
RESEARCH

Unsteady isothermal flow behind a magnetogasdynamic shock
wave in a self-gravitating gas with exponentially varying density

G. Nath

Received: 17 January 2014 / Accepted: 8 May 2014 / Published online: 5 June 2014

� The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract The propagation of spherical (or cylindrical)

shock wave in an ideal gas with or without gravitational

effects in the presence of a constant azimuthal magnetic

field is investigated. Non-similarity solutions are obtained

for isothermal flow between the shock and the piston. The

numerical solutions are obtained using the Runge–Kutta

method of the fourth order. The density of the gas is

assumed to be varying and obeying an exponential law.

The shock wave moves with variable velocity, and the total

energy of the wave is non-constant and varies with time.

The effects of variation of the Alfven-Mach number,

gravitational parameter and time are obtained. It is inves-

tigated that the presence of gravitational field reduces the

effect of the magnetic field. Also, the presence of gravi-

tational field increases the compressibility of the medium,

due to which it is compressed and, therefore, the distance

between the inner contact surface and the shock surface is

reduced. The shock waves in conducting perfect gas can be

important for description of shocks in supernova explo-

sions, in the study of central part of star burst galaxies,

nuclear explosion, rupture of a pressurized vessel and

explosion in the ionosphere. Other potential applications of

this study include analysis of data from exploding wire

experiments and cylindrically symmetric hypersonic flow

problems associated with meteors or re-entry vehicles etc.

A comparison is made between the solutions in the cases of

the gravitating and the non-gravitating medium with or

without magnetic field. The obtained solutions are appli-

cable for arbitrary values of time.

Keywords Shock wave � Magnetogasdynamics and

Electrofluid mechanics � Gravitational effects � Numerical

solution � Non-similarity solution

Introduction

Shock phenomena such as a global shock resulting from a

stellar pulsation or supernova explosion passing outward

through a stellar envelope or perhaps a shock emanating

from a point source such as a man-made explosion in the

Earth’s atmosphere or an impulsive flare in the Sun’s

atmosphere have tremendous importance in astrophysics

and space sciences. Shock waves are common in the

interstellar medium because of a great variety of supersonic

motions and energetic events, such as cloud–cloud colli-

sion, bipolar outflow from young protostellar objects,

powerful mass losses by massive stars in a late stage of

their evolution (stellar winds), supernova explosions, cen-

tral part of star burst galaxies, etc. Shock waves are also

associated with spiral density waves, radio galaxies and

quasars. Similar phenomena also occur in laboratory situ-

ations, for example, when a piston is driven rapidly into a

tube of gas (a shock tube), when a projectile or aircraft

moves supersonically through the atmosphere, in the blast

wave produced by a strong explosion, or when rapidly

flowing gas encounters a constriction in a flow channel or

runs into a wall.

The analysis and explanation for the internal motion in

stars is one of the basic problems in astrophysics.

According to the observational data, the unsteady motion

of a large mass of gas followed by sudden release of energy

results flare-ups in novae and supernovae. A qualitative

behavior of the gaseous mass may be discussed with the

help of the equations of motion and equilibrium taking
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gravitational forces into account. Numerical solutions for

self-similar adiabatic flows in self-gravitating gas were

obtained by Sedov [1] and Carrus et al. [2], independently.

Purohit [3] and Singh and Vishwakarma [4] have discussed

homothermal flows behind a spherical shock wave in a

self-gravitating gas using similarity method. Nath et al. [5]

have studied the above problem assuming the flow to be

adiabatic and self-similar and obtained the effects of the

presence of a magnetic field. Shock waves through a var-

iable-density medium have been treated by Sedov [1],

Sakurai [6], Nath [7], Rogers [8], Rosenau and Frankenthal

[9], Nath et al. [5], Vishwakarma and Yadav [10] and

others. Their results are more applicable to the shock

formed in the deep interior of stars.

Laumbach and Probstein [11], Hayes [12], Deb Ray

[13], Verma and Vishwakarma [14, 15], Vishwakarma

[16], Nath [17] have discussed the propagation of shock

waves in a medium where density varies exponentially and

obtained similarity and non-similarity solutions. These

authors have not taken into account the effects of the self-

gravitation of the medium. Also, Nath et al. [18] analyzed

the non-similarity solutions and investigated the effects of

the presence of an ambient azimuthal magnetic field and

the self-gravitation of the ambient medium on the flow field

behind a magnetogasdynamic spherical (or cylindrical)

shock wave in the case of adiabatic flow. They assumed

that the density in the ambient medium varies according to

exponential law and the initial magnetic field to be

constant.

