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Abstract A motivation for using fuzzy systems stems in

part from the fact that they are particularly suitable for

processes when the physical systems or qualitative criteria

are too complex to model and they have provided an effi-

cient and effective way in the control of complex uncertain

nonlinear systems. To realize a fuzzy model-based design

for chaotic systems, it is mostly preferred to represent them

by T–S fuzzy models. In this paper, a new fuzzy modeling

method has been introduced for chaotic systems via the

interval type-2 Takagi–Sugeno (IT2 T–S) fuzzy model. An

IT2 fuzzy model is proposed to represent a chaotic system

subjected to parametric uncertainty, covered by the lower

and upper membership functions of the interval type-2

fuzzy sets. Investigating many well-known chaotic sys-

tems, it is obvious that nonlinear terms have a single

common variable or they depend only on one variable. If it

is taken as the premise variable of fuzzy rules and another

premise variable is defined subject to parametric uncer-

tainties, a simple IT2 T–S fuzzy dynamical model can be

obtained and will represent many well-known chaotic

systems. This IT2 T–S fuzzy model can be used for

physical application, chaotic synchronization, etc. The

proposed approach is numerically applied to the well-

known Lorenz system and Rossler system in MATLAB

environment.

Keywords Chaotic systems � Interval type-2 Takagi–

Sugeno fuzzy system � Lower and upper membership

functions � Parametric uncertainty � Footprint of

uncertainty

Introduction

A chaotic system is a highly complex dynamic nonlinear

system and its response exhibits an excessive sensitivity to

the initial conditions. The sensitive nature of chaotic sys-

tems is commonly called as the butterfly effect [1]. Chaos

theory has been applied to a variety of fields such as

physical systems [2–4], chemical reactor [5], secure com-

munications [6–8], etc.

As we know, fuzzy systems and fuzzy control are suit-

able for processes when qualitative criteria are too complex

to be modeled. Moreover, they have provided an appro-

priated method in controlling complex nonlinear systems

(such as chaotic system). Among various kinds of fuzzy

control or fuzzy system methods, the T–S fuzzy system is

widely accepted as a powerful tool for designing fuzzy

controllers [9–12]. The type-1 T–S fuzzy model offers a

general framework for system analysis and controller

synthesis. Many researchers have used the type-1 fuzzy

model for modeling chaotic systems and their applications

where parametric uncertainties have not been considered

[13–17]. Some of these papers are based on fuzzy modeling

for just one kind of chaotic system; for example in [16],

fuzzy modeling has been considered for Lorenz system.
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However, as the membership functions of type-1 fuzzy sets

have limited capability of capturing uncertainty informa-

tion, the control problem cannot be handled directly if the

chaotic system is subjected to parametric uncertainty.

Despite having a name which carries the connotation of

uncertainty, researchers in [18–21] have shown that there

are limitations in the ability of type-1 fuzzy systems (T1

FSs) to model and minimize the effect of uncertainties,

because type-1 fuzzy systems are certain regarding the fact

that its membership grades are crisp values.

In recent years, type-2 fuzzy logic systems have

received much attention from the control community as a

powerful tool for nonlinear control. Researchers in [22–27]

have proposed a type-2 fuzzy logic system (FLS) to deal

with uncertain grades of membership using type-2 fuzzy

sets. Melin and et al. [28] have designed optimal control-

lers for autonomous mobile robots. Castillo and Melin have

reviewed the design and optimization of IT2 fuzzy con-

trollers [29]. Denisse and et al. have combined type-2 fuzzy

system and optimization methods [30]. The type-2 FLS can

be regarded as a collection of theoretically infinite number

of type-1 FLSs. As a result, additional information,

including system parametric uncertainty, can be captured

by the type-2 FLS. The superiority of IT2 fuzzy sets over

type-1 on dealing with uncertain grades of membership has

been shown in various applications [31–34].

