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Abstract An analytical and numerical study is made on

the dispersion properties of a cylindrical waveguide filled

with plasma. An electron beam and static external mag-

netic field are considered as the mechanisms for controlling

the field attenuation and possible stability of the wave-

guide. The effects of plasma warmness and inhomogeneity

are also considered. Dispersion relations in x describing

different physical situations that govern the mode propa-

gation in the waveguide are obtained. The plasma dielectric

tensors and the dispersion relations which describe E and H

waves and, hence, the damping rate of these waves are

calculated and studied. The necessary conditions for the

field stability in the waveguide and amplification coeffi-

cients for these waves are also obtained. H-wave modes are

always attenuated by collisional effect. The growth of the

excited E wave is calculated in the resonance case, and

the stability condition for the E wave is obtained. E waves

are found to be more stable in warm plasma compared to

cold plasma. The results obtained here are of great interest

and may be used to analyze how the plasma affects the

electromagnetic properties of the cavity of the 1–2 MW

140–170 GHz continuous-wave gyrotron (for W7-X stell-

arator and ITER), for MW gyrotron development for fusion

plasma applications, and for second harmonic generation in

a plasma-filled parallel plane waveguide.

Introduction

There has been growing interest in the plasma-filled

cylindrical waveguides in recent years [1–4]. A consid-

erable number of microwave sources employ cylindrical

waveguides, containing axis encircling electron beams. In

these devices the annular plasma column interacts with

the modes of empty waveguides, in which case they have

been referred to as large-orbit gyrotrons, or with the

azimuthally periodic wiggler magnetic field where they

are called circular geometry free electron lasers. In either

case, frequencies of the generated electromagnetic–elec-

trostatic waves have been shown to have a strong

dependence on the radii of coaxial waveguide and on

relative positions of the inner and outer radii of the beam

[5]. Analysis of the plasma waveguide requires knowl-

edge of its eigenmodes. High-frequency eigenmodes of a

magnetized plasma waveguide are characterized in four

families, EH and HE waveguide modes, cyclotron modes,

and space-charge modes.

Besides, a lot of effort has been taken to study the

physical and geometrical parameters which cause attenu-

ation of waves (signals) through the waveguides. Interest

in studying plasma-filled waveguides has been growing

with the development of high-frequency electronics with

the objective of creating powerful microwave generators.

A great interest and importance have been shown in the

past [6–8] and in recent years [9–12] on wave propagation

in plasma-filled waveguides. This subject is currently of

considerable interest for optical systems and in the

development of high-power millimeter wave amplifiers

and its application via high-resolution and imaging radar,

high information density communication, NDT, RF

sources for the next generation of particle accelerators

and fusion experiments.
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In some experiments, when considering the physical

properties of the inner medium of the waveguide, it is

found that the average transferred energy increases with the

increase of the gas pressure, evacuating it or by replacing it

by a highly ionized gas. The results of these experiments

concluded the following explanation: the propagated

electromagnetic waves in the waveguide ionize the air

inside it under average pressure and temperature, forming a

plasma which absorbs the wave energy and consequently

causes field attenuation.

A promising mechanism to conserve field stability and to

control field attenuation in a waveguide is to inject into the

plasma a fast electron beam to excite the natural oscillations

of the plasma and additional electromagnetic modes which

compensates the losses in the original field.

Many theoretical investigations have been performed to

describe the fundamental principles of electromagnetic

wave excitation by an electron beam in a partially dielec-

tric-filled waveguide [13–18].

In this work, we investigate the electromagnetic wave

propagation in a plasma-filled cylindrical waveguide.

Analytical calculations are performed to find the plasma

dielectric tensor. By applying the boundary conditions at

the plasma–conductor interface, we find the dispersion

equations which describe the wave modes (E- and

H- waves) propagated inside the waveguide and their

physical properties. It is of interest to investigate also the

effect of a relativistic electron beam on the field stability

and minimize the energy losses in the waveguide. Also, the

cases of warm and magnetized plasma are considered.

The conductivity of the metal conductor is assumed to

be infinite, and the interior is filled with plasma.

Let Fig. 1 represent a section of cylindrical waveguide

with the z-axis parallel to the axis of the tube.

Waveguide filled with warm plasma and a relativistic

electron beam (REB)

Currents in plasma

Now, we consider the wave propagation in a cylindrical

waveguide filled with collisional, warm plasma and a rel-

ativistic electron beam. We use the hydrodynamic model

for the warm plasma in which the essential equations are

the continuity equation, equation of motion and Maxwell’s

equations. We take into consideration that the plasma is

quasineutral and that the plasma electrons have a finite

temperature, whereas the beam electrons are cold but move

at a velocity comparable to light velocity.

