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Abstract Theoretical calculations are carried out for

studying soliton’s reflection and transmission in an inho-

mogeneous plasma comprising ions, two temperature

electrons and negatively charged dust grains. Using

reductive perturbation technique, relevant modified KdV

equations are derived for the incident, reflected and trans-

mitted solitons. Then a coupled equation is obtained based

on these mKdV equations, which is solved for the reflected

soliton under the use of solutions of mKdV equations

corresponding to the incident and transmitted solitons.

Based on the ratio of amplitudes of reflected and incident

solitons, reflection coefficient is examined under the effect

of dust grain density; the same is done for the transmission

coefficient which is the ratio of amplitudes of transmitted

and incident solitons. The transmission of the solitons

becomes weaker under the effect of stronger magnetic field

and higher dust density. However, this leads to the stronger

reflection of the soliton.
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Introduction

The solitary structure is formed from an ion acoustic wave

when the effects of nonlinearity and dispersion are balanced

in the plasma. Washimi and Taniuti [1] were the first to

derive the well-known Korteweg-deVries (KdV) equation

with the help of reductive perturbation technique (RPT) to

describe the soliton behavior in the homogeneous plasma.

However, plasma contributes an extra term in the usual KdV

equation [2–5], when the density inhomogeneity is taken into

account, and then modified KdV (mKdV) equation is real-

ized. Accordingly, the soliton behavior is modified in the

inhomogeneous plasmas. There are a large number of studies

on the ion acoustic solitary waves in homogeneous plasmas

[6–8], inhomogeneous plasmas [2, 9] and magnetized plas-

mas [10–13]. The ion acoustic waves and hence, the solitons

are found to reflect from a density gradient or the metal

surface present in the plasma. There have been a lot of

experimental observations concerning solitons in different

plasma models [14–23]. The reflection of a planar ion

acoustic soliton has been studied by Nishida [19] from a

finite plane boundary. The soliton propagation, collision and

reflection have been experimentally observed by Cooney

et al. [21] at a sheath in a multicomponent plasma; they

discussed a conservation law of soliton reflection and

transmission. Nagasawa and Nishida [20] studied the non-

linear reflection and refraction of the soliton from a metallic

electrode in a double-plasma (DP) device.

Most of the experiments on soliton reflection were con-

ducted in plasmas by neglecting the dust grains which are

charged by ions and electrons, and are available in laboratory

plasmas or space-related plasmas such as in planetary rings,

asteroid zones, cometary tails and in lower parts of Earth’s

ionosphere. In addition, low-temperature technological

plasmas are also contaminated by highly charged dust
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impurities. Interestingly, the dust grains may acquire either

negative charge or positive charge [24–26], but the chances

are higher that the grains acquire negative charge. In most

general situations, the temperature of all the electrons does

not remain the same and two groups of electrons with lower

and higher temperature are found in the plasmas [27–29]. In

the two electron temperature plasmas, the characteristics of

ion acoustic waves and solitons are modified [27–31] due to

different distributions of these electrons.

In the present work, we investigate the soliton propagation,

reflection and transmission in an inhomogeneous plasma,

which has two temperature electrons and negatively charged

dust grains. To study this, we derive relevant mKdV equations

for the incident, reflected and transmitted waves and couple

them at the point of reflection. Finally, the coupled equation is

solved for finding the reflection and transmission coefficients.

Basic fluid equations and reductive perturbation

technique

We consider a weakly inhomogeneous plasma containing

heavy dust grains of density nd0 and initial charge number

Zd0, and inertial warm positive ions of density n, velocity v~

and temperature Ti. Low-temperature trapped electrons

(density nel and temperature Tel) are taken to follow the

vortex-like distribution. The higher temperature isothermal

electrons are considered with density neh and temperature

Teh. An external magnetic field (magnitude B0) is taken at

an angle h with the direction of wave propagation in the (x,

z) plane. Under this situation, for studying the ion acoustic

waves and their evolution into solitons
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ot

� �
þ o

ox
nvxð Þ þ o

oz
nvzð Þ ¼ 0; ð1Þ

n
ovx

ot

� �
þ nvx

ovx

ox

� �
þ nvz

ovx

oz

� �

¼ nXRvy � n
ou
ox

� �
� 2

Ti

Teff

on

ox

� �
; ð2Þ

n
ovz

ot

� �
þ nvx

ovz

ox

� �
þ nvz

ovz

oz

� �

¼ �n
ou
oz

� �
� 2

Ti

Teff

on

oz

� �
; ð3Þ

ovy

ot

� �
þ vx

ovy

ox

� �
þ vz

ovy

oz

� �
¼ �XRvx; ð4Þ

o2u
ox2

� �
þ o2u

oz2

� �
¼ nel þ neh � n þ nd0Zd0; ð5Þ

nel ¼ nel0 1þTeff

Tel

u� 4

3
bl

Teff

Tel

u

� �3=2

þ1

2

Teff

Tel

u

� �2

þ. . .