In this paper, to deal with some problems still existing in

control of chaotic systems via type-1 T–S fuzzy models, we

propose an IT2 T–S fuzzy model based on sector nonlin-

earity to represent the chaotic system subject to parametric

uncertainty covered by the lower and upper membership

functions of the interval type-2 fuzzy sets. This model can

be used to control and synchronize chaotic systems using

type-2 fuzzy system. The features of proposed method can

be explained as following:

Motivated by potential applications in modeling chaotic

phenomena such as chaos synchronization, communica-

tion, physical theory and system, control of chaotic

dynamic has received and increasing interest. Since chaotic

systems are inherently complex systems, fuzzy modeling

provides an appropriate representation for such systems.

Between several kinds of fuzzy methods, we use T–S fuzzy

model because of the mathematical analysis simplicity and

the fact that it provides an exact representation. For chaotic

systems that evolve within a bounded region of the state

space and parametric uncertainty, the type-2 T–S fuzzy

model can represent the nonlinear dynamics by lower and

upper membership functions of interval type-2 fuzzy sets.

Also, because of computational burden of defuzzification

and type reduction for general type-2 FLS, we employ the

IT2 sets to decrease computational demands. So, we use

IT2 T–S modeling, because type-2 fuzzy systems are able

to model structured uncertainties such as parametric

perturbations as FOU in fuzzy rules by choosing an

appropriated membership functions. So, the main advan-

tage of proposed method is simplicity in mathematical

computations and modeling parametric uncertainties.

The rest of this paper is organized as follows. In section

‘‘IT2 T–S fuzzy modeling of chaotic system’’, the IT2 T–S

fuzzy model for well-known chaotic systems will be pre-

sented. Numerical example is simulated in section

‘‘Numerical results and analyses’’ and short discussion is

given in section ‘‘Discussion’’. Finally, conclusions are

drawn in section ‘‘Conclusion’’.

IT2 T–S fuzzy modeling of chaotic system

To realize a fuzzy model-based design with parametric

uncertainty, chaotic systems should first be represented by

fuzzy models. For this purpose, the IT2 T–S fuzzy model is

proposed since it seems to be appropriate for chaotic sys-

tems with parametric uncertainties, unmodeled dynamics

or structural variations of the system. Investigating many

well-known chaotic systems, we found that the nonlinear

terms depend only on one variable or have a single com-

mon variable such as Hènon [35], Rossler system [36],

Lorenz system [37], Lu system [38], etc. If it is taken as the

premise variable and parametric uncertainty, unmodeled

dynamics or structural variation of system as the other

premise variable of type-2 fuzzy rules, a fuzzy dynamical

model can be obtained for representing chaotic systems. It

has been observed that all the well-known chaotic systems

can be applied in synchronization and secure communica-

tion either by a fuzzy driving signal or by a crisp one [39].

In the following, we will show how to represent many well-

known chaotic systems by the IT2 T–S fuzzy model.

Consider an IT2 TS fuzzy model with p rules in the

following format [40]. Each rule’s antecedent contains IT2

fuzzy sets and the consequent is a differential equation of a

linear dynamical system.

Rule i :

IF Z1 xðtÞð Þ is eMi
1 AND � � �AND Zq xðtÞð Þ is eMi

q

THEN :

_x ¼ AixðtÞ þ bi

ð1Þ

where eMi
a is an IT2 fuzzy set of rules i corresponding to the

function Za xðtÞð Þ; a ¼ 1; 2; . . .; q; i ¼ 1; 2; . . .; p; q is a

positive integer; x(t) [ Rn is the system state vector; Ai [
Rn9n and bi [ Rn91 are the known system matrices. The

firing strength of the i-th rule resides in the following

interval sets:

exi xðtÞð Þ ¼ xL
i xðtÞð Þ;xU

i xðtÞð Þ
� �

; i ¼ 1; 2; . . .; p ð2Þ
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where

xL
i xðtÞð Þ ¼

Y

q

a¼1

l
eM i

a

ZaðxðtÞÞð Þ� 0 ð3Þ

xU
i xðtÞð Þ ¼

Y

q

a¼1

l
eM i

a

ZaðxðtÞÞð Þ� 0 ð4Þ

In which xL
i xðtÞð Þ and xU

i xðtÞð Þ denote the lower and

upper grades of membership, respectively. The functions

l
eM i

a

ZaðxðtÞÞð Þ and l
eM i

a

ZaðxðtÞÞð Þ are the lower and upper

membership functions, respectively. The IT2 T–S fuzzy

model is defined as follows:

_xðtÞ ¼
X

p

i¼1

xL
i xðtÞð Þvi xðtÞð Þ AixðtÞ þ bið Þ

þ
X

p

i¼1

xU
i xðtÞð Þ�vi xðtÞð Þ AixðtÞ þ bið Þ

¼
X

p

i¼1

xiðxðtÞÞ AixðtÞ þ bið Þ

ð5Þ

where

xi xðtÞð Þ ¼ xL
i xðtÞð Þvi xðtÞð Þ þ xU

i xðtÞð Þ�vi xðtÞð Þ� 0

8i;
Pp

i¼1 xi xðtÞð Þ ¼ 1

�

ð6Þ

In which vi xðtÞð Þ� 0 and �vi xðtÞð Þ� 0 are nonlinear

functions in which 8i; vi xðtÞð Þ þ �vi xðtÞð Þ ¼ 1. In [41] the

functions of vi xðtÞð Þ and �vi xðtÞð Þ are both defined as 0.5.

In this paper, some classical chaotic dynamic systems

with parametric uncertainty as the following form have

been considered:

_x ¼ F xð Þ � x þ DF xð Þ ð7Þ

where x ¼ x1; x2; . . .; xnð ÞT2 Rn is the state vector, F(x)is

n 9 1 matrix with nonlinear function and DFðxÞ is n 9 1

uncertain matrix representing the unmodeled dynamics or

structural variations of the system which is supposed to be

bounded. Two assumptions have been considered to avoid

a complicated fuzzy modeling as follows:

Assumption 1 Considering the boundedness of chaotic

systems, it is supposed that the fuzzy set is chosen as the

region of the system trajectory in the set:

X ¼ x tð Þ 2 Rn : jjxðtÞgjj � bf g

For chaotic systems, the existence of the parameter b is

natural.

Assumption 2 Suppose that there is a chaotic system

with uncertain parameters, i.e. in Eq. (7), some elements of

DFðxÞ is equal to ekd tð Þ � xj, where 0\ek\ck is the

amplitude of the white noise ekd tð Þ.

Numerical results and analyses

Although this method is general, for simplicity and less

computational effort, only the construction of IT2 T–S

fuzzy model for Lorenz system and Rossler system subject

to parametric uncertainty will be illustrated, while con-

sidering chaotic system subject to uncertain parameter of

DFðxÞ as assumption 1 with known lower and upper

bounds.

Lorenz system: with only one uncertain parameter

Consider the following Lorenz system:

_x1 ¼ 10 x2 � x1ð Þ
_x2 ¼ 28x1 � x2 � x1x3

_x3 ¼ x1x2 � bðtÞx3

8

<

:

ð8Þ

Suppose that b(t) is the uncertain parameter, i.e., bðtÞ ¼
b þ Db where b ¼ 8

3
and Db = e1d(t) is an unknown

function, where e1 = 0.5 is the amplitude of the white

noise, as shown in Fig. 1. Then, the chaotic system is given

as follow:

_x1 ¼ 10 x2 � x1ð Þ
_x2 ¼ 28x1 � x2 � x1x3

_x3 ¼ x1x2 � ðb þ DbÞx3

8

<

:

ð9Þ

Comparing Eqs. (7) and (9), we have

F xð Þ ¼
�10 10 0

28 �1 �x1

0 x1 �b

2

4

3

5 DF xð Þ ¼
0

0

�Db:x3

2

4

3

5

ð10Þ

As mentioned, many researchers have introduced type-1

TS fuzzy model using the sector nonlinearity technique

[42] for chaotic system, but type-1 TS fuzzy sets have

limited capability of capturing the uncertainty information;

Fig. 1 White noise Db = 0.5d(t)
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thus, control problems cannot be handled directly if the

chaotic system is subjected to parametric uncertainty.