Since at high temperatures that prevail in the problems

associated with the shock waves a gas is ionized, electro-

magnetic effects may also be significant. A complete

analysis of such a problem should, therefore, consist of the

study of the gasdynamic flow and the electromagnetic field

simultaneously. A detailed study towards gaining a better

understanding of the interaction between gasdynamic

motion of an electrically conducting medium and magnetic

field within the context of hyperbolic system has been

carried out by many investigators such as Korobeinikov

[19], Shang [20], Lock and Mestel [21]. A detailed review

in the field of magnetogasdynamic flows can be seen in the

paper Shang [20]. Lock and Mestel [21] analyzed the

annular self-similar solutions in ideal magnetogasdynamics

by casting the ideal magnetogasdynamic equations to a

three-dimensional autonomous system in which either the

magnetic pressure or the fluid pressure vanishes.

The shock waves in the presence of a magnetic field in

conducting perfect gas can be important for description of

shocks in supernova explosions and explosion in the ion-

osphere. The strong magnetic fields play significant roles in

the dynamics of the interstellar medium. Among the

industrial applications involving applied external magnetic

fields are drag reduction in duct flows, design of efficient

coolant blankets in tokamak fusion reactors, control of

turbulence of immersed jets in the steel casting process and

advanced propulsion and flow control schemes for hyper-

sonic vehicles. The magnetic fields have important roles in

a variety of astrophysical situations. Complex filamentary

structures in molecular clouds, shapes and the shaping of

planetary nebulae, synchrotron radiation from supernova

remnants, magnetized stellar winds, galactic winds,

gamma-ray bursts, dynamo effects in stars, galaxies, and

galaxy clusters as well as other interesting problems all

involve magnetic fields (see Hartmann [22], Balick and

Frank [23]).

In all of the works mentioned above, the effect of self-

gravitation and magnetic field is not taken into account by

any of the authors in the case of isothermal flow with

exponentially varying density.

The purpose of this study is, therefore, to obtain the non-

similarity solutions for the unsteady isothermal flow behind

magnetogasdynamic spherical (or cylindrical) shock waves

in a self-gravitating gas with exponentially varying density.

The density in the medium ahead of the shock is assumed

to obey an exponential law. The medium is assumed to be a

perfect gas and the initial magnetic field to be constant. The

assumption of isothermal flow is physically realistic, when

radiation heat transfer effects are implicitly present. As the

shock propagates, the temperature behind it increases and

becomes very large so that there is intense transfer of

energy by radiation. This causes the temperature gradient

to approach zero, that is the dependent temperature tends to

become uniform behind the shock front and the flow

becomes isothermal (Laumbach and Probstein [24], Sach-

dev and Ashraf [25], Korobeinikov [19], Zhuravskaya and

Levin [26], Nath [7, 17, 27]). A detailed mathematical

theory of one-dimensional isothermal blast waves in a

magnetic field was developed by Lerche [28, 29].

Numerical solutions for the flow field between the shock

and the piston are obtained in the case of isothermal flow in

‘‘Solution to the equations’’. Effects of viscosity and rota-

tion are not taken into account. The present study can be

important to verify the accuracy of the solution obtained by

the theory of self-similarity and computational methods

such as finite difference scheme, finite element, etc.

Variation of the flow variables behind the shock for

different values of the Alfven-Mach number, gravitational

parameter and time is obtained. It is investigated that the

presence of gravitational field reduces the effects of the

magnetic field. Also, the presence of gravitational field

increases the compressibility of the medium, due to which

it is compressed and, therefore, the distance between the

inner contact surface and the shock surface is reduced.

Further, it is investigated that due to an increase in the

strength of magnetic field, the distance of the inner contact

surface from the shock front is increased, i.e., the flow field
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behind the shock becomes somewhat rarefied, i.e., there is

a decrease in the shock strength. A comparison is made

between the solutions in the cases of the self-gravitating

and the non-gravitating medium for both the magnetic and

non-magnetic cases. The obtained solutions are applicable

for arbitrary values of time.