( )
;

ð6Þ

neh ¼ neh0 exp
Teffu
Teh

� �
; ð7Þ

In the above equations, the motion of dust grains has

been neglected in view of their very-low-frequency oscil-

lations compared to the oscillations of ions and electrons.

The nonisothermality is taken through the expansion of nel,

where the parameter bl is given by bl ¼ 1 � Tel=Teff½ �=
ffiffiffi
p

p

[27–30]. XR ¼
ffiffiffiffiffiffiffi
e0

min
0
0

q
B0 and Teff is the effective tempera-

ture of the plasma, given by Teff ¼ nelo þ nehoð ÞTelTeh=

neloTeh þ nehoTelð Þ in view of two temperature electrons. In

Eqs. (1)–(7) all the densities are normalized by the

unperturbed plasma density n0
0 at some arbitrary reference

point (say x = z = 0), space coordinates x and z by the

Debye length e0Teff=n0
0e2

� �1=2
, ion flow velocity by the ion

acoustic speed Teff=mið Þ1=2
and time t by the inverse of ion

plasma frequency xpi ¼ n0
0e2=e0mi

� �1=2
, where mi is the

mass of the ion. Finally, the electric potential / is nor-

malized by Teff=e.

As per the requirement of RPT, we expand the densities,

fluid velocities and electric potential in terms of a small-

ness parameter e. The oblique incidence of the wave with

respect to the magnetic field causes the perturbations in

longitudinal and transverse components of velocity to be

different. Hence, the expansions of physical quantities are

given by

S ¼ Soðx; zÞ þ e S1ðx; z; tÞ þ e3=2S2ðx; z; tÞ þ e2S3ðx; z; tÞ
þ . . .; S � n; nel; neh; vz;

V ¼ V0ðx; zÞ þ e5=4V1ðx; z; tÞ þ e3=2V2ðx; z; tÞ
þ e2V3ðx; z; tÞ þ . . .V � vx; vy;

u ¼ eu1ðx; z; tÞ þ e3=2u2ðx; z; tÞ þ e2u3ðx; z; tÞ þ . . .; ð8Þ

mKdV equations for incident, reflected and transmitted

waves

To derive mKdV equations for the incident, reflected and

transmitted waves in the said inhomogeneous plasma, we

employ stretched coordinates based on the proposal of

Asano and Taniuti [32]. We use the subscripts I, R and T

for the cases of incident, reflected and transmitted waves,

respectively. In general, the angles of incidence, reflection

and transmission should be different. However, for the sake

of simplicity we assume that the direction of propagation of

the reflected soliton is opposite to the directions of prop-

agation of the incident and transmitted solitons, i.e., the

transmission of the soliton is considered in the same

direction as that of the incident soliton. Hence, the stret-

ched coordinates for the incident wave are taken as
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[5, 11, 27, 33] n ¼ e1=4 x sin h þ z cos hð Þ=k0 � t½ � ; g ¼
e3=4 x sin h þ z cos h½ �. Accordingly, the stretched coor-

dinates for the transmitted wave are nT ¼ e1=4

x sin h þ z cos hð Þ=k0T � t½ � ; gT ¼ e3=4 x sin h þ z cos h½ �
and for the reflected wave nR ¼ �e1=4 x sin h þ z cos hð Þ=½
k0R � t�, gR ¼ �e3=4 x sin h þ z cos h½ �. The power of e
determines the order or perturbation, and higher (lower)

power of e means the slow (fast) variation of the physical

quantities such as density, velocity and potential. This has

been well established that these quantities should have fast

variation in time and slow variation in space for the gen-

eration of solitary waves in inhomogeneous plasmas;

however, opposite is true in homogeneous plasmas. In

plasmas without nonisothermal electrons, the powers of e
are 1

2
and 3

2
for the time-like and space-like stretched

coordinates, respectively. On the other hand, these powers

are 1
4

and 3
4

in the inhomogeneous plasmas having noniso-

thermal electrons for the evolution of solitary waves, as the

physical quantities should have relatively faster variation

with the time and space in the plasmas having noniso-

thermal electrons. Under this situation only, the effects of

nonlinearity and dispersion are balanced, which leads to the

evolution of the solitons. The fast variation is required due

to the fact that the nonisothermal electrons have lower

thermal velocity and can be easily trapped by the potential

of the ion acoustic wave.