The initial equations which describe the system are

continuity equation, equation of motion and Maxwell’s

equations:

oNa

o t
þr~ � ðNa V~aÞ ¼ 0 ; ð1Þ

d

dt

V~a
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � V2
a

c2

q ¼ ea

ma
E~þ 1

c
V~a � ðH~ þ H~ext:Þ

� �

� maV~a

� 1

Nama
r~P; ð2Þ

r~ � E~ ¼ � 1

c

oH~

o t
; ð3 � aÞ

r~ � H~ ¼ 1

c

oD~

o t
¼ 4p

c
J~þ 1

c

oE~

o t
; ð3 � bÞ

where Na and V~a are the density and the mean velocity of

a-type particles (plasma and beam electrons and plasma

ions), ma is the electron–electron collision frequency and all

other terms have their usual meaning. Besides, we con-

sidered the effect of static external magnetic field along the

axis of the guide, i.e., H~ext ¼ e~zHext

The current density J~ is defined through the plasma

quantities as:

J~¼
X

a

eaNaV~a; ð4Þ

The interaction of the electromagnetic waves with the

plasma will disturb the equilibrium density and velocity of

the latter. It is convenient to expand Na and V~a in the form:

Na ¼ n0a þ na; V~a ¼ V~0a þ V~a; V~0a ¼ e~z V0a

The previous set of equations gives a remarkably

accurate description of the small-amplitude perturbations.

We linearize the above system of equations by con-

sidering small deviations from the equilibrium state

(na\\n0a ; Vaj j\\ V0aj j).
All perturbations are described by the ansatz

Fðq;u; z; tÞ � f ð qÞ � eiðk zþ‘u�x tÞ:
The perturbed density will have the form:

Fig. 1 Cylindrical waveguide
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na ¼ � in�a
~x

1

q
o

oq
ðq VqÞ þ

i‘

q
Vu þ ikVz

� �

; ð5Þ

where, ~x ¼ x aa ; aa ¼ 1 � n b�a; b�a ¼ V�a
c
; n ¼ kc

x :

From (2), the velocity components read:

Vq ¼ iea

ma

1

Wa
ðEq � b�aHuÞ þ

ixca

ca ~x þ ima
ðEu þ b�aHqÞ

� �

;

Vu ¼ iea

ma

1

Wa
ðEu þ b�aHqÞ �

ixca

ca ~x þ ima
ðEq � b�aHuÞ

� �

;

Vz ¼
iea

ma

1

WTa
Ez; ð6Þ

where,

ca ¼
1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � b2
�a

q ; Wa ¼
ðca ~x þ imaÞ2 � x2

ca

ca ~x þ ima
;

WTa ¼ c3
a ~x þ ima �

3k2V2
Ta

~x
;

xca ¼
eaH�
mac

; VTa ¼
ffiffiffiffiffiffiffiffi

KTa

ma

r

; K ¼ Boltmann’s Constant

Using (1)–(6), we can derive the following expressions

for the current density components:

4p
c

Jq ¼
X

a

iX2
a

cWa
ðEq � b�aHuÞ þ WcaðEu þ b�aHqÞ
� �

;

4p
c

Ju ¼
X

a

iX2
a

cWa
ðEu þ b�aHqÞ � WcaðEq � b�aHuÞ
� �

;

4p
c

Jz ¼
X

a

iX2
a

cWTa
1 þ kV�a

~x

� �

Ez; ð7Þ

where, Wca ¼ ixca
ca ~xþiva

, and Xa ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

4pe2
ano a

ma

q

Wca is the effect of external magnetic field. In rela-

tions (7) we took into consideration that when an elec-

tron beam is injected into a dense plasma, an inverse

current is induced in the plasma, compensating the cur-

rent and the corresponding magnetic field of the beam

[19, 20], i.e.,

J0z ¼
X

a

ea n0a V0a ¼ 0:

The non-axisymmetric permittivity tensor (l = 0)

From Maxwell’s equations, the following set of relations

are obtained

Hq ¼ lc

qx
Ez � nEu;

Hu ¼ ic

x
o

oq
Ez þ nEq;

Hz ¼ � ic

qx
o

oq
qEu � lc

qx
Eq; ð8Þ

and

X

a

k � X2
a

cWa
b�a

� �

Hq �
X2

a

cWa
b�aWca

� �

H/ þ i
o

oq
HZ

	 


¼
X

a

X2
a

cWa
Wca

� �

Eq þ
X2

a

cWa
� x

c

� �

Eu

	 


� l

q
Hq �

i

q
o

oq
qHu ¼

X

a

X2
a

cWTa
1 þ kV�a

~x

� �

� x
c

Ez;

ð9Þ
X

a

� X2
a

cWa
b�aWca

� �

Hq þ
X2

a

cWa
b�a � k

� �

Hu þ l

q
HZ

	 


¼
X

a

X2
a

cWa
� x

c

� �

Eq þ
X2

a

cWa
Wca

� �

Eu

	 


