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Abstract

In this work, under a small perturbation of the background metric with the squeezing of other fields (scalar field in our
case), the linear form of the energy-momentum tensor is calculated in terms of the perturbation factor. The linear
form of the Klein-Gordon equation for a scalar field with both minimally and conformally coupled cases in de Sitter
and flat metrics are also calculated.
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Introduction
Studying scalar fields in cosmology is quite important
because, for example, we can mention the inflation sce-
nario at the early universe [1] and also the models of the
slowly decaying cosmological constant [2]. They also play
crucial roles in spontaneous symmetry breaking in par-
ticle physics and giving mass to the fields. In addition,
scalar fields are present in most of the unifying theories
of gravity with other fundamental forces. Mathematically,
scalar fields are described by the Klein-Gordon equation
wherein quanta are zero-spin particles.
The field equations can be straightforwardly general-

ized to be curved space-time in an entirely local and
covariant manner. One of the most interesting models
of curved space-times is described by the de Sitter (dS)
model where the outcoming expanding universe carries
scalar fields variously (mostly minimally and conformally)
which couple with gravitation. Astrophysical data com-
ing from type Ia supernova indicate that our universe is
accelerating and can be well approximated by a world
with a non-zero positive cosmological constant [3-6]. This
means that our universe, in the first approximation, might
be in a dS phase. However, there is no universal definition
of the time-like Killing vector in dS space-time. There-
fore, one cannot have a natural definition for a particle,
e.g., various observers may disagree with the existence of
particles. Definition of a particle strongly depends on its
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global nature, whereas the particle detectors are defined
locally [7]. The absence of the general time-like Killing
vector makes the particle’s concept obscure. Thus, in such
space-times, one needs a locally defined physical quan-
tity that carries the significance of the particle. One such
object of interest can be the energy-momentum tensor,
Tμν , at point x. Therefore, obtaining the proper energy-
momentum tensor becomes quite important. The history
of finding the proper Tμν for various fields in dS space-
time is rich; for example, the case of scalar field can be
found in [8,9]. On the other hand, some important phys-
ical quantities can be achieved by considering the linear
form of the energy-momentum tensor.
In this paper, we first review the de Sitter space-time,

and then the Klein-Gordon equation in this space-time
is considered. After that, under the small perturbation of
the background metric, we find the linear form of this
equation in the dS background. In the global coordinates
of dS (which cover this space-time entirely), the linear
form of the energy-momentum tensor is calculated for a
scalar field. Finally, a brief conclusion and an outlook for
further investigation are presented.

de Sitter geometry
In n + 1 dimensional flat space-time Mn,1, by consider-
ing one constraint, one can illustrate the n dimensional de
Sitter geometry. Let xμ ∈ Rn+1, where μ = 0, 1, 2, . . . n;
the following hypersurface is described by the following
equation:

−x20 + x21 + · · · + x2n = constant(≡ H−2), (1)
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where the equation describes the de Sitter geometry [10];
note that withH−2 > 0, it is the equation of a hyperboloid.
H is the Hubble constant, andH−1 is the minimum radius
of the hyperboloid and is also related to the cosmological
constant by the following equation:

� = (D − 2)(D − 1)
2

H2. (2)

de Sitter space-time is the vacuum solution of the
Einstein equation with non-vanishing positive cosmolog-
ical constant (anti-de Sitter and flat cases are followed
by taking � < 0 and � = 0, respectively). It is the
unique maximally symmetric curved space-time with ten
Killing vectors (the same as the Minkowski space-time)
and locally characterized by the following:

Rμνλρ = 2�
(n − 1)(n − 2)

(gμλgνρ − gμρgνλ). (3)

Rμνλρ is the Riemann curvature tensor. Using the rela-
tions Rμν = Rλ

μλν , R = gμνRμν , we obtain the following:

Rμν = 2�
n − 2

gμν , (4)