Equations of motion and boundary conditions

The fundamental equations governing the unsteady and

cylindrically (or spherically) symmetric isothermal flow of

an electrically conducting and self-gravitating ideal gas, in

the presence of an azimuthal magnetic field, may be written

as (c.f. Carrus et al. [2], Laumbach and Probstein [24],

Sachdev and Ashraf [25], Korobeinikov [19], Zhuravskaya

and Levin [26], Nath [7, 27], Whitham [30])
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þ u
oq
o r

þ qo u

o r
þ i uq

r
¼ 0; ð2:1Þ
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¼ 0; ð2:3Þ

om

o r
¼ 2 p i q ri; ð2:4Þ

oT

o r
¼ 0; ð2:5Þ

where r and t are independent space and time coordinates,

u is the fluid velocity, q is the density, p is the pressure, h is

the azimuthal magnetic field, T is the temperature, l is the

magnetic permeability, m is the mass contained in a unit

cylinder of radius r or in a sphere of radius r and the

dimension of m is taken as [m] = M L(i - 2) and i takes the

values 2 and 1 for the respective cases of spherical and

cylindrical symmetries, and G is the gravitational constant.

In the non-gravitating case, Eq. (2.4) and the term G m
ri in

Eq. (2.2) do not occur. The electrical conductivity of the

gas is assumed to be infinite. Therefore, the diffusion term

from the magnetic field equation is omitted, and the elec-

trical resistivity is ignored. Also, the effect of viscosity on

the flow of the gas is assumed to be negligible.

The above system of equations should be supplemented

with an equation of state. An ideal gas behavior of the

medium is assumed, so that

p ¼ Cq T; e ¼ p

ðc � 1Þ q
; ð2:6Þ

where C is the gas constant and c is the ratio of specific

heats at constant pressure and volume.

The ambient density of the medium is assumed to obey

the exponential law, namely,

q1 ¼ q0 ed R; ð2:7Þ

where ‘R’ is the shock radius and q0 and d are suitable

constants and the subscript ‘1’ refers to the conditions

immediately ahead of the shock.

We assume that a strong spherical (or cylindrical)

shock is propagating outwardly in the undisturbed ideal

gas with infinite electrical conductivity and variable

density in the presence of a constant azimuthal magnetic

field. The jump conditions at the shock wave are given by

the principles of conservation of mass, momentum,

magnetic field and energy across the shock (see [7, 17,

27, 30]), namely

q1 V ¼ q2 ðV � u2Þ;
h1V ¼ h2ðV � u2Þ;

p1 þ
1

2
l h2

1 þ q1V2 ¼ p2 þ
1

2
l h2

2 þ q2ðV � u2Þ2;

e1 þ
p1

q1

þ 1

2
V2 þ l h2

1

q1

� F1

q1 V

¼ e2 þ
p2

q2

þ 1

2
ðV � u2Þ2 þ l h2

2

q2

� F2

q1 V
;

m1 ¼ m2;

ð2:8Þ

where the subscript ‘2’ denotes the conditions immediately

behind the shock front, V ð¼ d R
dt
Þ denotes the velocity of

the shock front and ‘F’ is the radiation heat flux.

If the shock is a strong one, then the jump conditions

(2.8) become

u2 ¼ ð1 � bÞV;

q2 ¼ q1

b
;

p2 ¼ L q1 V2;

m2 ¼ m1;

h2 ¼ h1

b
;

ð2:9Þ

where L ¼ ½ð1 � bÞ þ 1
2M2

A

ð1 � 1
b2Þ� , and MA ¼ q1 V2

l h2
1

� �1
2

is

the Alfven-Mach number. The density ratio b ð 0\b\1 Þ
across the shock front is obtained by the relation

b2 � b
c ð1 þ M�2

A Þ � 1

ðc þ 1Þ

� �
þ ðc � 2ÞM�2

A

ðc þ 1Þ

� 2 ðc � 1Þ b ðF2 � F1Þ
p2 Vð1 � bÞðc þ 1Þ ¼ 0: ð2:10Þ

As the shock is strong one, we assume (F2 - F1) to be

negligible in comparison with q1V3, i.e., with the product

of p2 and V (Laumbach and Probstein [24], Nath [7, 17,

27]). Therefore, (2.10) reduces to
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b2 � b
c ð1 þ M�2