;

ð10Þ

The permittivity tensor operator êij which describes the

wave propagation in the waveguide is determined accord-

ing to the relation:

Di � êij E~j ¼ E~i þ
4p i

x
J~i; ð11Þ

Inserting (8) and (9) into (10), êij reads:

êij ¼

1 þ ic

x

X

a

A1að1 � nb�aÞ
ic

x

X

a

A2að1 � nb�aÞ
ic2

x2

X

a

b�a
l

q
A2a � iA1a

o

oq

� �

� ic

x

X

a

A2að1 � nb�aÞ 1 þ ic

x

X

a

A1að1 � nb�aÞ
ic2

x2

X

a

b�a
l

q
A1a þ iA2a

o

oq

� �

0 0 1 þ ic

x

X

a

A3a 1 þ kV�a
~x

� �

0

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

A

ð12Þ

where, A1a ¼ iX2
a

cWa
; A2a ¼ A1aWca; A1a ¼ iX2

a
cWTa

:

Electromagnetic field components

From Maxwell’s equations, and using (5)–(7), we can

obtain the following expressions for the electric and mag-

netic field components Eq, Eu, Hq, Hu in terms of the z-

components Hz and Ez:

Eq ¼ 1

b2

l

q
M1Ez þ M2

oEz

oq
þ l

q
M3Hz þ M4

oHz

oq

� �

; ð13Þ

Eu ¼ 1

b2
i

l

q
M2Ez þ iM1

oEz

oq
þ i

l

q
M4Hz þ iM3

oHz

oq

� �

; ð14Þ

Hq ¼ c

x
l

q
1 � i

k

b2
M2

� �

Ez

� i
c

x
k

b2
M1

oEz

oq
þ l

q
M4Hz þ M3

oHz

oq

� �

; ð15Þ

Hu ¼ c

x
k

b2

l

q
M1Ez þ

l

q
M3Hz þ M4

oHz

oq

� �

� c

x
1 � k

b2
M2

� �

oEz

oq
; ð16Þ
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where

M1 ¼ b1b3 þ b2b4 ; M2 ¼ i½ðb2 � kb1Þb1 � ðb3 � kb4Þb4�;
M3 ¼ ðb2 � kb1Þ ; M4 ¼ iðb3 � kb4Þ ;

b ¼ V

c
; b1 ¼ n�

X

a

X2
a

x
b�a
Wa

; b2 ¼
x
c

1�
X

a

X2
a

xWa

 !

;

b3 ¼
X

a

X2
a

x
WCa

Wa
; b4 ¼

X

a

X2
a

x
WCab�a

Wa
:

To find the final picture of the electric and magnetic

components (13)–(16), we have to solve the following

differential equations, which describe different wave

modes in waveguides filled with warm-magnetized plasma:

1

q
o

oq
q
oHz

oq

� �

þ Q2 � l2

q2

� �

Hz ¼ FðEzÞ; ð17Þ

1

q
o

oq
q
oEz

oq

� �

þ q2 � l2

q2

� �

Ez ¼ FðHzÞ; ð18Þ

where,

Q2 ¼ x
c

b2

ðkb1 � b2Þ
; q2 ¼ i

g
g0

x2

c2
;

g ¼ i
X

a

X2
a

xDaT

1 þ kV�a
~x

� 1

� �� �

; g0 ¼ 1 � i
k

b2
M2;

FðEzÞ ¼ � 1

q
o

oq
q
o

oq

� �

� l2

q2

� �

Ez;

FðHzÞ ¼
i

g0
kM4

b2

1

q
o

oq
q
o

oq

� �

� l2

q2

� �

Hz:

Equations (17) and (18) represent two linearly inde-

pendent equations for the two basic types of electromag-

netic waves which can propagate in a cylindrical

waveguide filled with warm-magnetized plasma. The

solution for (17) gives the TE or H wave with an entirely

transverse electric field (Ez = 0) and the axial component

Hz of the magnetic field. The solution of (18) gives the TM

or E wave with Hz = 0. The general solution of the

equations with Ez = 0 and Hz = 0 will be a linear com-

bination of the two types (TEM).

Magnetic wave mode (H wave)

Equation (17) has the following solutions:

Ez ¼ 0;

Hz ¼ H�JlðQqÞeiðkzþlu�xtÞ;

Eq ¼ 1

b2
H�

l

q
M3 þ M4

o

oq

� �

JlðQqÞeiðkzþlu�xtÞ;

Eu ¼ i

b2
H�

l

q
M4 þ M3

o

oq

� �

JlðQqÞeiðkzþlu�xtÞ;

Hq ¼ �nEu ; Hu ¼ nEq; ð19Þ

where Jl(Qq) is the Bessel function of order l.