The use of the above stretchings in Eqs. (1)–(7) along

with the expansion (8) leads to various equations in zeroth-,

first- and second-order equations, the same as is Ref. [40].

Then, the integration of first order equations yields the

following phase velocity relations for the incident, reflected

and transmitted waves
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The velocity components vx0B and vz0B correspond to the

region where transmitted wave propagates. Depending

upon the magnitudes, the phase velocity with positive sign

in the above equations corresponds to the fast mode

(velocity k0F) and the one for negative sign corresponds to

the slow mode (velocity k0S). It means the present plasma

supports two types of ion acoustic waves with different

phase velocities.

The nonlinear analysis involves the second-order equa-

tions, which finally enable the mKdV equations for all the

cases of incident, reflected and transmitted waves. A rele-

vant mKdV equation for the incident wave is obtained as
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Here, various coefficients are given by
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together with
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Similarly, a relevant mKdV equation for the reflected

wave is obtained as
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:

The mKdV equation for the transmitted wave is the

following
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Soliton solution of Eqs. (12) and (14)

The mKdV Eq. (12) is obtained with the use of both the

phase velocity relations k0F and k0S, which means both the

waves evolve into solitary structures determined by Eq.

(12). To analyze these structures, we use a sine–cosine

method [4, 5, 34] because the solution of mKdV equations

cannot be determined by ordinary methods due to presence

of variable coefficients. For this, we put v1I ¼ L gð Þ~vI n; gð Þ

with L gð Þ ¼ e
�
R g

c
on0
og0


 �
dg0

in Eq. (12) and get

o~vI

og
þ a~v1=2

I

ffiffiffi
L
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on3
¼ 0: ð15Þ

Now, we put ~v
1=2
I ¼ vI in the above equation to get

vI
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¼ 0: ð16Þ

The solution of this equation can be written as vI hð Þ ¼Pr
j¼1 Pj sin h þ Qj cos h

� �
cosj�1 h þ Q0, if dh

df ¼ sin h. In

the form of hyperbolic functions, this solution reads

vI fð Þ ¼ Q0 þ
Xr

j¼1

tanhj�1 fð Þ Pj sec h fð Þ þ Qj tanh fð Þ
� �

:

ð17Þ

To get a stationary solution, we now transform the

coordinates to the frame of reference of soliton through

f ¼ gI g � Unð Þ, where g�1
I is the width and U is the shift

[35] in the velocity when the wave evolves as a soliton. For

the present case, we get r = 2. With this, the solution in the

form of intermediate variable h is written as

vI hð Þ ¼ Q0 þ Q1 cos h þ P1 sin h þ Q2 cos2 h
þ P2 cos h sin h: ð18Þ

Now, solution (18) is substituted in Eq. (16) to obtain

coefficients of the various trigonometric identities. Based

on the values of the coefficients Q0, Q1, Q2, P1 and P2, we

will have different soliton solutions corresponding to Eq.

(16). For a single soliton solution, we find

Q1 ¼ P1 ¼ P2 = 0, then we obtain Q0 ¼ �Q2 ¼ 15
8a

ffiffi
L

p
U

and gI ¼
ffiffiffiffiffiffiffiffiffiffi

1
16bU3

q
. With these coefficients, the soliton

solution is realized as

vI ¼ AI sec h2 g � Unð Þ
WI

	 

: ð19Þ

This equation represents the incident soliton having

peak amplitude AI � 15
8aU

ffiffi
L

p
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and the width

WI ¼ g�1
I ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16bU3

p
. It is clear that the soliton width

would be real only when the coefficient b is positive for the

positive velocity shift U. Our calculations infer that the fast

and slow waves evolve as density hill type structures only.

It means the plasma supports only the compressive solitary

structures.

Following the same procedure, we obtain the solution of

Eq. (14) as

vT ¼ AT sec h2 gT � UTnTð Þ
WT

	 

: ð20Þ

This equation represents the transmitted soliton having

peak amplitude AT � 15
8aT UT

ffiffiffiffi
LT

p
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and the width WT ¼

g�1
T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16bT U3

T

p
.