A Þ � 1

ðc þ 1Þ

� �
þ ðc � 2ÞM�2

A

ðc þ 1Þ ¼ 0: ð2:11Þ

Equation (2.5) together with Eq. (2.6) gives

p

p2

¼ q
q2

: ð2:12Þ

Let the solution of Eqs. (2.1)–(2.6) be of the form

(Verma and Vishwakarma [14], Vishwakarma [16], Nath

[17], Nath et al. [18])

u ¼ 1

t
UðgÞ;

q ¼ tXDðgÞ;
p ¼ tX�2PðgÞ;ffiffiffi

l
p

h ¼ tðX�2Þ=2HðgÞ;
m ¼ tXKðgÞ;

ð2:13Þ

where

g ¼ tekr; k 6¼ 0; ð2:14Þ

and the constants X and k are to be determined subse-

quently. We choose the shock surface to be given by

g0 ¼ constant: ð2:15Þ

The variable g assumes constant value g0 at the shock

surface, so that its velocity is given by

V ¼ � 1

kt
; ð2:16Þ

which represents an outgoing shock surface, if k\ 0.

The solution of Eqs. (2.1)–(2.5) in the form (2.13) to

(2.16) is compatible with the shock conditions, if

X ¼ 2; k ¼ � d
2
: ð2:17Þ

Since necessarily k\ 0, relation (2.17) shows that

d[ 0, thereby meaning that the shock surface expands

outwardly in an exponentially increasing medium (Hayes

[12], Deb Ray [13]).

From Eqs. (2.16) and (2.17), we obtain

R ¼ 2

d
log

t

t0

� �
; ð2:18Þ

where t0 is the duration of the almost instantaneous

explosion.

Solution to the equations

The flow variables in the flow field behind the shock front

will be obtained by solving the Eqs. (2.1)–(2.5). From Eqs.

(2.13), (2.16) and (2.17), we obtain
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; ð3:4Þ

om

ot
¼ �2kmV � V

om

or
: ð3:5Þ

Using the Eqs. (3.1)–(3.5) and the transformations

r0 ¼ r

R
; u0 ¼ u

V
; q0 ¼ q

q2

; h0 ¼ h

h2

; p0 ¼ p

p2

;

m0 ¼ m

m2

; ð3:6Þ

in the fundamental Eqs. (2.1)–(2.4) and (2.12), we obtain

for spherical symmetry (i = 2)

p0 ¼ q0; ð3:7Þ
dq0

dr0
¼ q0

ð1 � u0Þ
du0

dr0
þ 2 logð t

t0
Þ þ 2u0
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� �
; ð3:8Þ
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ð3:9Þ
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where L� ¼ pq0G t2
0 is the gravitational parameter.

Also, the total energy of the disturbance is given by

E ¼ 2p i

ZR

r

q e þ 1

2
u2 þ l h2

2q
� Gm

ri�1

� �
ri dr; ð3:12Þ

where r is the position of inner boundary of the distur-

bance. Using (2.6), (2.9) and (3.6), (3.12) becomes (for

i = 2)

E ¼ 16pq0

d2g2
0

R3J; ð3:13Þ

where

J ¼
Z1

r
0

Lp0

ðc � 1Þ þ
q0u

02

2b
þ M�2

A h
02

2b
� pGg2

0
m

0

r
0 ðlog t

t0
Þ 2ðlog

t

t0
Þ2

n�

�2ðlog t
t0
Þ þ 1

o
ð t

t0
Þ2
i

r
02dr0:

Thus, the total energy of the shock wave is non-constant

and varies with time. The increase of total energy may be

achieved by the pressure exerted on the fluid by the inner

expanding surface (a contact surface or a piston). A situ-

ation very much of the same kind may prevail during the

formation of a cylindrical spark channel from exploding

wires. In addition, in the usual cases of spark breakdown,

time-dependent energy input is a more realistic assumption

than instantaneous energy input (see [31, 32]).

In terms of dimensionless variables r0, q0, p0, h0, u0 and

m0, the shock conditions (2.9) take the form

r0 ¼ 1; q0 ¼ 1; p0 ¼ 1; h0 ¼ 1; u0 ¼ ð1 � bÞ;
m0 ¼ 1:

ð3:14Þ

Equations (3.7)–(3.11) along with the boundary condi-

tions (3.14) give the solution of our problem. The solution

so obtained is a non-similar one, since the motion behind

the shock can be determined only when a definite value for

time is prescribed.