As we have seen, the warm plasma can be described

as an equivalent dielectric medium obeying Maxwell’s

equations. The boundary conditions at the interface

between the plasma and a conductor are thus the classical

(usual) conditions of electromagnetic theory, since the

plasma behaves simply as a polarizable medium with

strongly frequency-dependent tonsorial permittivity.

Accordingly, we can still use the boundary condition;

Eu ! 0 at q ¼ q0;

J0
l ¼ ðQq0Þ ¼ 0: ð20Þ

Equation (20) has an infinite number of real roots which

define correspondingly an infinite number of modes prop-

agating in the waveguide. Let these roots be defined by

v‘,m, where ‘, m = 0, 1, 2, 3,… Accordingly, if the

waveguide is filled with warm-magnetized plasma, the

propagation wave number k is determined by:

Q ¼
v‘;m
q0

: ð21Þ

Equation (21) represents the dispersion relation for the H

wave.

Electric wave mode (E wave)

We derive from Eq. (18) the following solutions for the E

mode:

Hz ¼ 0;

Ez ¼ E0JlðqqÞeiðkzþlu�xtÞ;

Eq ¼ E0

b2

l

q
M1 þ M2

o

oq

� �

JlðqqÞeiðkzþlu�xtÞ;

Eu ¼ E0

b2

l

q
M0

1 þ M0
2

o

oq

� �

JlðqqÞeiðkzþlu�xtÞ;

Hq ¼ c

x
E0

l

q
1 � k

b2
M0

1

� �

� k

b2
M0

2

o

oq

� �

JlðqqÞeiðkzþlu�xtÞ;

Hu ¼ c

x
E0

k

b2
M1 � 1 � k

b2
M2

� �

o

oq

� �

JlðqqÞeiðkzþlu�xtÞ;

ð22Þ

and the propagation wave number q is determined by the

dispersion relation:

q ¼
x0‘;m
q0

: ð23Þ

x‘,m
0

are the roots when considering the boundary condition

Ez ? 0 at q = q0, then Jl(qq�) = 0.

Figures 2 and 3 show the magnetic q and electric Ez

modes propagating in a waveguide filled with warm-mag-

netized plasma for different numbers (‘, m = 0, 1, 2, 3,…..).
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Power flow in waveguide

Homogeneous, collisionless, unmagnetized cold plasma

When considering a metallic cylindrical waveguide com-

pletely filled with a homogenous, unmagentized, colli-

sionless cold plasma, the dielectric constant is simply given

by the well-known form

ep ¼ 1 � Xp

x

� �2

;

where Xp ¼
ffiffiffiffiffiffiffiffiffiffiffi

4pe2n0e

me

q

is the Langmuir electron frequency.

To get the average power flux Sl,m we use the well-

known Poynting formula:

S~‘;m ¼ c

8p
ReðE~� H~

	Þ:

Accordingly, it is easy to compare the average rate of

power transmitted in the empty waveguide S‘,m
(0) with that in

the waveguide filled with plasma S‘,m
(P).

For H wave, it is easy to check that

S
ðPÞ
‘;m

S
ð0Þ
‘;m

¼
eP � N2

‘;m

1 � N2
‘;m

\1; N‘;m ¼ c

x
x‘;m

q0

; ð24Þ

and for E wave,

S
ðPÞ
‘;m

S
ð0Þ
‘;m

¼ ep

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

eP � N
02
‘;m

1 � N
02
‘;m

s

\1; N 0
‘;m ¼ c

x

v0‘;m
q�

: ð25Þ

Fig. 2 Magnetic modes Hz for different numbers (‘, m = 0, 1, 2, 3, …)
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Relations (24) and (25) show that, for a given fre-

quency, the average rate of energy flow in a waveguide

filled with plasma is lower than the flow in the empty

waveguide.

For H wave, the propagation number k is determined

from (21) as:

k ¼ x
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � xðPÞ
cr

x

 !2
v

u

u

t ð26Þ

where xcr
(p) is the critical frequency for Hl,m modes in the

presence of plasma

xðpÞ
cr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X2
p þ

cv‘m
q0

� �

s

; ð27Þ

It is clear that the cutoff frequency for a given mode in a

waveguide filled with plasma xcr
(p) differs from that for an

empty (evacuated) waveguide xcr
(0) [18], where

xð0Þ
cr ¼ c

Rlm

q�

ffiffi

e
p

;

Here, Rlm are the roots of Jl

0
(jq�) = 0 and j2 ¼ x2

c2

ðe � n2 Þ; n ¼ kc
x ; e 6¼ ep:

This difference is a measure of phase shift Dx =

xcr
(p) - xcr

(0) for the wave modes H‘,m and usually used

to determined the plasma density inside the waveguide

(Dx is proportional to Xp).

Relations (24) and (25) are also valid for E‘,m wave

modes. This could be checked and achieved by replacing

v‘,m by v
0

‘,m.

