of the false compo-
nents has been studied. The rapidity of this convergence
shows the efficiency of the projection method. On the
other hand, it has been shown that the behavior of the
energy as a function of the neutron—proton pairing con-
stant in odd systems is analogous to that of even—even
ones. However, this effect seems to be more important in
odd systems.
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Appendix A
Limit when A,, — 0
Before projection

At the limit when A,, — 0, the coefficients Bﬁ which
appear in Eq. (10) become

Y J— vy,
By = vjpVin, By = vjijr

B, =0,

B) = wpun
where r =n, pand ¢ # ¢

u,; and v,, are the occupation and inoccupation proba-
bility amplitudes of the v state in the conventional BCS
theory (i.e. in the pairing between like-particles case).

It may be easily shown that the wave-function |V} defined
by (9) in the even—even case is then the product of the usual
BCS wave-functions of the proton and neutron systems.

The energy of the system given by (14) reads in this case

im =3 [zzw W

t j>0 Jj>0

”P Z Vi Jn

j>0

(36)

This means that, in this case, Ej is not only the sum of the
energies of the proton and neutron systems, but also there is

an additional term < an Z Vip ]n>

In the same way, the Wave-function in the even—odd
case defined by (11) becomes

AIHEO")T = a‘T,JE[() (u,, + vjra; ‘t) |0) (37)
v
It is worth noticing that this expression does not exactly
reduce to its homologue of the conventional BCS theory.
Indeed, in the latter, the neutron and proton systems are
considered separately. Thus, when a level of the 7 (say the
proton) system is blocked, there is no consequence on the
' (f # t) (the neutron) system. On the opposite, in the np
pairing case, due to the definition of the wave function
(11), the blocked level vT is simultaneously excluded for
both types of nucleons (i.e. the protons and the neutrons).

As for the expression of the energy given by (17), it

becomes
<A<">)2
11m E‘T =¢&r + Z Zzsjt an
t j>0 j>0
J#v J#v
o ”PZ Vip 1" (38)
j>0
v
As in the even—even case, the term G,,p Z Vi ]n
Hév

appears in addition to the sum of the proton and neutron
system energies.

After projection

As it was the case before projection, one may easily verify thatin

ot > reduces to the product of the pro-

jected wave-functions of the neutron and proton systems in the

pairing between like-particles case defined in Reference [41].
The corresponding energy is given by

im E,,,; = Ep -+ Ey — 4Gy (m + 1)(m +1)C2C?,

mm
App—

the even—even case,

m+1m +1

Pyl P+1
szkf z " ‘ Z/n Vip

k=0 ' =0 Jj>0 t#/

- PN+1 PZ+IZ
(ulp + Zk’V ) +2z ]n jp Mm + ZkV )
j>0 i#]

Uy, + 24V,

X (ui, + Zkrvi,)} +c.c (39)

where E,,, is the projected energy of the neutron system and £,/
that of the proton system in the pairing between like-particles
case for an even system and C,,, and C,y are the corresponding
normalization constants (see Reference [41]). This means that
at the limit when A,, — 0, the energy (31) does not only
reduces to the sum of the proton and neutron systems energies.

In the even—odd case, the wave function ‘v ) defined
by Eq. (26) becomes

1 /
i [V )
m+1
ajTCmv Z ék Z/:PN H (Mjn + Zkvj"Ajn+) |O> + cc
k=0 i>0
j#v
m'+1
X Cm’v Z ék’ Z];PZ H (Mjp + Zk'Vij;;) |O> + cc
=0 >0
i
(40)

C,,y and C,,, being the normalization constants.

o
% @ Springer
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As it was already the case before the projection, this
expression does not exactly generalizes that of the pairing
between like-particles case. Indeed, the blocked level is
excluded from the products in both systems. In the same
way, the energy (35) reads

3 v __ v v
AhIEOEmm, =¢r+E,+E,
p
m+1m +1
g 2 2
- 4G”[7(m + l)(m + 1 CmLCm’t Zzékik
k=0 ' =0
PN+1 —Pz+l 2Y(12 2
X Z ]n ]p l/l + Zkvin)(uip + Zk/vip)
J#v ij#v
47 PN+1 Pz+1 2 2
Z Vin ]p uzn + kv )(Mip + Zk'vip)‘|
J#v AV

+c.c} (41)

El‘;l mv £Z7 N
X Z (q——) 2H (u? + zv7) (42)

J#v i#j £y
—ZGZMjVjM[VI H (MIZ + Zkviz) + CC}

I<i i#v,l

I#v

One notices that although A,, — 0, there remains a term in
G, Moreover, as before the projection, the blocked level
concerns both the proton and neutron systems.

Appendix B
Extraction of the real parts
Normalization constants

The real part of Eq. (29) is given by:

C2 =8m+1

mm

X [p(xk, xy ) cos 0(x, xp) + p(—xk, %)

x cos 0(—xi, xy)]

with

o

@ Springer

km
2(m+1)

O(xk, x0) = —2Pnxy

Xk =

—2Pzxy + @(xk, x)

xk,xk le xk,xk xk,xk Z(p/ xk,xk
j>0 j>0
N ) by
i) = V@) + (B0, tan gy, 0) = 7
where

a¥) = (B’]) cos(2x, + 2xy ) + (B{))2cos 2xy +
(B])®

(BIJ,)2 sin2x, +

(B,/;)2 cos 2x;,

+2(B])* cos(x +xp) +
V) = (B])?sin(2x; + 2x, ) + (BJ)? sin2x;
+ 2(Bf;)2 sin(xg +x,7)