When b is considered as constant, simulation with initial

value x(0) = (1, 1, 1)T gives x1 2 �20 20½ �. Choosing

Z1 xðtÞð Þ ¼ x1 as scheduling variable deduces

Z1 xðtÞð Þ 2 �2020½ �. Referring to the variables and denot-

ing the membership function as:

lM1
1

Z1 xðtÞð Þð Þ ¼ 20 � x1

40

lM2
1

Z1 xðtÞð Þð Þ ¼ 1 � lM1
1

Z1 xðtÞð Þð Þ ¼ 20 þ x1

40
ð11Þ

the following type-1 fuzzy rule is employed to describe the

Lorenz system:

Rule i:

IF Z1 xðtÞð Þ is Mi
1

THEN: _x ¼ Aix tð Þ; i ¼ 1; 2

ð12Þ

where M1
1 and M2

1 are type-1 fuzzy sets; with

A1 ¼
�10 10 0

28 �1 20

0 �20
8

3

2

6

4

3

7

5
; A2 ¼

�10 10 0

28 �1 �20

0 20
8

3

2

6

4

3

7

5

ð13Þ

The type-1 TS fuzzy model is defined as follows:

_x ¼
X

2

i¼1

x̂iðxðtÞÞðAixðtÞÞ: ð14Þ

Where the normalized grades of membership are defined

as:

x̂i xðtÞð Þ ¼
lMi

1
Z1 xðtÞð Þð Þ

lM1
1

Z1 xðtÞð Þð Þ þ lM2
1

Z1 xðtÞð Þð Þ ; i ¼ 1; 2:

ð15Þ

It should be noted that b is assumed to be a constant. So,

as mentioned above, the type-1 fuzzy model cannot con-

sider b as an uncertain parameter. Instead, an IT2 T–S

fuzzy model is proposed.

Now, we consider b as an uncertain parameter with a

perturbation Db where Db satisfies assumption 1, i.e.

Db 2 ½�0:5 0:5�. With initial value x(0) = (1, 1, 1)T,

simulation gives x1 2 �20 20½ � and x3 2 1 48½ �. Choosing

Z1 xðtÞð Þ ¼ x1 and Z2 xðtÞð Þ ¼ Db � x3 as scheduling vari-

ables gives Z1 xðtÞð Þ 2 �20 20½ � and Z2 xðtÞð Þ 2 �24 24½ �;
i.e. the lower and upper bounds of Z1(x(t)) and Z2(x(t)) can

be set. Then, an IT2 T–S fuzzy model with four rules of the

following format is employed to describe the Lorenz sys-

tem subject to uncertainty of parameters:

Rule 1:

IF Z1 xðtÞð Þ is eM1
1 AND Z2 xðtÞð Þ is eM1

2

THEN: _x ¼ A1x tð Þ þ b1

Rule 2:

IF Z1 xðtÞð Þ is eM2
1 AND Z2 xðtÞð Þ is eM2

2

THEN _x ¼ A2x tð Þ þ b2

Rule 3:

IF Z1 xðtÞð Þ is eM3
1 AND Z2 xðtÞð Þ is eM3

2

THEN _x ¼ A3x tð Þ þ b3

Rule 4:

IF Z1 xðtÞð Þ is eM4
1 AND Z2 xðtÞð Þ is eM4

2

THEN: _x ¼ A4x tð Þ þ b4

ð16Þ

The IT2 T–S fuzzy model is defined as follows:

_xðtÞ¼
X

4

i¼1

xL
i xðtÞð Þvi xðtÞð ÞþxU

i xðtÞð Þ�vi xðtÞð Þ
� �

AixðtÞþbið Þ

¼
X

4

i¼1

exi xðtÞð Þ AixðtÞþbið Þ ð17Þ

where

exi xðtÞð Þ ¼ xL
i xðtÞð Þvi xðtÞð Þ þ xU

i xðtÞð Þ�vi xðtÞð Þ ð18Þ

The lower and upper membership functions are required

to satisfy the following inequalities:

l
eM i

1

Z1 xðtÞð Þð Þ� lMi
1

Z1 xðtÞð Þð Þ� �l
eM i

1

Z1 xðtÞð Þð Þ

i ¼ 1; 2; 3; 4
ð19Þ

l
eM i

2

Z2 xðtÞð Þð Þ� lMi
2

Z2 xðtÞð Þð Þ� �l
eM i

2

Z2 xðtÞð Þð Þ

i ¼ 1; 2; 3; 4
ð20Þ

It can be deduced from Eqs. (19) and (20) that the lower

and upper membership functions form the footprint of

uncertainty (FOU) that captures the parametric uncertainty

b. Any type-1 fuzzy can be reconstructed based on the lower

and upper membership functions. As a result, the IT2 T–S

fuzzy model is equivalent to infinite number of type-1 fuzzy

models. Selecting values as in assumptions 1 and 2 and

considering numerical values, it can be determined that

the lower and upper bounds of l
eM i

1

ðZ1ðxðtÞÞÞ and

l
eM i

2

ðZ2ðxðtÞÞÞare taken as the lower and upper membership

functions of the IT2 T–S fuzzy model. It should be noted

that Z1(x(t)) has no uncertain parameters and therefore,

lower and upper membership functions are the same. The

lower and upper membership functions are defined based on

sector nonlinearity in Table 1. The lower and upper nor-

malized grades of membership for each rule are defined as:
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xL
i xðtÞð Þ ¼ l

eM i
1

Z1 xðtÞð Þð Þ � l
eM i

2

Z2ðxðtÞÞð Þ

xU
i xðtÞð Þ ¼ �l

eM i
1

Z1 xðtÞð Þð Þ � �l
eM i

2

ðZ2ðxðtÞÞÞ for all i: ð21Þ

The plots of the lower and upper membership functions

of the IT2 T–S fuzzy model are shown in Figs. 2 and 3.

Figure 4 shows the difference between fuzzy model and

original system or modeling error with Db ¼ �0:5; 0; 0:5

Based on defined FOU in Figs. 2 and 3, the IT2 T–S fuzzy

model can be considered as a collection of type-1 T–S fuzzy

models. In other words, a type-1 fuzzy model can be defined

for every value of Db. For example, we have simulated fuzzy

model of Lorenz system in the form of eq. (8) for three values

of Db. As it is evident in Fig. 4, the difference between fuzzy

model and original system becomes\0.5 9 10-4 after about

1.5 s, i.e. the fuzzy model can represent the original system.

It should be noted that the IT2 TS fuzzy model serves as a

mathematical tool to facilitate the design of the IT2 fuzzy

controller. In this system, based on IT2 T–S fuzzy model, an

IT2 fuzzy controller with four rules can be employed to chaos

synchronization and other applications.

Rossler system: with two uncertain parameters

Consider the following Rossler system:

_x1 ¼ �x2 � x3

_x2 ¼ x1 þ 0:2x2

_x3 ¼ a tð Þ þ x3ðx1 � bðtÞÞ

8

<

:

ð22Þ

Suppose that a(t) and bðtÞ are the uncertain parameters,

i.e.a tð Þ ¼ a þ Da and b tð Þ ¼ b þ Db, where a = 0.2,

b = 5 and Da = e1d(t) and Db = e2d(t) are unknown

function, where e1 = 0.1 and e2 = 0.1 are the amplitudes

of the white noise as shown in Fig. 5. Then, the chaotic

system is given as follows:

Table 1 Lower and upper membership functions of Lorenz system

Lower membership functions Upper membership functions

l
eM

1

1

Z1 xðtÞð Þð Þ ¼ 20�x1

40
�l
eM 1

1

Z1 xðtÞð Þð Þ ¼ 20�x1

40

l
eM

2

1

Z1 xðtÞð Þð Þ ¼ 20�x1

40
�l
eM 2

1

Z1 xðtÞð Þð Þ ¼ 20�x1

40

l
eM

3

1

Z1 xðtÞð Þð Þ ¼ 20þx1

40
�l
eM 3

1

Z1 xðtÞð Þð Þ ¼ 20þx1

40

l
eM

4

1

Z1 xðtÞð Þð Þ ¼ 20þx1

40
�l
eM 4

1

Z1 xðtÞð Þð Þ ¼ 20þx1

40

l
eM

1

2

Z2 xðtÞð Þð Þ ¼ Z2max�Dbx3

Z2max�Z2min
with

Db = 0.5

l
eM 1

2

Z2 xðtÞð Þð Þ ¼ Z2max�Dbx3

Z2max�Z2min
with

Db = -0.5

l
eM

2

2

Z2 xðtÞð Þð Þ ¼ Z2max�Dbx3

Z2max�Z2min
with

Db = -0.5

l
eM 2

2

Z2 xðtÞð Þð Þ ¼ Z2max�Dbx3

Z2max�Z2min
with

Db = 0.5

l
eM3

1

Z2 xðtÞð Þð Þ ¼ Z2max�Dbx3

Z2max�Z2min
with

Db = 0.5

l
eM 3

2

Z2 xðtÞð Þð Þ ¼ Z2max�Dbx3

Z2max�Z2min
with

Db = -0.5

l
eM4

2

Z2 xðtÞð Þð Þ ¼ Z2max�Dbx3

Z2max�Z2min
with

Db = -0.5

l
eM 4

2

Z2 xðtÞð Þð Þ ¼ Z2max�Dbx3

Z2max�Z2min
with

Db = 0.5

Fig. 2 Plot of l
eM 1

2

Z2 xðtÞð Þð Þ ¼ Z2max�Dbx3

Z2max�Z2min
, lower membership func-

tion l
eM 1

2

Z2 xðtÞð Þð Þ with Db = 0.5 (dash–dot line), upper membership

function �l
eM 1

2

Z2 xðtÞð Þð Þ with Db = -0.5 (dotted line) and footprint of

uncertainty (grey area)

Fig. 3 Plot of l
eM 2

2

Z2 xðtÞð Þð Þ ¼ Z2max�Dbx3

Z2max�Z2min
, lower membership func-

tion l
eM 2

2

Z2 xðtÞð Þð Þ with vDb = -0.5 (dash–dot line), upper mem-

bership function l
eM 2

2

Z2 xðtÞð Þð Þ with Db = 0.5 (dotted line) and

footprint of uncertainty (grey area)
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_x1 ¼ �x2 � x3

_x2 ¼ x1 þ 0:2x2

_x3 ¼ ða þ DaÞ þ x3ðx1 � ðb þ DbÞÞ

8

<

:

ð23Þ

Comparing Eqs. (7) and (23) we have:

F xð Þ ¼
0 �1 �1

1 0:2 0

0 0 x1 � 5

2

4

3

5; DF xð Þ ¼
0

0

aðtÞ � Db:x3

2

4

3

5

ð24Þ

Since membership functions in type-1 fuzzy systems are

crisp, type-1 fuzzy model cannot consider a and b as

uncertain parameters. Instead, we define an IT2 T–S fuzzy

model to conquest this problem. For this purpose, a and b

are considered as uncertain parameters with perturbation of

Da and Db which satisfy the assumption 1, i.e. Da 2
½�0:1 0:1� and Db 2 ½�0:5 0:5�. It can be seen that

a� aðtÞ� �a where a = a-Da and �a ¼ a þ Da are the

constant lower and upper bounds of a, respectively.

With initial value x(0) = (1, 1, 1)T, simulation gives

x1 2 �10 10½ � and x3 2 0 18½ �. Choosing Z1 xðtÞð Þ ¼
x1 and Z2 xðtÞð Þ ¼ aðtÞ � Db � x3 as scheduling variables

gives Z1 xðtÞð Þ 2 �10 10½ � and Z2 xðtÞð Þ 2 �8:9 9:1½ �, i.e.

the lower and upper bounds of Z1(x(t)) and Z2(x(t)) can be

set. Then, an IT2 T–S fuzzy model with four rules of the

following format can be employed to describe the Rossler

system subject to uncertainty of parameters:

Rule 1:

IF Z1 xðtÞð Þ is eM1
1 AND Z2 xðtÞð Þ is eM1

2

THEN: _x ¼ A1x tð Þ þ b1

Rule 2:

IF Z1 xðtÞð Þ is eM2
1 AND Z2 xðtÞð Þ is eM2

2

THEN: _x ¼ A2x tð Þ þ b2

Rule 3:

IF Z1 xðtÞð Þ is eM3
1 AND Z2 xðtÞð Þ is eM3

2

THEN: _x ¼ A3x tð Þ þ b3

Rule 4:

IF Z1 xðtÞð Þ is eM4
1 AND Z2 xðtÞð Þ is eM4

2

THEN: _x ¼ A4x tð Þ þ b4

ð25Þ

The IT2 T–S fuzzy model is defined in Eq. (17) and the

lower and upper membership functions are required to

satisfy the inequalities (19) and (20).

Based on assumptions 1 and 2 and considering numer-

ical values, it can be determined that the lower and upper

membership functions of the IT2 T–S fuzzy model are the

lower and upper bounds of l
eM i

1

Z1ðxðtÞÞð Þ and

l
eM i

2

ðZ2ðxðtÞÞÞ. We can see that Z1(x(t)) has no uncertain

parameter and therefore, lower and upper membership

functions are the same. Table 2 shows the lower and upper

membership functions based on sector nonlinearity. The

lower and upper normalized grades of membership for each

Fig. 4 Difference between fuzzy model and original system of

Lorenz system with a Db = -0.5, b Db = 0 and c Db = 0.5
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rule must satisfy Eq. (21). Plots of the lower and upper

membership functions and FOU of the IT2 T–S fuzzy

model are shown in Figs. 6 and 7.

Figure 8 illustrates that the difference between fuzzy

model and original system with Da ¼ �0:1;Db ¼ �0:5;
Da ¼ �0:1;Db ¼ 0:5; Da ¼ 0:1;Db ¼ �0:5; and Da ¼
0:1;Db ¼ 0:5 tends to zero for mentioned values of Da and

Db, i.e. the fuzzy model can represent the original system.

When membership functions are determined or tuned

based on numerical data, the uncertainties in the numerical

data translate into uncertainties in the membership func-

tions as FOU, which is depicted in Figs. 6 and 7. In these

figures, infinite number of type-1 fuzzy model can be

defined based on available FOU. So, the proposed IT2 T–S

fuzzy model is a collection of type-1 T–S fuzzy models.

Simulations show the difference between fuzzy model and

original system of Rossler system with four values of

uncertainties. As it is evident in Fig. 8, the modeling error

or difference between fuzzy model and original system

Fig. 5 White noises Da = 0.1d(t) and Db = 0.5d(t)