Fig. 3 Electric modes Ez for different numbers (‘, m = 0, 1, 2, 3, …)
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Different plasmas

Homogeneous cold-magnetized plasma

When considering a waveguide filled with a cold-magne-

tized plasma, the average power flux s~H for the H wave is

given by:

s~H ¼ c

8p
1

b2
H2

0

X2
a

x2
a �x2

ca

xca

x

� ��

JlðQqÞ

þ n

b2
ð X2

a

x2
a �x2

ca

xca

x
Þ2 þx

c
ðn2 � eÞ

� �2

J0
lðQqÞ

#

J0
lðQqÞ;

ð28Þ

while for the E wave S~E is given by:

S~E ¼ c

8p
E2

0

xb2

X2
a

x2
a �x2

ca

xca

x
n �

"

ð1 � e� n2ÞJlðqqÞ

þ k

b2

k

n

2

ðn2 � eÞx
2
a �x2

ca

X2
a

x
xc

þxca

x

 !

J0
lðqqÞ

#

J0
lðqqÞ;

ð29Þ

Figures 4 and 5 show the dispersion relations for H

wave and E waves in a waveguide filled with magnetized,

cold plasma for different numbers (‘, m = 0, 1, 2, 3,…),

while Fig. 6 shows the power flux flow for H wave, E wave

and a comparison with unmagnetized cold plasma.

Homogeneous warm unmagnetized plasma

When considering a waveguide filled with a warm

unmagnetized plasma, the average power flux s~H for the H

wave is given by:

s~H ¼ c

8p
1

b2
H2

�e
l2

q2
� 1

� �

k þ l

q

� �

J2
l ðQqÞ; ð30Þ

while for the E wave, S~E is given by

S~E ¼ c2

8p
E2

0

1

x
JlðqqÞJ0

lðqqÞ þ l

q
J2

l ðqqÞ
�

� k2

b4
ðe � n2Þ2

J
02
l ðqqÞ þ l2

q2

k

b2
ðe � n2ÞJ2

l ðqqÞ
�

; ð31Þ

Figures 7 and 8 show the dispersion relations for H

wave and E waves in a waveguide filled with unmagne-

tized, warm plasma for different numbers (‘, m = 0, 1, 2,

3, …..), while Fig. 9 shows the power flux flow for H

wave, E wave and a comparison with unmagnetized cold

plasma.

Inhomogeneous cold unmagnetized plasma

We consider plasma inhomogeneity along the waveguide

axis. Starting from the equations of motion and conti-

nuity equations for inhomogeneous cold unmagnetized

plasma, we obtain the following solutions for H and E

waves:

H wave

Eq ¼ � c

x
1

e � n2

l

q
H�JlðQqÞeiðkzþlu�xtÞ

Eu ¼ i
c

x
1

e � n2
H�ð

o

oq
þ 1

q
ÞJlðQqÞeiðkzþlu�xtÞ

Hq ¼ nEu

Hu ¼ nEq

Fig. 4 Dispersion relation for H wave in magnetized, cold plasma
Fig. 5 Dispersion relation for E wave in magnetized, cold plasma
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E wave

Eq ¼ i
c

x
1

e � n2

1

nq
E0

o

oq
q

� �

JlðqqÞeiðkzþlu�xtÞ

Eu ¼ c

x
1

e � n2

nl

q
E0

o

oq
q

� �

JlðqqÞeiðkzþlu�xtÞ

Hq ¼ � e
n

Eu

Hu ¼ �enEq

Using Poynting formula, the average power flux s~H for the

H wave is given by:

S~H ¼ c

8p
c2

x2

1

ðe � n2Þ2
H2

0 J2
l ðq QÞ � n

l

q

� �2

J2
l ðqQÞ

"

� 2

q
JlðqQÞJ0

lðqQÞ � 1

q2
J2

l ðqQÞ
�

; ð32Þ

while for the E wave, S~E is given by

S~E ¼ 1

8p
c2

x
1

ðe � n2Þ2

� E2
0e

1

n
J

02
l ðqqÞ þ l2n J

02
l ðqqÞ � 1

e � n2
lJ2

l ðqqÞ
� �

;

ð33Þ

Fig. 6 Power flux flow a for H

wave (pink line) in magnetized,

cold plasma, b for E wave (blue

line) in magnetized, cold

plasma, c for E wave (blue line)

in magnetized, and

unmagnetized (red line) cold

plasma
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Figures 10 and 11 show the dispersion relations for H

wave and E waves in a waveguide filled with an inhomo-

geneous unmagnetized, cold plasma for different numbers

(l, m = 0, 1, 2, 3, …), while Fig. 12 shows the power flux

flow for H wave, E wave and a comparison with unmag-

netized cold plasma.

Collisional plasma

In the previous section, collisions have been neglected.