Results and discussion

The distribution of the flow variables behind the shock front

in the case of isothermal flow is obtained from Eqs. (3.7) to

(3.11) with the boundary conditions (3.14) by the Runge–

Kutta method of the fourth order. For the purpose of

numerical integration, the values of the constant parameters

are taken to be (Pai [33], Nath [7, 27], Rosenau [34], Nath

et al. [18]) c ¼ 5
3
; M�2

A ¼ 0; 0:04; 0:08; 0:1; t=t0 ¼ 2; 3;

L� ¼ 0; 0:1: For fully ionized gas, c ¼ 5
3
; and therefore, it is

applicable to the stellar medium. Rosenau and Frankenthal

[8] have shown that the effects of magnetic field on the flow

field behind the shock are significant when M�2
A � 0:01;

therefore, the above values of M�2
A are taken for calculation

in the present problem. The value M�2
A ¼ 0 corresponds to

the non-magnetic case. The value L� ¼ 0, M�2
A ¼ 0 corre-

sponds to the solution in the non-gravitating and non-mag-

netic case (the solution obtained by Nath [17] in the dust-free

isothermal case). Our present study is the generalization of

earlier works of Nath [17] in the case of non-dusty isothermal

flow by considering the presence of gravitational force and

the presence of azimuthal magnetic field. It should be noted

that 0\ t
t0
\1 corresponds to the shock free flow and

1\ t
t0
\1 corresponds to the flow under the influence of

shock (i.e., shock formation requires that t
t0
[ 1); therefore,

the above values of t
t0

are taken for calculation to know the

flow field behind the shock at different times. Starting from

the shock front the numerical integration is carried out until

the singularity of the solution

q0 ð1 � bÞ þ M�2
A

2
1 � 1

b2

� �	 

þ M�2

A h0

b
� q0ð1 � u0Þ2 ¼ 0

ð4:1Þ

is reached. This marks the inner boundary of the distur-

bance and at this surface the value of r0 ð¼ r0 Þ remains

constant. The inner boundary is the position in the flow

field behind the shock front at which the velocity of the

inner boundary and the fluid velocity are equal.

The results are shown in Figs. 1a–c, 2 and Table 1.

These figures and table show that the self-gravitation of the

medium has a significant effect on the flow variables and

shock strength. Our analysis reveals that after inclusion of

gravitational field effect, surprisingly the shock strength

increases and the effect of magnetic field on the shock

decreases and remarkable difference is found in the dis-

tribution of the flow variables.

Table 1 shows the variation of the density ratio b ð¼ q1

q2
Þ

across the shock front and the position of the inner

expanding surface for different values of M�2
A with c ¼ 5

3
;

t=t0 ¼ 2; 3; and L� ¼ 0; 0:1 in both the gravitating and

non-gravitating cases. The shock strength decreases with

an increase in the strength of the magnetic field. By an

increase in time the distance of the inner contact surface

from the shock front is decreased for gravitating and

magnetic or non-magnetic case (i.e., for L� ¼ 0:1,

M�2
A ¼ 0 or 0:1) and for non-gravitating and non-magnetic

case (i.e., for L� ¼ 0, M�2
A ¼ 0). It means that the shock

becomes stronger with time in gravitating and magnetic or

non-magnetic case, and in non-gravitating and non-mag-

netic case, but reverse behavior is obtained for non-gravi-

tating and magnetic case (i.e., for L� ¼ 0, M�2
A 6¼ 0), i.e.,

the shock strength decreases with time in non-gravitating
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and non-magnetic case. Also, Table 1 shows that the dis-

tance of the inner expanding surface from the shock front is

less in the case of the gravitating medium in comparison

with that in the case of the non-gravitating medium.

Physically, it means that the gas behind the shock is

compressed in the gravitating medium, that is, the shock

strength is increased in the gravitating medium.

Figures 1a–c and 2 show the variation of the flow

variables u0 ; q0 ð¼ p0 Þ; m0 and h0 with r0 at various val-

ues of the parameters M�2
A , t=t0 and L�:

Figure 1a, c shows the distributions of reduced velocity

and reduced mass, respectively. These figures show that the

reduced velocity increases, while reduced mass increases as

we move from the shock front to the inner expanding surface

(or piston). The velocity increases from the shock front and

approaches to maximum near the inner expanding surface

(see Fig. 1a). In fact the velocity of the inner expanding

surface is higher than the fluid velocity just behind the shock

due to increasing energy input given by Eq. (3.13).

