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Abstract

In this paper, the Lie algebraic method is applied to solve biological population models described by
time-inhomogeneous birth-death processes. Notwithstanding no obvious symmetry, the solution is expressed by
matrix exponentials through suitably generated low-dimensional Lie algebras. This methodology may offer useful
insights for other biological and ecological applications.
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Background
During the past few decades, Markovian stochastic
systems have come to play a vital role in a host of branches
of science and engineering applications. Biological pop-
ulation models, due to the random nature of diffusion
of populations, are often captured by continuous-time
Markovian models [1-7]. For example, the Moran pro-
cess [8], which describes the probabilistic dynamics in
a finite population in which two alleles A1 and A2 are
competing for dominance, can be suitably described as
a birth-death process. In general, stochastic effects on
populations change over time, which give rise to time-
inhomogeneous behavior, increasing the complexity of
population dynamics.
An effective and often easy-to-use method for solving

time-inhomogeneous Markov chains was proposed in
[9] by using low-dimensional Lie algebras. This method
(which we will review below) has broad applications in
physical and chemical sciences (see, e.g., [10-13]), and
certain symmetries of the systems are used as a guide
to generate an appropriate Lie algebra. Recently, the Lie
algebraic method was applied to solve biological popula-
tion models [14,15] where symmetry is insufficient.
In this paper, we implement the Lie algebraic method

to a biological population model to find analytical solu-
tions through matrix exponentials. The population model
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considered is not obviously symmetric and is described
by time-inhomogeneous birth-death processes. Our result
generalizes a previous model in [14].

Lie algebraic methodology
A Lie algebra [16] is a vector space V over some field F
together with a bilinear operation [·, ·] : V×V → V called
the Lie bracket, which obeys [X,X] = 0 and the Jacobi
identity

[X, [Y ,Z]]+ [Y , [Z,X]]+ [Z, [X,Y ]]= 0, (1)

for all X,Y ,Z ∈ V . For X ∈ V , define a linear operator
adX by

(adX)Y =[X,Y ] , (2)

for Y ∈ V . Thus, multiple Lie brackets can be expressed
in a compact way, e.g., (adX)2Y = [X, [X,Y ]], etc. Let
GLn(R) be the general linear group of order n over R,
where n can be finite or infinite. For two matrices X,Y ∈
GLn(R), define

[X,Y ]= XY − YX (3)

as the commutator (or Lie bracket) of X and Y. Therefore,
the classical Baker-Campbell-Hausdorff formula [17] can
be rewritten as

eXYe−X = (eadX)Y . (4)

The type of processes considered here are continuous-
time Markov chains [18], taking values in the state space
S = {0} ∪N. The dynamical behavior of the Markov chain
is governed by amatrixQ(t) = (qij(t), i, j ∈ S), where qij(t)

© 2013 Shang; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.



Shang Journal of Theoretical and Applied Physics 2013, 7:67 Page 2 of 4
http://www.jtaphys.com/content/7/1/67

is the rate of transition from state i to state j, for j �= i,
and −qii(t) = qi(t) = ∑

j �=i qij(t) is the total rate at
which we leave state i at time t. By employing the Kol-
mogorov forward equation, the probability distribution of
the process at time t, p(t) = (pi(t), i ∈ S), is given by

dp(t)
dt

= H(t)p(t), (5)

where H(t) = Q(t)T (T means transpose), and p(t) is a
column probability vector with element pi(t) representing
the probability of finding the system in state i at time t.
H(t) is time-dependent, meaning that the process is time-
inhomogeneous.
The Lie algebraic methodology proposed in [9] first

requires a decomposition of the matrix H(t) as

H(t) =
m∑
i=1

ai(t)Hi, (6)

such that ai(t) are real-valued functions, and Hi (i =
1, · · · ,m) are linearly independent constant matrices gen-
erating a Lie algebra V = span{H1, · · · ,Hm} ⊆ GLn(R) by
implementing a Lie bracket