Let us now consider the case when electrons collision

frequency is small compared to field frequency, i.e.,

me \\x.

Accordingly, we can rewrite the plasma dielectric tensor as:

ep ¼ 1 � Xp

x

� �2

1 � i
me

x

� �

;

Using (29) and (30) we can write the refractive index in

the form:

n ¼ nreal þ inimag;

nreal ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � xðpÞ
cr

x

 !2
v

u

u

t ; ð34Þ

ki ¼
x
c

nimag ¼ 1

2

x
c

1

nreal

me

x

� � Xp

x

� �2

: ð35Þ

From (35) it is clear that the wave number ki has a

complex form. The presence of the imaginary part leads to

the damping of the wave, and accordingly the average rate

of energy flow in the filled waveguide decreases expo-

nentially as e-n�z, where the attenuation coefficient is given

by:

f ¼ ve

c

1

nreal

Xp

x

� �2

; ð36Þ

We should mention here that high field attenuation

occurs when: (1) the plasma is sufficiently dense or (2)

plasma is strongly collisional.

Excitation of waves by a relativistic cold electron beam

In the previous sections, we could get the spectra of E and

H waves propagating in a waveguide filled with warm

plasma or cold plasma placed in a static magnetic field. We

now consider the problem of the excitation of these waves

by a relativistic electron beam. The calculation will be

simpler for the case of unmagnetized plasma.

A cold electron beam passing along the axis of a plasma

waveguide will interact strongly with a plasma wave and

excite it. This interaction takes place under the resonance

(Cherenkov) condition, such that the longitudinal phase

velocity of the wave equals to the beam velocity, i.e., under

the condition x = kV0b, which is necessary but not suffi-

cient for wave excitation. In addition to this condition, the

existence of fields which are growing in amplitude requires

certain limits to be imposed on the plasma and the beam

parameters. These limits (conditions) could be obtained

from the dispersion equation which describes the beam–

plasma system.

In our case, it is convenient to consider that the beam

density nb is much smaller than the electron plasma density

nP (i.e., nb \\np). This assumption enables us to continue

considering small oscillations and applying the linear

approximation.

Fig. 7 Dispersion relation for H wave in unmagnetized, warm

plasma

Fig. 8 Dispersion relation for E wave in unmagnetized, warm plasma
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We shall discuss here the case of waveguide filled with a

warm, homogeneous unmagnetized plasma. The summa-

tions over a include both the plasma and beam electrons.

As we consider a case of high-frequency waves, the

oscillations of the ions are neglected.

From Eq. (7) we have the following expressions for the

warm plasma and the cold beam:

aP ¼ 1 ðV0P ¼ 0Þ; ab ¼ 1� nb0 b0 ¼
V0b

c

� �

bP ¼ 1�W2
T W2

T ¼
3k2V2

Te

x2

� �

; bb ¼ 1 ðcold beamÞ

DP ¼ 1; Db ¼ cð1� nb0Þ ¼ cab; ~DP ¼ 1; ~Db ¼ c3 ab;

c ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � b2
0

q ; ð37Þ

and the dielectric components read now as:

e1 ¼ eP �
W2

b

c
; W2

b ¼ X2
b

x2
; Xb ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4p e2n0b

me

s

 !

e2 ¼ eP �
W2

b

Db

;

e3 ¼ eP �W2
PW2

T � W2
b

c3a2
b

¼ 1� W2
P

1�W2
T

� W2
b

c3a2
b

; W2
T\\1:

ð38Þ

Fig. 9 Power flux flow a for H

wave (pink line) in un-

magnetized, warm plasma, b for

E wave (red line) in un-

magnetized, warm plasma, c for

E wave in un-magnetized cold

(blue line), and warm (red line)

plasmas
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H wave

Taking into account the beam contribution in the dispersion

relation (21), we get:

n2 ¼ 1 � Xp

x

� �2

� 1

c
Xb

x

� �2

�
cvl;m

xq�

� �2

; ð39Þ

In zero approximation, i.e., in case of no beam, we

obtain the following expression for the phase velocity:

Vph: ¼
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � xP
cr

x

� �2
r [ c: ð40Þ

Relations (39) and (40) show that the phase velocity of

H waves always exceeds the velocity of light, i.e., the

Cherenkov condition cannot be fulfilled.

Therefore, the relativistic electron beam will not be able

to interact with the wave modes Hl,m. These modes are

always attenuated by the collisional effect.