Coupling of mKdV equations and reflected soliton

After getting the profiles of the incident and transmitted

solitons, now we find the solution to the mKdV Eq. (13) for

the reflected soliton. Since at the point of reflection all the

solitons (incident, reflected and transmitted solitons)

evolve, we couple all the mKdV equations at the point of

reflection by replacing v1I in Eq. (13) by v1I ? vz1 ? v1T,

i.e., by the total ion fluid velocity [36–38]
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R
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ogR

¼ 0: ð21Þ

In view of the reflection and transmission of incident

solitary wave only, we use vz1\\v1I þ v1T and also

assume v1T\\v1I , [19, 36, 39]. Then the above equation

takes the form
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þ aRPR
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onR

þ aR

PR

QR

vz1
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ogR

¼ 0; ð22Þ
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where PR ¼ 2v1Iþv1T

2
ffiffiffiffi
v1I

p and QR ¼ 2 v1I þ v1Tð Þ.
Now, we apply a transformation vz1 ¼ LR gRð Þ~vR

gR; nRð Þ with LR gð Þ ¼ e
�
R gR

cR
on0
og0

R


 �
dg

0
R

in the above

equation to obtain

o~vR

ogR

þ aRPR

o~vR

onR

þ aRLR

PR

QR

~vR

o~vR

onR

þ bR

o3~vR

on3
R

þ cR

v1I þ v1Tð Þ
LR

on0

ogR

¼ 0:

We employ another transformation ~vR gR;nRð Þ¼hR gRð Þþ
vR gR;nRð Þ, where hR gRð Þ¼

R gR� cR

LR


 �
v1Iþv1Tð Þon0

og0
R

dg
0
R in

the above equation. This yields

ovR

ogR

þ aRPR

ovR

onR

þ aRLR

PR

QR

hR

ovR

onR

þ aRLR

PR

QR

vR

ovR

onR

þ bR

o3vR

on3
R

¼ 0: ð23Þ

This equation can be solved by following the same

method as adopted for the incident soliton. Hence, we get

vR ¼ 3

LR

4

URaR
~V
� 2 v1I þ v1Tð Þ � hRLR

� �
sec h2 gR � URnRð Þ

WR

	 

:

ð24Þ

Here, ~V ¼ 2v1Iþv1Tffiffiffiffi
v1I

p
v1Iþv1Tð Þ and WR � 5LR

2a

ffiffiffiffiffi
bU
L

q
4

URaR
~V
� 2 v1I þ v1Tð Þ � hRLR

h i�1

. The symbol WR repre-

sents the width of the reflected soliton and the first term

3
LR

4
URaR

~V
� 2 v1I þ v1Tð Þ � hRLR


 �
is the peak amplitude of

the soliton. The symbol UR is the velocity shift that is

realized when the wave takes the form of reflected soliton.

This shift is different from the shift that was observed

during the soliton reflection, as that shift means the fall or

rise of the path of propagation of the incident soliton.

Energy conservation of solitons

The previous studies of the soliton reflection discuss that

the soliton after its reflection gets shifted and this shift

amounts to the energy difference between the incident and

reflected solitons. However, unlike this case, Eqs. (19),

(20) and (24) reveal that in the case of reflection and

transmission of the solitons this energy is balanced. Hence,

considering the energy balance we can obtain an expres-

sion between the parameters U, UR and UT. For this, we

follow Malik [8] in view of the weak density gradient so

that the unperturbed quantities can be treated as slow

varying functions, and use the integral E ¼
R1
�1 v2 1ð Þd1,

where v � vI ; vR; vT and 1 � 1; 1R; 1T . Based on this inte-

gral the energies of the incident, reflected and transmitted

solitons are obtained as EI ¼ 4
3

A2
I WI , ER ¼ 4

3
A2

RWR and

ET ¼ 4
3

A2
T WT . The conservation of energy shall require

EI ¼ ER þ ET . Further, based on the experimental inves-

tigations we can assume AIWI ¼ ARWR ¼ AT WT for the

modified KdV solitons. All these equations give the fol-

lowing relation between U, UR and UT

aT L
1=2
T UT � aL1=2U

8aL1=2UaT L
1=2
T UT

þ 2 v1I þ v1Tð Þ þ hRLR

5LR

¼ 4

5aRUR
~VLR

:

ð25Þ

The above relation shows that the velocity shift of the

reflected and transmitted solitons is in accordance with the

velocity U of the incident soliton.

Results and discussion

The present plasma supports two types of the waves gov-

erned by Eq. (9), which evolve into two types of com-

pressive solitons governed by Eq. (12). However, Eq. (10)

shows that only the wave corresponding to plus sign

propagates in the plasma. Since this wave belongs to the

reflected soliton governed by Eq. (13), it is inferred that

only the soliton corresponding to plus sign in Eq. (9)

reflects. This is justified in view of the fact the soliton

requires a minimum energy to reflect from the density

gradient during the reflection mechanism.

