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The relativistic Dirac equation under spin symmetry is investigated for generalized Morse potential. We calculated
the eigenvalues and the corresponding wave function by using the Nikiforov-Uvarov method. We also discussed
two special cases: attractive radial and Deng-Fan potentials. We have also reported some numerical results and
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Introduction

The relativistic symmetries of the Dirac Hamiltonian
had been discovered about 40 years ago. These symmet-
ries have been recently recognized empirically in nuclear
and hadronic spectroscopic [1]. However, within the
framework of Dirac equation, the concepts of exact
pseudospin symmetry occurs when the magnitude of the
attractive Lorentz scalar potential S(r) and the repulsive
vector potential V(r) are nearly equal but opposite in
sign, ie, S(r) = -V(r) [2,3]. Also, the approximate
pseudospin symmetry is when the sum of the potential
is X(r) = ¢,s = const # 0 [4]. The pseudospin symmetry
used to feature deformed nuclei and the superdeforma-
tion to establish an effective shell model [5]. On the
other hand, the spin symmetry is relevant in mesons [6]
and occurs when the difference of the scalar S(r) and V(r)
potentials are constant, i.e., A(r) = V(r) — S(r) = ¢; = const =
0 [3/4]. The pseudospin symmetry refers to a quasi-
degeneracy of single-nucleon doublets with non-relativistic
quantum number (,l,j =[+1) and (n-1,1+2,j =1 +3),
where #, [, j denote the single nucleon radial, orbital, and
total angular momentum quantum numbers, respectively

[7,8]. Furthermore, the total angular momentum is j = I+ 3,

where [ = [+ 1 is the pseudo-angular momentum and s
is the pseudospin angular momentum [9].
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The relativistic and non-relativistic quantum mechan-
ics equations with different phenomenology have been
considerably investigated in the recent years [10-25].
Ikhdair and Sever [19] have solved approximately the
Dirac-Hulthen problem under spin and pseudospin sym-
metry limits including Coulomb-like tensor potential
with an arbitrary spin-orbit coupling number x. Also,
Hamzavi et al. [20] studied the exact solutions of the
Dirac equation for Mie-type potential and approximate
solutions of the Dirac-Morse problem with Coulomb-
like tensor potential and relativistic Morse potential with
tensor interaction [21]. Similarly, Ikot [22] solved the
generalized hyperbolical potential including a tensor
potential for spin symmetry. The Morse potential is
one of the convenient models for the potential energy
of diatomic molecules. The Morse potential can be
used to model interactions such as the interaction be-
tween an atom and a surface [23]. Berkdemir investi-
gated the pseudospin symmetry in the relativistic
Morse potential systematically by solving the Dirac
equation by applying the Pekeris approximation to
the spin-orbit coupling term [24]. The Morse poten-
tial (MP) is defined as [21]

V(r) =D, [1-52‘*(’*“)} : (1)

where «a is the screening parameter and D, is the dis-
sociation energy.

In this work, we introduced a novel potential and call
it the New Generalized Morse-like potential (NGMP)
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model having the same behaviors as MP, attractive radial
potential, and Deng-Fan potential models. It is defined as

—ar \ 2
1—<4A+B,e ) ] (2)
C+De
where A, B, C, D' are constant coefficients and the term in
the bracket is the Mobius square potential proposed re-
cently [25] (see Figure 1).

The motivation of the present work is intend to inves-
tigate this potential including the Coulomb-like term
under the spin symmetry limit and calculate the energy
eigenvalues and the corresponding wave functions
expressed in terms of the hypergeometric functions.

The organization of the paper is as follows. In the
‘Parametric Nikiforov-Uvarov method’ section, we briefly
introduced the NU method. The ‘Dirac equation with a
tensor coupling’ section is devoted to the Dirac equation
with scalar and vector potential with arbitrary spin-orbit
coupling number x including tensor interaction under
spin and pseudospin symmetry limits. The energy eigen-
value equation and corresponding wave functions for
spin symmetry limit is obtained in the ‘Spin symmetry
limit’ section. A special case of the potential under inves-

tigation is discussed in the ‘Special cases’ section. Finally,
we give a brief conclusion in the ‘Conclusions’ section.