E- Wave

The corresponding dispersion relation will have the

form:

c

x

v
0
l;m

q0

 !2

½ðn2 � e1Þe3 þ e2
2� ¼ n2ðe1 � n2Þe4; ð41Þ

Here, the dielectrics e1, e2, e3 read as:

e1 � eP ¼ � 1

c
X2

b

x2

e2 � eP ¼ 1

1 � nb0

ðe1 � ePÞ

e3 � eP ¼ 1

1 � nb0ð Þ2
ðe1 � ePÞ

e4 � eP ¼ 1

c 1 � nb0ð Þ½ �2
ðe1 � ePÞ;

In the absence of electron beam Xb = 0, as for the case

of H wave, we find the threshold frequency by setting in

(41) Xb = 0, and with n = n0 we get:

1 � W2
P

1 � W2
T

� �

ðn2
0 � ePÞ þ eP

c

x
v

0

l:m

q0

� �2

¼ 0 : ð42Þ

It is easy to check that the refractive index is given by:

n0 ¼ k0c

x
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

eP � c

x
v0

l:m

q0

� �2
s

; ð43Þ

while for the relation between natural plasma

frequency XP and E wave, an oscillation frequency x
is given by:

x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðk0cÞ2 þ X2
p þ

c

x
v0

l:m

q0

� �2
s

: ð44Þ

In the presence of electron beam, Xb = 0, E wave and

H wave coupling modes exist and the electron beam

changes the refractive index n� by a small addition:

n ¼ n� þ dn; dn\\n�

with dn representing the growth of the excited E wave in

the presence of REB.

The dispersion relation (35) reads:

2n0ePdn � X2
bX

2
P

x4

b2
0

c 1 � n0b0ð Þ2

cx0l;m
xq0

� �3

¼ 0 ð45Þ

At resonance, dn = 1 - n�b� = (dn)real ? i(dn)imag,

(45) reads:

Fig. 10 Dispersion relation for H wave in an inhomogeneous plasma

Fig. 11 Dispersion relation for E wave in an inhomogeneous plasma
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dn ¼
ffiffiffi

1
3
p

�
cv0l;m
q�x

� �

X2
bX

2
p

2cepx4

 !1=3

b� ð46Þ

Since

ffiffiffi

1
3
p

¼ 1 ��1 
 i
ffiffiffi

3
p

2
;

it follows from (45), and under the condition (dn)imag \ 0,

the wave number (dn)real corresponding to (46) is given

by:

k
0

i ¼ k� �
ffiffiffi

3
p

2

x
c

X2
bX

2
p

2cepx4

cv0l;m
q�x

� �2
 !1=3

: ð47Þ

Equating (47) and (35), i.e., ki = ki

0
, we get the follow-

ing condition for the stability of the propagating E wave

through the waveguide filled with plasma:

k�c

x
¼

ffiffiffi

3
p

2

X2
bX

2
p

2epx4
ð
cv0l;m
q�x

Þ2 1

c

 !1=3

þ 1

2nreal

me

x

� � Xp

x

� �2

;

ð48Þ

Let us now investigate two cases:

1. Cold plasma

In this case WT = 0, and equation (42) reduces to

eP n2
0 � eP þ

c vl;m

x

� �2
� �

¼ 0; ð49Þ

Accordingly, we have two types of waves with frequencies:

x ¼ XP; ð50 � aÞ

which represents the plasma oscillations, and

x ¼ ½X2
P þ ðk2

0 þ v2
l;mÞc2�1=2 ¼ xcold; ð50 � bÞ

which represents the electromagnetic modes included in

the dispersion relation (41).

When Xb = 0, and for cold plasma, by setting relation

(45) into the dispersion relation (41), we can derive the

following expression for dn:

d n ¼
W2

b W2
P

2eP

c vl;m

x

� �21

c

� �1=3

b0; ð51Þ

Fig. 12 Power flux flow a for

H-Wave (pink line) in an

inhomogeneous plasma, b for

E-Wave (light blue line) in an

inhomogeneous plasma, c for

E-Wave in an inhomogeneous

(dark blue line) and

homogeneous (red line) plasmas
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To derive (51) we considered the resonance case when

n0 � 1
b0
: From (51) with combination of (41), the axial

wave number gets the form:

k ¼ k0 � i

ffiffiffi

3
p

2

x
c

W2
b W2

P

2eP

c vl;m

x

� �21

c

� �1=3

: ð52Þ

and the condition for the E wave stabilization reads:

m
x
¼

ffiffiffi

3
p

b0

c vl;m

x

� �2 W2
b

eP W4
P

" #1=3

eP �
c vl;m

x

� �2
� �1=2

: ð53Þ

In this case the imaginary part of k (due to collisions)

which is presented by Eq. (52) compensates that due to

beam excitation.

2. Warm plasmaInstead of Eq. (43), the E wave fre-

quency is now given by:

x¼xwarm ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2
coldþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x4
cold�4X2

Tv2
l;mc2

q

r

 !1=2

; ð54Þ

where xcold is given by relation (50-b) and XP [[XT,

XT = xWT.