Table 2 Lower and upper membership functions of Rossler system

Lower membership functions Upper membership functions

l
eM1

1

Z1 xðtÞð Þð Þ ¼ 10�x1

20
�l
eM1

1

Z1 xðtÞð Þð Þ ¼ 10�x1

20

l
eM2

1

Z1 xðtÞð Þð Þ ¼ 10�x1

20
�l
eM2

1

Z1 xðtÞð Þð Þ ¼ 10�x1

20

l
eM3

1

Z1 xðtÞð Þð Þ ¼ 10þx1

20
�l
eM3

1

Z1 xðtÞð Þð Þ ¼ 10þx1

20

l
eM3

1

Z1 xðtÞð Þð Þ ¼ 10þx1

20
�l
eM4

1

Z1 xðtÞð Þð Þ ¼ 10þx1

20

l
eM1

2

Z2 xðtÞð Þð Þ ¼ Z2max�Z2 xðtÞð Þ
Z2max�Z2min

with
Da ¼ 0:1
Db ¼ �0:5

�

�l
eM1

2

Z2 xðtÞð Þð Þ ¼ Z2max�Z2 xðtÞð Þ
Z2max�Z2min

with

Da ¼ �0:1
Db ¼ 0:5

�

l
eM2

2

Z2 xðtÞð Þð Þ ¼ �Z2minþZ2 xðtÞð Þ
Z2max�Z2min

with
Da ¼ �0:1
Db ¼ 0:5

�

l
eM2

2

Z2 xðtÞð Þð Þ ¼ Z2maxþZ2 xðtÞð Þ
Z2max�Z2min

with

Da ¼ 0:1
Db ¼ �0:5

�

l
eM3

2

Z2 xðtÞð Þð Þ ¼ Z2max�Z2 xðtÞð Þ
Z2max�Z2min

with
Da ¼ 0:1
Db ¼ �0:5

�

�l
eM3

2

Z2 xðtÞð Þð Þ ¼ Z2max�Z2 xðtÞð Þ
Z2max�Z2min

with

Da ¼ �0:1
Db ¼ 0:5

�

l
eM4

2

Z2 xðtÞð Þð Þ ¼ �Z2minþZ2 xðtÞð Þ
Z2max�Z2min

with
Da ¼ �0:1
Db ¼ 0:5

�

�l
eM4

2

Z2 xðtÞð Þð Þ ¼ Z2maxþZ2 xðtÞð Þ
Z2max�Z2min

with

Da ¼ 0:1
Db ¼ �0:5

�

Fig. 6 Plot of l
eM 1

2

Z2 xðtÞð Þð Þ ¼ Z2max�Z2 xðtÞð Þ
Z2max�Z2min

, lower membership func-

tion l
eM 1

2

Z2 xðtÞð Þð Þ with Da = 0.1 and Db = -0.5 (dash–dot line),

upper membership function �l
eM 1

2

Z2 xðtÞð Þð Þ with Da = -0.1 and

Db = 0.5 (dotted line) and footprint of uncertainty (grey area)

Fig. 7 Plot of l
eM 2

2

Z2 xðtÞð Þð Þ ¼ Z2max�Z2 xðtÞð Þ
Z2max�Z2min

, lower membership func-

tion l
eM 2

2

Z2 xðtÞð Þð Þ with Da = -0.1 and Db = 0.5 (dash–dot line),

upper membership function �l
eM 2

2

Z2 xðtÞð Þð Þ with Da = 0.1 and

Db = -0.5 (dotted line) and footprint of uncertainty (grey area)
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becomes less than 1.5 9 10-4 after about 1.5 s which

means that fuzzy model tends to original system.

The main advantage of this method of modeling is

simplicity. In this method, if there are the lower and upper

bounds of scheduling variable as an interval, an IT2 T–S

fuzzy model can be defined. The lower and upper bounds

of scheduling variable can be determined in chaos systems.

So, this method can be extended for every chaotic and

hyper-chaotic system with any uncertain parameters.

Discussion

In the proposed method, we have considered parameteric

uncertainties based on assumption 2 for two chaotic sys-

tems with some candidate of parameter perturbations. As it

is evident from figures, the fuzzy models can be used

instead of original systems for several chaotic applications.

However, there is no proof for robustness of proposed

method; we have just surveyed the effect of uncertainties in

modeling for several values of parameter uncertainties in

simulations. For more information about robustness and

future works, the papers in [43–45] can be cited to improve

this work.

Conclusion

In this paper, a new method introduced for representing

many well-known chaotic systems subjected to parametric

uncertainty or structural variation of system via interval

type-2 (IT2) T–S fuzzy model and besides lower and upper

membership functions of the interval type-2 fuzzy sets was

defined. For chaotic systems that evolve within a bounded

region of the state space and parametric uncertainty, the

IT2 T–S fuzzy model was appropriate for representing the

nonlinear dynamics by lower and upper membership

functions of interval type-2 fuzzy sets. The proposed model

Fig. 8 Difference between fuzzy model and original system of Rossler system with a Da ¼ �0:1;Db ¼ �0:5, b Da ¼ �0:1;Db ¼ 0:5,

c Da ¼ 0:1;Db ¼ �0:5 and d Da ¼ 0:1;Db ¼ 0:5
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can be used for chaotic control and synchronization.

Numerically, the proposed method was applied to Lorenz

and Rossler systems with one uncertain parameter and two

uncertain parameters, respectively. It has been shown that

type-1 fuzzy model cannot represent the chaos system with

parametric uncertainty. The main advantage of proposed

method is simplicity in mathematical computations and

modeling parametric uncertainties.
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