In the same way, the real part of Eq. (34) reads

m+1m +1
ot = 80m 1) + 1D &y
k=0 ' =0
" [M c0s 0, (xe, x (44)
pv('xk7xk')
p(_xk7xk’)
+———%cos 0,(—xx,xp)
pv(*xkvxk') g
where
()i.uj(xkaxk’) = g(xerk') - (pi(xkaxk') R (pj(xkaxk’)
Energy

The real part of the energy for an even—even system [Eq.
(31)] is given by

m+1m +1
E,, = 8(m+1)( c2 ZZ Elp
k=0 k' =0
X {Z[sj(xk,xk/) + &(—xk, x| (45)
+ Z [Sﬂ(xkaxk’) + gjl(_xkvxk/)] }a
Jl>0
J#
where
p(xkaxk ) J
& (xp, xy ) = ———{R) (xx, x ) cos DY (x, xy
j ¢) pj(xk;-xk){ o( 3 0 ¢)
— GuuR! (x) cos D (x, x,0) (46)
— GppRI(x /(x¢) cos CI)IJ; (%K, %)
- G”PRnp (xkv xk’) cos (D:ip (xkv xk/)}
and
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p(xk’xk’)
pj(xk7xk')pl(xkaxk’)
X { GanJ (xk )Q (Xk )COSCD] (xk,xk )
Gpp Q) (x4) D (xk) cos D! (i, x;)
— 2anQ£p (‘xk’xkl )Qitp (xk’xk ) Ccos (Dilp (xkaxk )}

&jt(Xi, X ) =

(47)
with the notations
Rk, 3¢) = /(@) + (0’
, L0
14 (Xk, X, ) = arctan %
)
Rl (s xg) = /(@ + (0]’
, L0
1] (X, x,7) = arctan ’(b (48)
aiy
0/ (s xe) =/ (ad) + (b3))°
, L0
) (xx, x;7) = arctan ’5>
ap
l=n,p,np
(Dé(xkvxk’) = ei(x/ka’) + né(xkvxk )
O] (e, xp) = 0; (v, ) 115 () + 20
D (e, xp) = 0k, %) + ”Ip(xk) + 2xy
(D,{;p (xerk/) = Hj (xka xk’) + 7’Inp (xerk/)
D! (e, x50 ) = 05 (e, %0 ) + 0] (o) + 0 () + 2
D) (i, ) = O (e, X ) + 65 () + 8, (xe) + 2
(Ditlp(xbxk/) = Hjl(x/ﬂxk/) + 5‘,{[,()6[{7)6](/) + 51111)('xk7xk/)
+ x4+ xy (49)
O(x, x) = —2Pyxg — 2Pzxy + @(xp, xp)
ezqr(xkaxk’) = Gi(xk7xk’) + gxp + rxy
O;._jgr(xisxy) = 0;j(xi, xy ) + qxe + rxy (50)

ao =2 B{)Z(gﬂ, + &) cos(2xi + 2xp) + 2(BJ) &jp COS 2xy/
+2(B))*&, cos 2x; + 2(B])? (& + &jp) cos(x + x)

by = 2(BI) (g + &) sin(2x + 2x,) +2(B 7)), sin 2x
+ 2(BJ)*&, sin 2x; 4 2(B})? (& + &jp) sin(x + x)

(51)
ai‘l]l) - (B{)z cos 2xk/ + (Bil)zv bgl) = (B{)Z sin 2xk/ (52)
all = (B])* cos2x + (B))*; bl = (B]) sin2x,
a5121 = (B{) os(2x; + 2xy ) + 2(B ) cos(xy + x) (53)
bip = (B sin(2s,+ 250) + 2(B1)" sins + 3)

a) = B{BJ cos2xy + BIBl; b)) = B]BJ sin2x,

o) — i J () JBJ g (54)
ay, = By BJ cos 2x; —|—B]BS, b,, = BB, sin 2x;

0) Jni JpJ
a, = B{Bjcos(x; +xy) — BB

p2 154 k 455 (55)

bggz = BJB] sin(x; + x)

In the same way, for an even—odd system, the real part of
the energy (Eq. (35)) is given by

ET, =eq+8m+1)(m +1)C2
m+1m +1
X Zkagk Z {8 Xy Xy ) + 8;(—xk,xk/)}
k=0 ' =0 j>0
J#v

+Z[

(o, X ) + 8}1(—xk,xk/)}

Jl>0
J#
J#v
(56)
where
v p(Xk, xkr)
& (xka Xy ) -
! ‘ p.f (xk’ xk/)pv (xlmxk’)
X {RY (i, %) cos Bf (v, x ) 5
_ G,mRi;(xk/)cos (I)Q'(xk’xk,) (57)
- GI’PR;; (xx) cos (D;;v (xk, %)
- anR;ip (xx, x;7) cos CDQP (%, x0) }
and

p(xk, Xy )
Pk, X ) oy (X, X )y (Xks X5 )
{=G Q2 (x) 0 () cos D (xz, xp )
— pr;'(xk)Ql (xk)cos(D’ (o, Xy )
- 2GnPQ}{;p (o0, )Qf’tp (xk, Xy ) cos (qul; (o0, ) }

& (o) =

(58)

with the notations
(Dg(xk’xk’) = Oj(xe, %) + né<xk7xk )
D] (xi X0 ) = O (0, ) + 115 (x¢ ) + 2
D) (xie, ) = O (e, ) + 17 () + 2x
(I)Q;z(xk?xk/) = O (e, xy ) + ”f;p(xkaxk’)
O} (ot ) = Oy (v, g ) + 050 ) + 3, () + 2
O (ot 2 ) = Oy (v, ) + ) () + 3, () + 2
d)ﬁ]‘; (xkaxk’) Ojny (xk7xk )+ 5rjzlp (xk7xk’) + 55117 (xkvxk’)

+ x + xp (39)
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