When Xb = 0, we get, from (41), the following

expression for the growth rate of E waves in warm plasma

in the presence of the REB:

d n ¼
W2

b W2
P

2eP eT

c vl;m

x

� �21

c

� �1=3

b0; ð55Þ

with eT = 1 - WT
2.

On comparing (51) and (55), we get

ðdnÞcold

ðdnÞwarm

� ðeTÞ1=3\1: ð56Þ

The axial wave number will have the same form as (52),

but with ePeT in the denominator instead of eP.

The condition for E wave stabilization in a waveguide

filled with warm plasma is given by

m
x

� �

warm
¼ e�1=3

T

m
x

� �

cold
: ð57Þ

Relation (57) shows that the E wave is more stable in

warm plasma.

Results and conclusions

This work is mainly devoted to conserve the field stability

using an REB. We demonstrated the case of electromag-

netic wave propagation and excitation in a cylindrical

waveguide filled with warm (magnetized/non magnetized)

plasma. Dispersion relations in x describing different

physical situations that govern the mode propagation in the

waveguide are obtained ((21), (23), (35), (41) and (43)). In

addition, an attempt is made to examine the effect of

density inhomogeneity on the energy gain acquired by the

relativistic electron beam bunching when it is injected in

the waveguide along the direction of mode propagation.

The expressions for currents, dielectric tensor and

electromagnetic field components are obtained. Two modes

of waves are found, E and H waves, and the corresponding

dispersion equation of each type are derived and solved.

In case of waveguide filled with unmagnetized warm

nonmoving plasma, the two wave modes have different

dispersion relations, which agree for the thermal parameter

XT ? 0. The spectrum of each mode is obtained and

compared with that for the empty waveguide (relations

(18)–(20)). The case of magneto-active moving plasma will

be investigated in due course.

In case of collisionless plasma, it is found that the cutoff

frequency for a given mode xcr
(P) differs from that for an

empty waveguide xcr
(0). This difference is a measure of the

phase shift and could be used via plasma diagnostics to

determine the plasma density inside the waveguide. It is

also found that, for a given frequency, the average rate of

energy flow in plasma-filled waveguide is smaller than that

of an empty waveguide. This lets us suggest that the power

could be increased through the waveguide by avoiding the

formation of a plasma in the waveguide by operating it

with increased air pressure (or vacuum). Generally speak-

ing, to obtain a high power transition in a waveguide, the

formation of a plasma should be avoided, not only because

the propagation of energy is hindered by the plasma,

but also by the large absorption by collisional damping,

especially in a waveguide filled with high-pressure gases

(plasmas).

When we reconsider the collisions in the plasma, the

average rate of energy flow in the waveguide is decreased

exponentially with attenuation factor proportional to the

collision frequency m. High attenuation occurs when the

plasma is sufficiently dense to attenuate the field, but not

yet dense enough to exclude it.

Wave propagation in waveguide filled with magnetized,

cold, nonmoving homogeneous plasma is also studied. We

obtained analytical expressions for wave modes, their

dispersion relations, cutoff frequencies, and average power

fluxes in rarefied weakly magnetized plasma.

The effect of a relativistic electron beam on the wave

propagation in plasma-filled waveguide is also investi-

gated. It is found that the phase velocity of the H wave

always exceeds the velocity of light and, due to the

Cerenkov condition, the REB will not be able to interact

with the H wave. These waves are always attenuated by

collisions.

The growth of the excited E wave is calculated in the

resonance case, and the stability condition for the E wave is
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obtained. E waves are found to be more stable in warm

plasma compared to cold plasma.

The dispersion relation (41) for unmagnetized, colli-

sionless, cold plasma has been reduced to the results sim-

ilarly obtained in earlier works [18]. The results obtained

here are also in agreement with special cases of unmag-

netized warm plasm [19] by same author (IEEE Transac-

tions on Plasma Science, 1(1983)PS-11).

Recently, waveguides filled with plasma represent a

great interest through reconfigurable plasma antenna [20],

propagation of high-power microwave and its interaction

with a plasma in a metallic waveguide [21], and waveguide

resonators with combined Bragg reflectors [22].

The results obtained are of great interest and may be

used to analyze how the plasma affects the electromagnetic

properties of the cavity of the 1–2 MW 140–170 GHz

continuous-wave gyrotron (for W7-X stellarator and ITER)

[23–25], for MW gyrotron development for fusion plasma

applications [26] and second harmonic generation in a

plasma-filled parallel plane waveguide [27].

Parallel works on dispersion characteristics of the

cylindrical waveguide filled by magnetoactive plasma [28]

have been considered for different conditions from ours

(i.e., cold, collisionless, symmetric plasma). The authors

have also not considered minimizing the energy losses in

the waveguide.

Open Access This article is distributed under the terms of the

Creative Commons Attribution License which permits any use, dis-

tribution, and reproduction in any medium, provided the original

author(s) and the source are credited.
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