R = 2n
n − 2

�,

where R is the Ricci scalar. One can define many coor-
dinate systems with different properties, say as, global,
conformal, closed, etc. However, here, we consider the
global coordinate system since, topologically, it covers the
entire surface of the de Sitter hyperboloid. This is achieved
by the following parametrization of Mn,1 with defined
coordinates (τ , θ1, θ2, . . . θn), as follows:

x0 =H−1 sinhHτ ,
x1 =H−1 coshHτ cos θ1,
x2 =H−1 coshHτ sin θ1 cos θ2,

xi =H−1 coshHτ

⎛
⎝i−1∏

j=1
sin θj

⎞
⎠ cos θi,

xn =H−1 coshHτ

(n−1∏
i=1

sin θi

)
,

(5)

where it follows by

−∞ < τ < ∞,
0 ≤ θj ≤ π , 1 ≤ j ≤ n − 2,
0 ≤ θn−1 ≤ 2π .

(6)

It is easy to check that the metric on the de Sitter space
reads as follows:

ds2 = − dτ 2 + cosh2Hτ

H2 d	2
i , 1 ≤ i ≤ n − 1,

d	2
i ≡

n−1∑
i=1

⎛
⎝i−1∏

j
sin2 θjdθ2i

⎞
⎠ .

(7)

In these coordinates, de Sitter geometry can be consid-
ered as an Sn−1-sphere at every fixed τ ; it is infinitely large
at τ = −∞, then shrinks to a minimal finite size at τ = 0,
and then grows again to infinity as long as τ goes to infinity
[10].
By introducing the conformal time ρ as

coshHτ ≡ 1
cos ρ

, (8)

the conformal metric in the de Sitter space is obtained:

ds2 = 1
H2 cos2 ρ

(−dρ2 + d	2
i
)
. (9)

Note that −π
2 < ρ < π

2 , and also, we choose this metric
since it is easier to work with.

Klein-Gordon equation in de Sitter space-time
The scalar field action in curved space is given as follows:

Sφ = 1
2

∫
dnx

√−g
(
gμν∂μφ∂νφ + (m2 + ζR)φ2) ,

(10)

where g is the determinant of the metric tensor and ζ

is the coupling constant between the scalar field and the
gravitational field [7]:

ζ = n − 2
4(n − 1)

.

Note that we use the (−,+, ...+) signature. Variation
with respect to the scalar field gives us the Klein-Gordon
equation:

(� − m2 − ζR)φ = 0, (11)

in which � = 1√−g ∂μ
√−g∂μ is the d’Alembertian oper-

ator in curved space, which should be found for any case.
For example, in a four-dimensional de Sitter space with
the metric (7) (its conformal counterpart can be easily
obtained by replacing Equation 8), it becomes the Laplace-
Beltrami operator which is given as follows [11,12]:

� = − ∂2

∂τ 2
− 3H tanhHτ

∂

∂τ
+ H2

cosh2Hτ
�3, (12)
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where �3 is the Laplace operator on hypersurface S3
defined as follows:

�3 = ∂2

∂θ21
+ 2 cot θ1

∂

∂θ1
+ 1

sin2 θ1

∂2

∂θ22
+ cot θ2

sin2 θ1

∂

∂θ2

+ 1
(sin θ1 sin θ2)2

∂2

∂θ23
. (13)

After separation of variables φ(x) = χ(τ)YLlm(	) and
doing some calculation, the solution of the Klein-Gordon
equation reads (more mathematical details can be found
in [11,12]):

YLlm =
(

(L + 1)(2l + l)(L − l)!
2π2(L + l + 1)!

) 1
2

× 2ll! (sin θ1)
lCl+1

L−l(cos θ1)Ylm(θ2, θ3), (14)

where (L, l,m) ∈ N×N×Z with 0 ≤ l ≤ L and −l ≤ m ≤
l, and also Cλ

n are the Gegenbauer polynomials; Ylm stand
for the spherical harmonics:

Ylm(θ1, θ2) = (−1)m
(

(l − m)!
(l + m)!

