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Abstract

In this paper, a numerical study of quantum transport in a disordered four-terminal graphene nanodevice is
investigated based on the Landauer approach. The effects of impurity on transmission coefficient of the electron
injected into the system are studied using tight-binding model. In this manner, we emphasize that when the
disorder density is sufficiently large, the transmission coefficients and the current reduce due to multiscattering
phenomenon. We have found that the perfectly conducting channel develops in four-terminal device in its zigzag
edge if the range of impurity gets exponentially wider. The theoretical results obtained can be a base for the
development in designing graphene nanodevice.
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Introduction
The problem of impurity in systems with Dirac fermions
has been studied extensively in the last few years [1,2]. Un-
derstanding the role of the defects in the transport proper-
ties of graphene is central to realize future electronics
based on carbon. It has been shown recently that charge
carriers in graphene are massless Dirac fermions with
effective ‘velocity of light,’ and it is well known that dis-
order is ubiquitous in graphene and its effect on the elec-
tronic structure has been studied [3-5]. The electron
transport in one-dimensional (1D) carbon systems displays
unusual properties, in apparent opposition with the com-
mon belief that 1D systems are generally subjected to An-
derson localization [6,7].
Unlike carbon nanotubes, graphene ribbons have

edges that are vulnerable to impurity that could limit the
localization length, and hence, the length over which
ballistic transport could occur.
It was shown that carbon nanotubes with long-ranged

impurities possess a perfectly conducting channel (PCC)
[8,9]. Based on the critical role that two-dimensional
multiterminal devices have played in semiconductor
nanotechnology, multiterminal graphene devices should
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also play an important role in any graphene-based elec-
tronic circuits [10]. In addition to the practical import-
ance of these multiterminal graphene devices, these
systems make a useful framework to study the effect of
lattice defects on the electron transport in the device. In
this paper, we perform calculation to investigate the ef-
fect of the impurity potential range and its density on
the conductance of four-terminal graphene nanodevice
and we have found that the PCC develops in the four-
terminal device.

Theoretical model
We consider the system as a central conductor region
(C), connected to four leads L, R, B, and T (see Figure 1).
The leads are formed by semi-infinite perfect ribbons,
simulating four ideal leads. The conductor region con-
sists of Nc number of atoms.
The tight-binding Hamiltonian of the system can be

written as [11,12]

H ¼
X
i

εi a
þ
i ai þ t

X
eiϕij

i;j

aþi aj þ
X
i

V aþi ai; ð1Þ

where ai and aþi are the annihilator and creator operator
of the electron; t is the hopping integral between the
nearest neighbors. In the absence of impurity, εi is taken
to be zero and t = 2.7 eV. In the presence of disorder, Ni

impurities are randomly distributed among Nc sites. The
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Figure 1 Lattice configuration of four-terminal graphene
device. Central region (boxed) is the conductor region, C, which is
attached to four leads L, T, B, and R.
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potential energy of the ith site at position ri is induced
by these impurities as [11,12]:

εi rið Þ ¼
XNi

n¼1

Vn exp − ri−rnj j2= 2d2� �� �
; ð2Þ

where rn is the position of the nth impurity, d represents
the spatial range of the impurity potential, and the potential
strength Vn of the impurities is randomly distributed in the
range (W/2, W/2) independently. We emphasize that the
potential that we consider, being static, does not actually
break the time reversal symmetry in graphene.
In what follows, we show how to calculate the trans-

mission of the system. In the absence of thermal effects
and the charging terms, the transmission coefficient for
electrons from the left lead to the right lead with energy
E is related to Green's functions using Caroli's formula
which provides high numerical accuracy and efficiency:

T ¼ Tr ΓmG
r
cΓnG

a
c

� �
; ð3Þ

where Gr;a
c are the retarded and advanced Green's functions

of the conductor, and Γm,n are coupling matrices from the
conductor to the leads. The systems have four leads,
resulting in a conductor Green function of form [12,13]
Gr
c ¼ E þ iηð ÞI−Hc− r

