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Abstract A linearized relativistic field theory of a

plasma-loaded helix traveling-wave tube is presented for a

configuration where a solid electron beam propagate

through a sheath helix enclosed within a loss-free wall in

which the gap between the helix and the outer wall is filled

with a dielectric. Numerical study of the effect of plasma

density on the phase velocity and growth rate has been

done. Numerical results show that the plasma have dif-

ferent behaviors in different density limits.

Keywords Traveling wave tube � Plasma � Helix

Introduction

The relativistic traveling-wave tube (TWT) is an important

high-power source of broad-band high-power microwave

generation at centimeter wavelengths, developed over the

last several decades [1–5]. One of the common features of

a TWT is a slow-wave structure (SWS) such as a dielectric

material, disk-loaded waveguide, or a helix [6–10]. The

physical mechanism of operation is that the SWS reduces

the phase velocity of the electromagnetic wave to syn-

chronize it with the electron beam velocity, so that a strong

interaction between the two can take place. This phenom-

enon of Cerenkov emission is the basis for all TWTs.

Pierce and his coworkers [11–13] employed the coupled-

wave analysis in their pioneering work, and the analysis of

TWT improved using linear theories based on the Max-

well’s equations in a sheath helix [14, 15]. The coupled-

wave Pierce theory recovers the near-resonant limit. Both

coupled-wave and field theories of TWT have discussed in

[16] and [17]. Freund and coworkers developed the field

theories of beam-loaded helix TWTs for tape helix model

[18]. Freund and coworkers [19] described the numerical

comparison between the complete dispersion equation and

the Pierce model in helix TWT and shown that the coupled-

wave theory breaks down for sufficiently high currents. The

complete field theory is more exact than the coupled-wave

theory. A common feature of all these theories is that they

ignore the effects of any background plasma.

However, the residual gases in the container get ionized

by the beam and plasma of sensible density is formed. It

has been found experimentally that injection of plasma into

the microwave devices may enhance the interaction and the

output power. Plasma filling can also improve the trans-

mission quality of electron beam, even make beam trans-

mission without a guiding magnetic field [20, 21].

The specific geometry under study is illustrated in

Fig. 1. A conducting waveguide of radius Rg encloses a

hollow dielectric with an inner radius Rh ¼ Rd. Back-

ground plasma with a uniform density distribution of radius

Rp is loaded inside the helix. The electron beam with radius

Rb\Rp propagates through the plasma.

The purpose is to investigate the effects of dielectric

constant, plasma density, axial guide magnetic field, and

electron beam density on the phase velocity and growth rate.

In this manuscript, we expand a complete self-consistent and

relativistic field theory of the plasma-loaded helix TWT by

solution of the relativistic fluid equation and Maxwell’s

equations. The boundary condition includes three regions: (1)

inside the beam that includes the electron beam and plasma,

(2) between the beam and helix that includes the plasma, (3)

between the helix and the wall that is dielectric.

The organization of the paper is as follows: ‘‘The model

description’’ is determined in Sect. 2 through application of
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the appropriate boundary conditions upon the solution of

Maxwell’s equations. In Sect. 3, we deal with ‘‘Numerical

results and discussions’’ and finally some of the ‘‘Conclu-

sions’’ are given in 4.

The model description

With the aid of the Maxwell and fluid equations the wave

equations in regions I and II are given by Region I
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Fig. 1 Cross-sectional view of the structure. The dielectric fills the

region between Rh (helix radius) and Rg (conducting wall radius) and

plasma fills the region between 0 and Rh. The relativistic electron beam

along with the cold plasma fills the region between R = 0 and Rb
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the discontinuity conditions in the axial and azimuthal

magnetic fields due to the helix current sheet as follows

dBh Rh þ eð Þ � dBh Rh � eð Þ

¼ 4p
c

dJllDRh sin u and dB̂z Rh � eð Þ � dB̂z Rh þ eð Þ

¼ 4p
c

dĴllDRh cos u; ð8Þ

By employing Eq. 8 and onerous manipulations, we get:

A ¼ ½�iW
00

qRg; qRh

� �
cos uT3 � iv2 sin uT1�=½cðT1T4

þ T3T2Þ�; ð9Þ

F ¼ 4pdJllDRh½W
00

qRg; qRh

� �
cos uT4 � v2 sin uT2�

� ½cðT1T4 þ T3T2Þ�; ð10Þ

where T1; T2; T3; T4 are as follows:

T1 ¼ b 1ð ÞJ0 v�;II;pRh

� �
þ b 2ð ÞY0 v�;II;pRh

� �h i
W

00
qRg; qRh

� �

�
q v�;II;p

v2
W

0
qRg; qRh

� �
/ 1ð Þ

T2 ¼ d 1ð ÞJ0 v�;II;pRh

� �
þ b 2ð ÞY0 v�;II;pRh

� �h i

� W
00

qRg; qRh

� �
�

qv�;II;p

v2
W

0
qRg; qRh

� �
/ 2ð Þ

T3 ¼ þ v2 e x

cqW qRg; qRh

� � ½Y0 qRg

� �
J

0

0 qRhð Þ � J0 qRg

� �

Y
0

0 qRhð Þ�½c 1ð ÞJ0 v�;II;pRh

� �
þ c 2ð ÞY0 v�;II;pRh

� �
�

�
v�;II;p

c
þ kRp

ck

x
v�;II;p


 �
½c 1ð ÞJ

0

0 v�;II;pRh

� �
þ c 2ð ÞY

0

0 v�;II;pRh

� �
�

� kRpv�;II;p½b 1ð ÞJ
0

0 v�;II;pRh

� �
þ b 2ð ÞY

0

0 v�;II;pRh

� �
�

T4 ¼ v2 e x

cqW qRg; qRh

� � ½Y0 qRg

� �
J

0

0 qRhð Þ

� J0 qRg

� �
Y

0

0 qRhð Þ�½a 1ð ÞJ0 v�;II;pRh

� �
þ a 2ð ÞY0 v�;II;pRh

� �
�

�
v�;II;px

c
þ kRp

ck

x
v�;II;p


 �
a 1ð ÞJ

0

0 v�;II;pRh

� �
þ a 2ð ÞY

0

0 v�;II;pRh

� �h i

þ kRpv�;II;p d 1ð ÞJ
0

0 v�;II;pRh

� �
þ d 2ð ÞY

0
v�;II;pRh

� �h i

The final condition says that the electric field parallel to

the helix must be zero [18],

dEz sin u þ dEz cos u½ � ¼ 0; ð11Þ

The dispersion relation obtained by employing Eqs.

(9)–(11).

Wð1Þ þ Wð2Þ
n o

¼ 0; ð12Þ

where

Wð1Þ ¼
4pdĴkDRh

c
�iW

00
g; vRh

� �
cos uT3 � iv2 sin uT1

h i
=

h

T1T4 þ T3T2Þð � a 1ð ÞJ0 v�;II;pRh

� �
þ a 2ð ÞY0 v�;II;pRh

� �h ih

sin u þ d 1ð ÞJ
0

0 v�;II;pRh

� �
þ d 2ð ÞY

0

0 v�;II;pRh

� �h i

�
xv�;II;p

cv2
cos u½1 þ Rp x; kð Þ�

� �

�
kv�;II;p

v2
Rp x; kð Þ cos u½a 1ð ÞJ

0

0 v�;II;pRh

� �
þ a 2ð ÞY

0

0 v�;II;pRh

� ���
;

and

wð2Þ ¼
i4pdĴkDRh

c
W

00
vRg; vRh

� �
cos uT4 � v2 sin uT2

h ih

=ðT1T4 þ T3T2Þ�½ c 1ð ÞJ0 v�;II;pRh

� �
c 2ð ÞY0 v�;II;pRh

� �h i

sin u � ½b 1ð ÞJ
0

0 v�;II;pRh

� �
þ b 2ð ÞY

0

0 v�;II;pRh

� �
�

�
xv�;II;p

c2
cos u½1 þ Rp�

� �
�

kv�;II;p

v2

Rp cos u½c 1ð ÞJ
0

0 v�;II;pRh

� �
þ c 2ð ÞY

0

0 v�;II;pRh

� �
��;