) 1
2
Pml (cos θ2)eimθ3 ,

(15)

Pml are the associated Legender function.
For the χ(ρ) part, let us find it in its conformal form;

after using (8), relation (12) turns to the following:

� = −H2 cos2 ρ

(
∂2

∂ρ2 + 2 tan ρ
∂

∂ρ
− �3

)
. (16)

The solution for θi is the same as the previous, and its ρ

part becomes the following [11]:

χλL(ρ) = AL(cos ρ)
3
2 [Pλ

L+ 1
2
(sin ρ) − 2i

π
Qλ

L+ 1
2
(sin ρ)] ,

(17)

where Pλ and Qλ are the associate Legender functions of
first and second kind. AL is given as follows:

AL = H
√
m
2

(
�(L − λ + 3

2 )

�(L + λ + 3
2 )

) 1
2

. (18)

Note that λ is a parameter defined by the following:

λ =
√
9
4

− κ 0 ≤ κ ≤ 9
4
,

λ =i
√

κ − 9
4

κ ≥ 9
4
.

(19)

Actually, κ is the expectation value of the Casimir oper-
ator for scalar field in de Sitter space which relates to ζ

andm via κ = (mH )2 + 12ζ ; here, we have introduced it as
a parameter. Note that the case κ = 0 or m2 = −12H2ζ
is a particular case which is not considered here. One can
find more about this case in relevant papers.

Linearization of the Klein-Gordon equation
Let us suppose a small perturbation from the background:

gμν = ḡμν + hμν , (20)

in which, ḡμν and hμν are the background metric and a
small perturbation, respectively, with the condition that in
every point of the space-time, we have hμν 	 ḡμν . Under
this perturbation of metric, after doing some calculation,
one can obtain the linearization of (10) as follows:

Sφ = 1
2

∫
d4x

√−ḡ
{
O(h0) + O(h) + · · ·

}
,

O(h0) = ḡμν∂μφ∂νφ + (m2 + ζ R̄)φ2,

O(h1) = (ḡμν h
2

− hμν)∂μφ∂νφ + 1
2
m2φ2

+ ζ(RL + R̄
h
2
)φ2.

(21)

Now in order to find the linear form of the field
equation, one can either take the variation of (21) with
respect to φ or directly linearize the Klein-Gordon
equation. Both of them give the same linear form of the
Klein-Gordon equation. Here, we follow the second one.
the linear form of the box operator becomes the following:

�φ = gμν∇μ∇νφ = gμν∇μ∂νφ

= (
ḡμν − hμν

) (∇̄μ∂νφ − (�α
μν)L∂αφ

)
= �̄φ − (

hμν∇̄μ∂νφ + ḡμν(�α
μν)L∂αφ

) + O(h2).
(22)

On the other hand, for the Ricci scalar, we have the
following:

R = R̄ + RL + O(h2), (23)

where the linear part of the Christoffel connection and
also the Ricci scalar is given as follows [13]:

(�α
μν)L =1

2
gαλ(∇μhνλ + ∇νhμλ − ∇λhμν),

(Rμν)L =1
2

(∇̄ · ∇̄μhν + ∇̄ · ∇̄νhμ − �̄hμν − ∇̄μ∇̄νh
)
,

RL =∇̄ · ∇̄ · h − �̄h − �h.
(24)

Note that h = ḡμνhμν , and ∇̄ · A ≡ ∇̄μAμ.
Plugging (22) and (24) in (11) results in the following:

(�̄ − m2 − ζ R̄)φ−
[
hμν∇̄μ∂ν + 1

2

(
2∇̄ · hα − ∇̄αh

)
∂α

+ζ

(
∇̄ · ∇̄ · h−�̄h−�h

)]
φ = 0.

(25)

This is the linear form of the Klein-Gordon equation
in generic background. It is worth to mention that the
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scalar field is supposed to be freezed during the metric
perturbation.
With this linear form, one can evaluate the change

in the observable quantities due to this perturbation by
introducing a proper h.