L
−

r

R
−

r

T
−

r

B
; ð4Þ

where I is the identity matrix,
P

n denotes self-energy due
to the coupling between the conductor and lead n; iη is a
small imaginary term added to make the Green's function
(G) non-Hermitian. When there are more than two leads,
the matrix algebra in (3) is somewhat more complex as de-
scribed in [14]. The coupling matrices are expressed as:

Γn ¼ i
X

n
r−
X

n
a

h i
: ð5Þ

The function Γn is called the broadening function and de-
scribes the coupling of the device to the leads, wherePr

n ¼
Pa

n

� �þ
. The conductor region consists of Nc atoms

(where Nc = 32), making all the matrices Nc×Nc square
matrices.
Integrating the transmission probability over the whole

energy range and for the external bias applied to the elec-
trodes, one can derive the tunneling current as the form

I V ;Tð Þ ¼ 2e=h∫T V ; Eð Þ f E−μnð Þ−f E−μmð Þ½ �dE; ð6Þ

where T (V,E) is the transmission probability per energy E, f
(E) is Fermi-Dirac distribution,V is the bias voltage applied
to the system, and μm(μn) is the chemical potential at n(m)
lead (μm = μn + eV). The conductance G(E) of the four-
terminal graphene can be calculated using the Landauer
formula [12,13]:

G ¼ 2e2=h
� �

T ð7Þ

where h is the Planck's constant and e is the electron
charge.

Results and discussion
Firstly, we investigate the effect of the potential range
d and density ni (ni = Ni/Nc) of the impurities with
fixed W = 0.5 t. In Figure 2, we plot the transmission co-
efficients of electrons injected to the four-terminal
graphene device as a function of energy with different
potential range d at fixed impurity density ni = 30 %.
electrons are injected through the zigzag ribbon from L to
R. A direct conclusion from this figure is that in most re-
gions of E, short-range (d = 0, a) impurities (SRI) can lead
to a considerable decrease of conductivity, but long-range
(d = 3a) impurities (LRI) will decrease the transmission
much further, in the case of the same impurity density.
The fine peaks in pure case, known as Van Hov singu-

larities (VHSs) [15], correspond to the extreme points in
the energy bands (the critical point found in phase dia-
grams is a completely separated phenomenon); however,
the peaks in the transmission of disordered case corres-
pond to the impurity states.
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Figure 3 Transmission coefficients as a function of energy with
different impurity density at fixed impurity range. The
transmission coefficients as a function of energy with different
impurity density at fixed impurity range d = a and W = 0.5 t.
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Figure 4 Conductivity as a function of d/a at zero energy.
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Figure 2 Transmission coefficients of electrons with different
impurity potential at fixed impurity density. The transmission
coefficients of electrons injected to the four-terminal graphene
nanodevice as a function of energy with different impurity potential (W)
at fixed impurity density ni = 30% with impurity range d = a. The curve
for a device without any impurities is also plotted as a reference.
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The impurity states are quasilocalized states caused by
the disorder [16]. The injected electron will be reflected
when its energy is equal to the energy level of the
quasilocalized states; indeed quasilocalized states in dis-
ordered graphene near Dirac points have been observed
experimentally and numerically [17].
It should be noted that the SRIs do not destroy the

shape of VHSs, while LRIs tend to reduce the conduct-
ance and obscure the shape of VHSs. For both mono-
layer and bilayer graphenes, STM experiments have
reported that atomic-size impurities give rise to short-
wavelength modulations of the LDOS, associated with
intervalley scattering [18].
The electron waves are localized around the impurity site.