Numerical results and discussion

We analyze the dispersion characteristics of the slow-wave

structure from the numerical computation of the dispersion

using (12). The nominal parameters of this system corre-

spond to a helix with a period kh = 1.966 cm a width

nh = 0.764 cm, and a radius of Rh = 1.4 cm enclosed

within a wall of radius Rw = 3.63 cm. Consider only the

case in which m = 0. The growth rate is proportional to the

Pierce gain parameter known in the theory of TWTs

C ¼ ðZIb=ð4VbÞÞ1=3
. Where Ib is the electron beam current

and Z is the coupling impedance of electrons to the wave,

which depends on the transverse structure of the wave in

the beam region. The coupling impedance of solid electron

beam in the presence of plasma can be much larger than the

vacuum case [22].

First, we consider the plasma density is weak. Figure 2

shows the variation of the plasma velocity as a function of

the frequency for several values of plasma frequency. As

seen in this figure, the plasma velocity decreases with

frequency, and it remains constant with plasma density.
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The plot of gain as a function of frequency for different

values of plasma density is shown in Fig. 3. In accordance

with Fig. 2, the growth rate is constant by increasing

plasma density. This shows that the coupling impedance in

the lower plasma density is weak and growth rate remains

constant in this limit.

Now, we consider the numerical solution for strong

plasma density. Figure 4 shows the phase velocity as a

function of frequency for several choice of plasma density.

It is clear from Fig. 4 that the phase velocity increases with

frequency, and the plasma density increases the phase

velocity.

Figure 5 illustrates the variation of gain as a function of

frequency for different values of plasma density. Figure 5

has a good agreement with Fig. 4. As seen in this figure,

the effect of plasma is to enhance the gain in the strong

plasma density limit. The presence of plasma should

increase the growth rate of the electromagnetic wave. The

presence of strong plasma is to increase the coupling

impedance.

In the absence of the plasma the dispersion relation

reduce to the final dispersion relation in the Ref. [18, 19].

The comparison of the growth rate in the absence and

presence of the plasma is shown in Fig. 6. As seen in this

figure, the effect of plasma is to increase the growth rate

and frequency bandwidth.

Conclusion

Now, we can summarize the specific results of this project

as:

Fig. 3 Variation of the normalized growth rate (Imk=kh) with

frequency (f ) for several values of the plasma density (low plasma

density). The chosen parameters are as follows: xb ¼ 0:025,

Xce ¼ 0:07, c0e ¼ 1:005558, e ¼ 1:75

Fig. 2 Variation of the normalized phase velocity (vph=c) with

frequency (f ) for several values of the plasma density (low plasma

density). The chosen parameters are as follows: xb ¼ 0:025,

Xce ¼ 0:07, and e ¼ 1:75

Fig. 4 Variation of the normalized phase velocity (vph=c) with

frequency (f ) for several values of the plasma density (high plasma

density). The chosen parameters are as follows: xb ¼ 0:025,

Xce ¼ 0:07, and e ¼ 1:75

Fig. 5 Variation of the normalized growth rate (Imk=kh) with

frequency (f ) for several values of the plasma density (high plasma

density). The chosen parameters are as follows: xb ¼ 0:025,

Xce ¼ 0:07, c0e ¼ 1:005558, Re ¼ 1:75
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1. In the lower plasma density, the effect of plasma on the

growth rate and frequency bandwidth is not

considerable.

2. The effect of strong plasma is to increase the growth

rate and frequency bandwidth.

3. The coupling impedance is strong in the strong plasma

density.

4. Presence of plasma in the system considerably

increases the growth rate and bandwidth in comparison

with the absence of the plasma.

Open Access This article is distributed under the terms of the

Creative Commons Attribution License which permits any use, dis-

tribution, and reproduction in any medium, provided the original

author(s) and the source are credited.
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