[Hi,Hj]= HiHj − HjHi =
m∑
k=1

ηijkHk (7)

for ηijk ∈ R. It was shown that the solution of system (5)
can be uncoupled into a product of exponentials [9]

p(t) = e g1(t)H1 · · · e gm(t)Hmp(0) = U(t)p(0), (8)

where gi(t) are real-valued functions and gi(0) = 0.
Feeding (6) and (8) into (5), we obtain

dp(t)
dt

=
m∑
i=1

ai(t)HiU(t)p(0)

=
m∑
i=1

ġi(t)

⎛
⎝i−1∏

j=1
e gj(t)Hj

⎞
⎠

· Hi

⎛
⎝ m∏

j=i
e gj(t)Hj

⎞
⎠ p(0). (9)

Since U(t)p(0)U(t)−1 = ∏m
j=1 e gj(t)adHjp(0) by using (4),

we have
m∑
i=1

ai(t)HiU(t)p(0)U(t)−1

=
m∑
i=1

ai(t)Hi

⎛
⎝ m∏

j=1
e gj(t)adHj

⎞
⎠ p(0). (10)

On the other hand, multiplying U(t)−1 on the right of (9)
yields

m∑
i=1

ġi(t)

⎛
⎝i−1∏

j=1
e gj(t)Hj

⎞
⎠Hi

⎛
⎝ m∏

j=i
e gj(t)Hj

⎞
⎠

· p(0)U(t)−1

=
m∑
i=1

ġi(t)

⎛
⎝i−1∏

j=1
e gj(t)Hj

⎞
⎠Hi

⎛
⎝i−1∏

j=1
e gj(t)Hj

⎞
⎠

−1

·
⎛
⎝ m∏

j=1
e gj(t)adHj

⎞
⎠ p(0).

=
m∑
i=1

ġi(t)

⎛
⎝i−1∏

j=1
e gj(t)adHj

⎞
⎠Hi

⎛
⎝ m∏

j=1
e gj(t)adHj

⎞
⎠

· p(0). (11)

Combining (10), (11), and (9), we obtain

m∑
i=1

ai(t)Hi =
m∑
i=1

ġi(t)

⎛
⎝i−1∏

j=1
e gj(t)adHj

⎞
⎠Hi (12)

since p(0) is arbitrary.
Notice that the matrices Hi are linearly independent,

and thus, the exact solution to (12) is reduced to that of a
linear system between ai(t) and ġi(t), involving ηijk , with
initial values gi(0) = 0. A remarkable advantage of this
method lies in reducing computational complexity: the
calculation of p(t) can be achieved in O(1) through (12)
rather than O(t) through incremental direct integrations.
Besides, the matrix exponential form (8) would be useful
if the derivative of the solution with respect to a model
parameter is required [13].

Application on a populationmodel
The population model considered here is described by
a time-inhomogeneous birth-death process N(t) taking
values in {0} ∪ N. The system goes from state i to i + 1
with birth rate b(t) ≥ 0, while it goes from state i to i − 1
with death rate f (i)d(t) ≥ 0. For technical reasons, we will
assume that

f (i + 1) − 2f (i) + f (i − 1) = c (13)

for some c ∈ R and f (0) = 0. Let s(x) = ∑∞
i=1 f (i)xi be

the generating function of the sequence f (i); it is easy to
check that

s(x) = xf (1)
(1 − x)2

+ cx2

(1 − x)3
. (14)

This population model could describe the survival of
juvenile animals dying at a rate that depends on climate
and some regularly varied resource when introduced to
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an inhospitable region by seasonal breeding happening at
another site [2,14].
Let pi(t) = P(N(t) = i) for t ≥ 0. The Kolmogorov

equation governing this process can be written as

dp(t)
dt

= H(t)p(t), (15)

where H(t) = Q(t)T =
⎡
⎢⎢⎢⎣

−b(t) f (1)d(t) 0 · · ·
b(t) −b(t) − f (1)d(t) f (2)d(t) · · ·
0 b(t) −b(t) − f (2)d(t) · · ·
...

...
...

. . .

⎤
⎥⎥⎥⎦ .