V(r) =D,

Parametric Nikiforov-Uvarov method

The NU method is used to solve second-order differen-
tial equations with an appropriate coordinate transform-
ation s = s(r) [26].
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Figure 1 Behavior of potentials for a = 0.01 fm™', A=1,B=-2,
C=1,D'=-1,D,=-08fm™".
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where o(s) and 6(s) are polynomials, at most of second
degree, and 7(s) is a first-degree polynomial. To make
the application of the NU method simpler and direct
without need to check the validity of solution, we present
a shortcut for the method. So, at first, we write the general
form of the Schrodinger-like Equation (3) in a more
general form applicable to any potential as follows [27]:

. c1-cas \ —§15° + §35-&3 _
a0+ (0 i) + <ﬁ> Vals) =0,
@

satisfying the wave functions

¥, (5) = ¢(s)y,(s)- (5)

Comparing (4) with its counterpart (5), we obtain the
following identifications:

7(s) = c1—cas, o(s) =s(1-css), (6)
0 (s) = —&18" + §ys-Es.
Following the NU method [26-30], we obtain the

following;

(1) the relevant constant:

Cs :%(l—cl), s :%(C2—2C3)7

6 =c2+&, c7 = 2¢4¢5—E5,

cg =3+ &3, g = c3¢7 + C3cs + .

clo = c¢1 +2¢4+2y/cg  c11 = 25 + 2(\/0_94- 03\/C_8)
c12 = C4 +\/Cg 13 = 5= (\/Co + €31/C5)

(7)

(2) the essential polynomial functions:

7(s) = ¢4 + css—[(v/co + c3\/cs)s—+/cs], (8)

k = _(C7 + 2C3Cg)—2@, (9)
7(s) = ¢1 + 2ca—(c2-2¢5)s-2[(v/cg + c3+/C8)s—/Cs],
(10)

7 (s) = —2c3-2(1/c9 + c31/c5) < 0. (11)

(3) the energy equation:

on—2n+1)cs + (2n+ 1)(v/co + c34/cs)  (12)
+n(n-1)cs + ¢7 + 2c3cs + 2+/csco = 0.
(4) the wave functions:
p(s) = s90(1—c35)", (13)
d(s) = s (1-c35)™, ¢12 >0, c¢13 > 0, (14)
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yn(s) = pEtCIOA’CH)(l_ZCBS)a €10 > _1; c11 > _17
(15)
a3 (Cm 1, 11—610 1)
W (8) = N pes™ (1-c35) > s P, (1-2c3s),

(16)
where P¥"(x), p> -1, v>-1 and x € [-1, 1] are

Jacobi polynomials with

Ph)(1-25) = o

JFi(-ml+a+p+ma+1;s),
(17)
and N, is a normalization constant. Also, the above

wave functions can be expressed in terms of the hyper-
geometric function as

l/’nk(s) = NV!KSCIZ (1_C3S)CI3

oF 1 (=1, 1+ c10 + 11 + mc10 + L5 c38),
(18)

where ¢, > 0, ¢;3 > 0 and s € [0, 1/c3], ¢3 = 0. This
method has been used extensively to solve various
second-order differential equations in quantum mechan-
ics such as Schrodinger equation, Klein-Gordon equa-
tion, Duffin-Kemmar-Petiau equation, spinless-Salpeter
equation, and Dirac equations [31].

Dirac equation with a tensor coupling

The Dirac equation for spin 1 particles moving in an at-
tractive scalar potential S(r), a repulsive vector potential
V(r) and a tensor potential U(r) in the relativistic unit
(72=1c=1)is [32]

[E 7 +/5(M 4 S(r)-iB @ UM p(r) = [E-V()]u(r),
(19)

where E is the relativistic energy of the system, p= iV is
the three-dimensional momentum operator, and M is the

mass of the fermionic particle. o,/ are the 4 x 4. Dirac
matrices given as

—

0 o I 0
. 7/)): <0 _1>?
0

o

a= (20)

where [ is 2 x 2 unitary matrix and o; are the Pauli three-
vector matrices,

/(01 (0 - (1 0
=\1 0)%27\; 0) (o 1)