Figure 1 shows the profiles of the incident, reflected and

transmitted solitons in the magnetized and inhomogeneous

plasma having negatively charged dust grains. This can be

seen that the perturbations are localized as the soliton

amplitude approaches zero as we move away from f = 0.

As is obvious, the incident soliton carries largest size with

highest amplitude and hence, the largest energy. The

reflected soliton carries opposite profile to the incident

soliton [40], which means the soliton changes its polarity

after its reflection. This is the similar result as obtained by

Nishida and Nagasawa [18] in an experiment conducted in

a plasma with two temperature electrons. So our theoretical

calculations confirm their findings. However, the trans-

mitted soliton carries lower size and does not change its

polarity. The sizes of the reflected and transmitted solitons

are smaller compared with the size of the incident soliton.

This is plausible, as the energy corresponding to the inci-

dent soliton is bifurcated in the reflection and transmission

of the soliton.

To study the effect of magnetic field on the transmission

of the soliton, we have plotted Fig. 2, which shows the

variation of energy of transmitted soliton with the magnetic

field (B0) for two different values of the wave propagation
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angle h (15 and 20 �C). This is evident from the figure that

the transmitted soliton loses its energy under the effect of

stronger magnetic field. This is consistent with the obser-

vations made by other investigators [3, 7, 8, 10, 11, 13, 35,

38], who found that the solitons with smaller width prop-

agate in the plasma under the effect of higher magnetic

field. Since the energy of the soliton is directly proportional

to its width, the solitons are expected to evolve with lower

energy in the presence of stronger magnetic field. On the

other hand, we observe that the soliton carries lower energy

when the magnetic field is applied at a larger angle with the

direction of wave propagation. This is plausible, as the

Lorentz force becomes larger for the larger obliqueness of

the wave propagation and hence, the soliton with smaller

width would evolve. Further, this is noticed that the soliton

energy sharply decreases with the magnetic field when it is

applied at a smaller angle with the direction of wave

propagation. The reduction in soliton energy is attributed to

the change in dispersive properties of the plasma with the

application of magnetic field. Since the plasma becomes

more dispersive under the effect of stronger magnetic field,

the nonlinear effect ought to be enhanced for the generation

of solitary structure. This modification leads to the smaller

width of the soliton and hence, the smaller energy.

The role of dust grains to the soliton transmission is

clarified in Fig. 3, where the variation of soliton amplitude

is shown with the dust grain density. Clearly, the trans-

mitted soliton attains lower amplitude under the presence

of higher density of the dust grains. Since the energies of

the solitons follow Eq. (25), this is obvious that the

reflection of soliton would be stronger under the presence

of more dust grains in the plasma. Hence, the reflection

coefficient (RC: ratio of reflected-to-incident soliton

amplitudes) enhances whereas the transmission coefficient

(TC: ratio of transmitted-to-incident soliton amplitudes) is

lowered under the effect of higher density of dust grains

(Fig. 4). The opposite behavior of RC and TC with the dust

density is admissible in view of the energy balance of the

incident, reflected and transmitted solitons. This is also in
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accordance with the mechanism of soliton reflection. As

the incident soliton is accelerated by the gradient and then

reflected, there is a partial transmission of the soliton. Since

the reflected and transmitted solitons propagate in opposite

directions, it is plausible that these structures see opposite

effects of the dust grains due to the fixed direction of the

density gradient. It appears that the transmitted soliton is

slowed down in the presence of higher density of the dust

grains. Hence, it evolves with smaller amplitude. This leads

to the weaker transmission and stronger reflection of the

soliton in view of the energy balance.

Conclusions

The problem of reflection and transmission of a soliton was

solved in an inhomogeneous dusty plasma having two

temperature electrons under the effect of an external static

magnetic field. Two types of the waves, corresponding to

plus sign (fast wave) and minus sign (slow wave) in

Eq. (9), were found to propagate and evolve into solitons in

this plasma. However, the soliton corresponding to only the

fast wave was found to reflect and transmit in the plasma

and the soliton corresponding to the slow wave was

transmitted only. The effect of higher dust density was

found to lower the amplitude and energy of the transmitted

soliton. However, opposite effect of these parameters was

realized on the soliton reflection. The nonlinear terms of

Eqs. (12)–(14) revealed lower order nonlinearity in the

present plasma, compared to the usual plasma without

nonisothermal electrons, for the generation of solitons.

Hence, the smaller amplitude solitons are expected to

evolve in the present plasma in comparison with the case of

ordinary plasma.
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