(16)

In terms of the Kronecker delta, we expand H(t) as

H(t) = b(t)(R − I) + d(t)(L − M), (17)

where (R)ij = δi,j+1, (I)ij = δi,j, (L)ij = f (j − 1)δi,j−1,
and (M)ij = f (j − 1)δi,j. It is necessary to include another
matrix J with (J)ij = (f (i) − f (j − 1))δi,j to have an alge-
bra that is closed under the action of the Lie bracket. In
Table 1, we show the complete set of Lie brackets.
We will look for a solution of the form

p(t) = e g1(t)Ie g2(t)J e g3(t)Re g4(t)Le g5(t)Mp(0). (18)

By using (12) and the action of the exponential operator
shown in Table 2, we can derive

− b(t)I + b(t)R + d(t)L − d(t)M
=ġ1(t)I + ġ2(t)J + ġ3(t)ecg2R

+ ġ4(t)
(
e−cg2L − g3J + cg23

2
ecg2R

)

+ ġ5(t)
(
M − f (1)g3ecg2R + f (1)g4e−cg2L

− f (1)g3g4 J + c
2
f (1)g23g4ecg2R

)
. (19)

Table 1 Values of [X,Y] for the populationmodel

X [X,R] [X, I] [X, L] [X,M] [X, J]

R 0 0 −J −f (1)R −cR

I 0 0 0 0 0

L J 0 0 f (1)L cL

M f (1)R 0 −f (1)L 0 0

J cR 0 −cL 0 0

Table 2 Values of e g(adX)Y with a scalar g for the
populationmodel

X eg(adX)R eg(adX)I eg(adX)L eg(adX)M eg(adX)J

R R I L − gJ + c
2g

2R M − f (1)gR J − cgR

I R I L M J

L R + gJ I L M + f (1)gL J + cgL

M ef (1)gR I e−f (1)gL M J

J ecgR I e−cgL M J

Equating terms in (19) in front of the same basematrices
yields

g1(t) = − ∫ t
0 b(u)du,

g3(t) = 1
d(t) ġ2(t)e

−cg2(t),
g4(t) = e f (1)D(t) ∫ t

0 d(u)ecg2(u)−f (1)D(u)du,
g5(t) = −D(t),

(20)

where D(t) = ∫ t
0 d(u)du, and g2(t) is determined by the

initial value problem⎧⎪⎨
⎪⎩

1
d(t) g̈2(t) +

(
f (1) − ḋ(t)

d2(t)

)
ġ2(t)

− c
2d(t) ġ

2
2(t) − b(t) = 0,

g2(0) = ġ2(0) = 0.
(21)

To derive g2, set y = ġ2 in (21), and then we obtain

ẏ(t) = − b(t)d(t) +
(
f (1)d(t) − ḋ(t)

d(t)

)
y(t)

− c
2
y2(t). (22)

This is a Riccati equation, which can be solved in some
situations by reduction techniques (see, e.g., [19]).
When c = 0 and f (1) = 1, the recursive relation (13)

gives f (n) = n for all n ∈ N. This is the example studied in
[14, Section 3.1]. The solution of (19) can be obtained as

g1(t) = − ∫ t
0 b(u)du,

g2(t) = ∫ t
0 d(u)e−D(u)

∫ u
0 b(v)eD(v)dvdu,

g3(t) = e−D(t) ∫ t
0 b(u)eD(u)du,

g4(t) = eD(t) ∫ t
0 d(u)e−D(u)du,

g5(t) = −D(t),

(23)

where D(t) = ∫ t
0 d(u)du. It is easy to check that (18)

together with (23) agrees with the solution derived in [14].

Conclusions
In the past few years, stochastic modeling has received
much attention, and it is widely used to study different
types of dynamical systems subject to abrupt changes
in their structure, such as failure-prone manufacturing
systems, neural networks, power systems, economics sys-
tems, etc. In this paper, we employed the Lie algebraic
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methodology to find the analytical solutions of biologi-
cal population models described by time-inhomogeneous
birth-death processes. The Lie algebra was shown to be
a very powerful and efficient approach in finding ana-
lytical solutions for numerous physical systems but has
not been widely used in the context of biological popula-
tions due to insufficient symmetries. It is hoped that the
technique described in this paper will find applications in
broad classes of biological and ecological models.
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