(21)
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The eigenvalues of the spin-orbit coupling operator are
k=(j+3%) >0,k=-(j+3) <0 for unaligned j=1[-1
and the aligned spin j = [ + %, respectively. The set (H”,K,

]2,]Z) forms a complete set of conserved quantities. Thus,

we can write the spinors as [33],
1( Fulr) Y}m(& 0
Wnk(r) = 7 )
r Y]m(ea (1’)

iGue(r)
where F,,,(r),G,,(r) represent the upper and lower compo-
Y;m(e, ), Ym(0,9) are the
spin and pseudospin spherical harmonics and m is the
projection on the z-axis. With other known identities [34],

@ )(( B)) =AB +id.(AxE),

J.L (23)

(22)

nents of the Dirac spinors.

Y,me,co) = (k-1)¥},(6, )
~(k-1)Y},(6,9)
(m) 0.0) = (0
(a.r) Y}u(6,0) = -Y',(6,0)

leads on to the two coupled first-order Dirac equation [34],

(;;+——U(F)) ( ) = (M+EnK_A(r))GnK(r)

(25)
d « _
(E_; + L[()")) GnK(r) - (M_E”K + Z(r))F”K(r)’
where 26)
A(r) = V(r)=S(r), (27)
S(r) = V(r) + S(r) (28)

Eliminating F,,(r) and G,, in Equations (25) and (26),
we obtain the second-order Schrédinger-like equation as

% ) K(K; D, 2:<Lr1(r> . dL:l 5” U (r)
Mt En AO)M-En +200) | g
dA(r) (d  «
dr <$ U( )>
M+ EnK—A(f))
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d*  x(xk-1) 2xU(r) dU(r)
arr + r + dr
—(M + Ep—=A(r))(M=E i + X(1))

ds(r) (d K\ (r))

dr \dr r

(M + En=Z(r))

~UA(r)

an(r) = 07

(30)

where k(k-1) = Z(Z + 1) Jk(k+1)=1(1+1).

Spin symmetry limit

In the spin symmetry limit, dgi’) =0 or A(r) = ¢, = const

[1-4]. Here, we take the new generalized Morse-like po-

tential as
A+ Beo\?
I I e i (31)
C+Der
in addition to a Coulomb tensor interaction [21],
H
ur)=- - TR, (32)
where
Z4Zpe?
H= 33
4ﬂ80 ( )

and A, B, C, D', a are constant, R, is the Coulomb radius,
and Z,, Z, denote the charges of the projectile & and the
target nuclei b [21] Now substituting Equations (31) and
(32) into Equation (29) yields

d* k(k+1) 2«kH H H?
a7 p Mt Eaca)
A+ Be @ \? Fudr) =0.
(M‘E"K*De I(W) D

(34)

The good approximation for the centrifugal term is
given as [35]

1 2 Ce™™ :
r2 C+Dlear)’
1 a 5

1 1
+-+—a*+—adr+——a'r?

Cdim |2 12 12 240

o 1 5.3 1 6_4 5
R B —— o)
720% " “eoas® " TO)

(35)

where C = -D’, Equation (33) gives a good approximation
for the centrifugal term (see in Figure 2). Performing a
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Figure 2 The centrifugal term (1/%) and its approximation for
a=0.01fm™", D' =-1.

- J

power series expansion and setting o — 0 gives the de-
sired r 2, as suggested by Greene and Aldrich [36]. Now,
substituting Equation (35) into Equation (34) and defining
a new variable s = e * allows us to obtain

+ ,
ds? 3(1 +%s) ds
1
+ 2 [_AOS +A1S—A2]Fn,<(s) =0,
s? (1 + %s)
(36)
where
2 -
Dg? yB?
Ag = }71((’71(_1) + 7_F7
AB _ 2D& A2
A = (2?)’-?),142 =& @
2 [(M + EI’!K_CS)(M_E}'[K)} (37>
&= - ,
De M EVIK_ s) — ~
)7:%,822824—;/,
7= (K+H+1).
Comparing Equation (36) with Equation (4), we get
2_
D8 _B?
a=1L6§= (”K(Wx_l) + 2 _YE>a
D AB _ 2D'€?
=-=.&= (257~ (38)
Cy C 752 C2 )4 C >
D S A2
€3 = _E’ES = < —)’C2>
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Equation (7) determines other coefficients as

o D D’ P (1-1) _ B

c=0,05=—,c6=—5 (8 +- -1)-7=

4 ) &5 2C7 6 C2 4 ’7/( ’71( YC27
2D§ AB B ~A2

c7 = C 2}/C27 :‘9_)/E7

c —D_Q 1 ~A_2 _|_11 2A_B~ + ( 1) "B_z
9_C2 4 yCZ C CZY i\ yC27
A2
cro=1 +2\/8 —}/ > (39)