Thus, the conductance reduction is caused by virtual bound
states at the impurity. Localization arises from enhanced
intervalley scattering due to the deviation from Dirac dis-
persion in the strong impurity regime; this intervalley scat-
tering is a result of non-Dirac behavior of the honeycomb
lattice in the high-energy region and cannot be avoided by
simply increasing the potential range. Besides, it has been
realized experimentally by RV Gorbachev et al. that unlike
conventional 2D systems, weak localization in bilayer
graphene is affected by elastic scattering processes such as
intervalley scattering [8].
In Figure 3, we plot the transmission as a function of

energy with different impurity density at fixed potential
range d = a (SRI case) and W = 0.5 t. Disorder causes
electron scattering. The quantum scattering theory of
free particles in infinite space is a textbook subject,
which has been recently scrutinized for massless Dirac
fermions in infinite 2D space. Although scattering in
graphene can be suppressed because of the symmetries
of the Dirac quasiparticles, it is shown that when its
source is atomic-scale lattice defects, wave functions of
different symmetries can mix [19].
In the case of low-density impurities, the scatterings

due to different impurities are independent. But when
the density is sufficiently high, the potential field in-
duced by different impurities overlap and multiscattering
dominates. This multiscatterings decrease the conduct-
ance, which is due to the asymmetric behavior on trans-
mission coefficients.
Figure 4 shows the conductivity as a function of d at

zero energy. Our numerical results indicate that trans-
mission is a more complicated function that depends on
the nature of the disorder. Clearly, it can be seen that
the PCC develops in four-terminal device in zigzag edge
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Figure 5 Current–voltage curves of pure four-terminal device
with different impurity density. The inset graph shows the
current–voltage curve in the vicinity of the Fermi energy.
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if the range of impurity gets wide. Since at least one of
sub-bands at these energy points gives zero group vel-
ocity, it can be considered that the intra-valley scattering
becomes stronger and, therefore, behaves in a exponen-
tial way in this regime, which is noted as G ~ exp(d).
In order to investigate the behavior of changes in the

current voltage from lead L to lead R, we apply external
potential to the system so that lead L lies in the potential
of V/2 and lead R lies in the potential of −V/2.
The difference in the transmission coefficients is directly

reflected in the current–voltage (I-V) characteristics. The
current increases linearly due to the finite transmission
coefficient near the Fermi energy; these I-V characteristics
are almost similar to that of the previous work [20]. The
overlapping of the states at the right and left leads repre-
sents the presence of channel for the injected electrons
to be passed. As can be seen in Figure 5, the current in-
creases when we applied voltage to the system. This is due
to effective overlapping of two electrodes insofar as the
curve's peak shows the enhancement of the overlapping.
The inset graph in Figure 5 shows the current–volt-

age curve in the vicinity of the Fermi energy; the small
oscillations in the curve are due to Van Hov singularity
and originated from the ‘current quantization’ in this
mesoscopic system. A direct conclusion from this figure is
that low-density impurities can lead to a considerable
decrease of current, but high-density impurities will
decrease the current much further, in the case of the
same range impurities due to multiscattering and Ander-
son localization; however, curves resume their behavior in
most energy regions. By numerical calculation, Liviu P
Zarbo and BK Nikoli demonstrated that both short-range
and long-range impurities reduce current density in the
region of their influence in the single channel transport
through the lowest transverse propagating mode gener-
ated by the edge states of ZGNR; this reduction in the case
of long-range impurities can be compensated by the in-
crease of current density along the zigzag edge, ensuring
perfectly conducting channel G = 2e2/h even in the pres-
ence of the disorder [8,21].

Conclusions
As a summary, we numerically investigate the transport
properties of a four-terminal graphene nanodevice in the
presence of impurities with different density and poten-
tial range.
We have found that in the presence of impurity, the

transmission and current decrease, which means that
this impurity can produce the constructive interference.
On the other hand, nanographene ribbon with zigzag
edges in the four-terminal graphene device possesses
perfectly conducting channel if the impurity potentials
are long ranged, induced by electronic states which ori-
ginate from the edge states. These behaviors agree well
with the results from a recent experiment.
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