Figure 2 shows that the reduced magnetic field h0

increases as we move from the shock front to the inner

expanding surface and its profiles decrease after attaining a

maximum for t=t0 ¼ 2 in the flow field region behind the

shock front. This behavior of magnetic field is obtained due

to less compression of magnetic flux which leads to

decrease in magnetic field h0.

Conclusions

Non-similarity solution for propagation of explosion waves

in a stellar model in the case of unsteady isothermal flow,

Fig. 1 Variation of the flow

variables in the region behind

the shock front for c ¼ 5
3
. 1

M�2
A ¼ 0, t

t0
¼ 2; 2 M�2

A ¼ 0:04,
t
t0
¼ 2; 3 M�2

A ¼ 0:1, t
t0
¼ 2; 4

M�2
A ¼ 0, t

t0
¼ 3; 5 M�2

A ¼ 0:04,
t
t0
¼ 3; 6 M�2

A ¼ 0:1, t
t0
¼ 3.

a reduced fluid velocity u0

b reduced density q0 (or

pressure p0). c reduced mass m
0
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in which density varies exponentially, has been obtained in

this paper. The shock wave moves with variable velocity,

and the total energy of the wave is not constant and varies

with time. It is investigated that the presence of gravita-

tional field reduces the effects of the magnetic field. Also,

the presence of gravitational field increases the compress-

ibility of the medium, due to which it is compressed and,

therefore, the distance between the inner contact surface

and the shock surface is reduced.

The article concerns with the explosion problem;

however, the methodology analysis presented here may

be used to describe many other physical systems

involving non-linear hyperbolic partial differential

equations. The shock waves in conducting perfect gas

can be important for description of shocks in supernova

explosions, in the study of central part of star burst

galaxies, nuclear explosion, rupture of a pressurized

vessel and explosion in the ionosphere. Other potential

applications of this study include analysis of data from

exploding wire experiments and cylindrically symmetric

hypersonic flow problems associated with meteors or re-

entry vehicles (c.f. Hutchens [35]). Also, the present

study can be important to verify the accuracy of the

solution obtained by the theory of self-similarity and

computational methods such as finite difference scheme,

finite element, etc.

The following conclusions may be drawn from the

finding of the current analysis (see Figs. 1a–c, 2; Table 1):

1. By an increase in the strength of magnetic field, the

distance of the inner contact surface from the shock

front is increased in general, i.e., the flow field behind

the shock becomes somewhat rarefied, i.e., there is a

decrease in the shock strength.

2. Due to the presence of gravitation, the pressure

(density), velocity and azimuthal magnetic field

increase, in general, as we move inward from the

shock front.

3. It is found that the reduced velocity and reduced

pressure (density) decrease in general with the strength

of magnetic field, whereas the reduced mass shows a

reverse behavior.

4. The reduced pressure (density) with or without mag-

netic field in non-gravitating case (i.e., for L� ¼ 0)

decreased with an increase in time (t=t0) in general,

whereas it increases in gravitating case (i.e., for

L� ¼ 0:1).

5. It is found that reduced velocity and reduced magnetic

field increase with an increase in time (t=t0), whereas

the reduced mass shows a reverse behavior.

Fig. 2 Variation of reduced azimuthal magnetic field h
0

in the region

behind the shock front for c ¼ 5
3
. 1 M�2

A ¼ 0:04, t
t0
¼ 2; 2 M�2

A ¼ 0:1,
t
t0
¼ 2; 3 M�2

A ¼ 0:04, t
t0
¼ 3; 4 M�2

A ¼ 0:1, t
t0
¼ 3

Table 1 Variation of the density ratio b ¼ q1

q2

� �
across the shock front and the position of the inner expanding surface r0 for different values of

M�2
A with c ¼ 5

3

M�2
A

b Position of the expanding surface r0

t=t0 ¼ 2 t=t0 ¼ 3

Gravitating case (L� ¼ 0:1) Non-gravitating case (L� ¼ 0) Gravitating case (L� ¼ 0:1) Non-gravitating case (L� ¼ 0)

0 0.25 0.951519 0.835882 0.957585 0.866180

0.01 0.261039 0.9464 0.9237 0.9840 0.846608

0.04 0.292116 0.93256 0.8820 0.9826 0.783417

0.08 0.330278 0.9194 0.8255 0.9810 0.65622

0.1 0.34838 0.9060 0.800079 0.9798 0.646472
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