20 D’ _A? L D(,ABY (1) B> D [, A
C1] = —— —_— |-y — — 1)y ———1/ -y —
11 C CZ 4 YCZ C Czy ’71( ;71< }/CZ C yczv

A2
-y Ev

D | pin LD (,ABY (1) B D, A
s=c |Vaela el Te\Per) T ar e E T a|

In order to obtain the bound state energy eigenvalues,
we used Equation (12) and easily obtain the energy
eigenvalue for the Dirac-Morse square problem includ-
ing Coulomb-like tensor interaction as

Cip = 52

D* 1 DM+ Ep—c) A | D () ABD(M + Ey—c)
C? |4 a? C? c\"c? a?
, , De(M + E—c;) B?
D D 1 (me-l)-———————
-—n-(2n+ 1)<—> +(2n+1) (1) a? C?
c 2C  [(M+ Ep=c))(M=En) | Do(M + Eppcy)
D o2 + a2
C De(M +EHK_CS)A2
T e
D' 2D [(M 4+ E—¢s)(M=E,)  De(M + Epe—=c5)] - De(M + E,—c5) AB
-1z c'c { a? i a? - a? c?
B 2 (M + Epe—cs) (M-~ EnK)+D o(M + Enc=Cs)  De(M + En—c;) A
C a2 a? a? c?
M+E,,,< cs)(M En) , De(M + En=c) De(M + Ep- cS)AZ)( {1 De(M + Epe—cs) A2
2 - 2 2 2 |2~ 2 2
a a C Cc” |4 a C —0, (40)
ABD(M+E,, —c5) Do(M + E—cs) B
‘xz K S ) +’7K(’7K_1)_ e az nK S E
or more explicitly, we get
at[ B > [ (A?
(M + E,j—c) (M-E,;) = " {(” o) + (n+ 0)] +a [y <?—1> —WK(WK—I)]a (41)
where
2
C |D 1 _A*] D[, AB] _B?
—na- i 7 42
o n+2D\/C2{K(f1K )+ YC2:| C{)’Cz] Vo (42)
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The corresponding upper spinor wave function is
obtained using Equation (16) as

Page 6 of 9

= 1 C

?(1+

g2y
Fm((r) = Nm((eim)

el
. N V= i )
gew)Z bve s

2
Py,

where N, is the normalization constant. The lower
component of the wave function can be calculated from
Equation (25) as

m (% +§—U(r)>1—"m<(,«). (45)

Special cases
Let us study two potential models of the generalized
Morse potential.

Gu(r) =

Attractive radial potential
Zou et al. [37] and Eshghi and Hamzavi [38] proposed
the attractive radial potential of the form

Vle—4ur + V2€—2ar + VB
(1_6—2ar)2
where V1,V,,V3 are constant. The NGMP model of

Equation (2) can be rewritten as

_ D,((1-A?)-2(1+ AB)e™ + (1-B?)e ™)
(l—e“’”)2

for C=1and D' = -1. If we set « — 2a, V3 = D,(1 -

A?),V, =2D,(1 + AB), V; = D,(1 - B?), we obtain the en-

ergy eigenvalues and the wave function for the attractive

radial potential reported by Eshghi and Hamzavi [25] as
2

Vi(r)=

; (46)

v(r) . (47)

(M + Ee—cs)(M=E,,0) = a® [ + (n+ 0')}

B
(n+0)

C
A2 C [p*n
e27—=5-2=\—5 |--V =
Ve e\ e a7

(44)
where
4(M + E—c)
gt [‘%(m—l) + 1—% vs}
o ==
+ S(M + fnx_cs) Vo 4‘(M + fnk_cs) Vi
a a
(50)
(M + E—cs)