Energy-momentum tensor for a scalar field
In generic background case
The energy-momentum tensor is given as follows:

Tμν = 2
√−g

δSφ

δgμν
. (26)

The variation of both the background and linear part of
(21) gives us the following:

Tμν =(1 + 2ζ )∂μφ∂νφ −
(
2ζ + 1

2

)
ḡμν∂

σ φ∂σ φ

− 1
2
ḡμνm2φ2 + 2ζφ∇̄μ∂νφ − 2ζ ḡμνφ�̄φ

+ ζ(R̄μν − 1
2
ḡμν R̄)φ2 −

(
2ζ + 1

2

)

×
(
hμν ḡλσ − ḡμνhλσ

)
∂λφ∂σ φ − 1

2
m2φ2hμν

− 2ζφ(�λ
μν)L∂λφ + 2ζφ

(
ḡμν ḡλσ (�

η
λσ )L∂ηφ

− (hμν ḡλσ − ḡμνhλσ )∇̄λ∂σ φ

)

+ ζφ2
(

(Rμν)L − 1
2
(hμν R̄ + ḡμνRL)

)
. (27)

Note that by putting h-parts equal to zero, one gets
exactly the correct result for Tμν , (e.g., in de Sitter space-
time with relevant R̄ and R̄μν) for the a scalar field [8,9].
For the de Sitter space with given metric (9) and in the

minimally coupled case, one obtains the following:

Tρρ = 1
2
(∂ρφ)2+ 1

2
T + 1

2

[
hρρ(H cos ρ)2

(
(∂ρφ)2−T

)

− 1
(H cos ρ)2

hλσ ∂λφ∂σ φ

]
,

(28)

where

T ≡ (∂θ1φ)2 + 1
sin2 θ1

(∂θ2φ)2+ 1
(sin θ1 sin θ2)2

(∂θ3φ)2

+ 1
(H cos ρ)2

m2φ2. (29)

As a particular case in which the scalar field is indepen-
dent of θi, Equation 28 reduces to the following:

Tρρ = 1
2
(∂ρφ)2+ 1

2(H cos ρ)2
m2φ2− 1

2
m2hρρφ2. (30)

Flat background
In the flat background, let us consider the minimally cou-
pled scalar field (ζ = 0). For the scalar field, the zero-zero
(or time-time) component of Equation 27, which has the
interpretation of the energy density in flat space, reduces
to the following:

T00 = 1
2

{
(∂0φ)2 + (∂iφ)2 + m2φ2

−
[
h00(∂μφ)2 + hλσ ∂λφ∂σ φ − h00m2φ2

]}
.

(31)

The first three terms are the usual Ttt in the Minkowski
space, and the others belong to the effect of the metric
perturbation. Therefore, at this stage, one can study the
change in the energy levels due to this kind of perturbation
as follows:

E =
∫

d3x Ttt = E0 + �E, (32)

where E0 is the energy level of the spinless relativistic par-
ticle evaluated in the usual way in flat space; on the other
hand, �E can be supposed as its correction due to the
fluctuation of the metric and is given as follows:

�E= −1
2

∫
d3x

[
h00(∂μφ)2+hλσ ∂λφ∂σ φ−h00m2φ2

]
.

(33)

Conclusions
Having understood that in general, curved space-times-
due to the lack of time-like Killing vector - has no com-
mon acceptable vacuum for all inertial observers; the
next natural question is to ask what happens when one
wants to consider the quantum effects of various kinds
of fields. In considering quantum effects, the expecta-
tion value of the locally defined energy-momentum tensor
becomes important. For example, in de Sitter space-time,
one can consider the effect of the scalar field by finding its
proper energy-momentum tensor. In view of some papers
([8,9,14]) on this subject, in the present work, we con-
sidered the effect of the metric perturbation on energy-
momentum tensor. It was found that the effect of metric
perturbation appears as small corrections in the original
form of Tμν . As a suggestion with this additional part to
the zero-zero component of the energy-momentum ten-
sor, one can study the effect of the gravitational waves in
the Casimir effect since in the Casimir effect, this addi-
tional part will appear as a force, which we leave to future
works.
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