B = (nn-n) + 5= vevy). 6

Deng-Fan potential

Different attempt has been made by different authors to
investigate Deng-Fan exponential potential proposed
many years ago [39-43]

V(r) = D(l——(emb_ 1)> , (52)
with
b =e"-1,re(0, ), (53)

where D is dissociation energy, b and « are potential pa-
rameters, and r, is the equilibrium distance. We can re-
write the Deng-Fan potential of Equation (52) in a
simpler form as

D(1-2(1 + b)e™™ + (1 + b)*e™>)

5 (M + E —cy) =
+aa l:T V3_}71<(}77<_1) ) V(V) o (l—e"”’)2
(48) (54)
\/52 1 +2f%)vg + 17, (7,-1)
Fm((r) - NnK(eiar)
Vo Me T [2Va B+ Moc)] V(B + Mc, VA2 (E + M—c
o P [ ) Vil ) [ VB TS,

pglclo-ﬁn)(1_2(;0”)7
(49)
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Table 1 Energies in the spin symmetry limit fora = 0.01 fm™', M=5fm',A=1,B=-2,C=1,D=-1,D. = 0.8 fm™",

C =5
€ k<0 & g (m) e (m) () nks0 @) e(m) B (m) e (m)
(H=0) (H=05) H=1 H=0 (H=0.5) (H=1)
1 0, -2 OP% 4208736985 4208685629 4.208690031 01 OP% 4.208736985 4208932063 4209393637
2 0, -3 Od% 4209393637 4208932063 4.208736985 0.2 0d: 4.209393637 4210278362 4211774841
3 0, -4 Of% 4211774841 4210278362 4209393637 03 Of% 4211774841 4214100142 4217494247
4 0-5 Og% 4.217494247 4214100142 4211774841 04 Og; 4217494247 4222211943 4228511891
1 1,-2 1Py 422579457 4225744617 4225748899 1,1 1P, 422579457 4225984322 4226433297
2 1,-3 1d% 4226433297 4225984322 422579457 1.2 de 4226433297 4227293895 4228749628
3 1, -4 1@ 4.228749628 4.227293895 4.226433297 13 Wf; 4.228749628 4231011777 4.234314049
4 1,-5 19; 4.234314049 4231011777 4.228749628 14 Wg% 4.234314049 4.238904779 4.245036392
1 2,2 2p§ 4.242466942 4242418336 4.242422503 2,1 ZPw7 4.242466942 4.242651576 4.243088449
2 2,-3 ng 4.243088449 4242651576 4.242466942 22 2d§ 4.243088449 4243925868 4245342453
3 2, -4 Zfé 4.245342453 4.243925868 4.243088449 23 2f% 4.245342453 4.247543916 4.250757924
4 2,-5 29% 4250757924 4247543916 4.245342453 24 29% 4250757924 4255226581 426119628
By comparing Equation (47) and Equation (52), we  where
have D,(1 - A% = D, D,(1 + AB) = D(1 + b), D,(1 - B
= D(1 2 In 41 ner igenval r
.( + b). the [ ],. the e ergy eigenvalues were 1 ) DM 1 Epe—cy)
obtained without tensor interaction. Then, we should =5 1+ (1 + 2”/,<) +4b Qe |
write 7, = (k + 1).
(56)
(M + EnK_Cs)(M_EnK)
2 (M+E—cs) 2 - s DB oa) (]
_ @ DA T o Fonlr) = Noe ™) V252 on0)
4 n+ao’ ,
(n+07) ar %(1+\/ (1+2;7K)2+4bw4<‘””f;*’“))
e D(M + E,j—cs) e (1,-1) x (1-e™)
2 xk \k ’ . -
a x Plaoen) (1-2¢707).,
(55) (57)
0 01 02 03 04 05 06 07 08 09 1 0.001 0.021 0.041 0.061 0081 0101 0.121 0.141 0.161 0.181
: \ ———— @ : .
a2 W _o.-”" 290 | - ®-n=1k=5 4 Rl 't
“a < —e—n=1k=1 - & -n=1k=4 o =
N e : ol
4233 IS - o__o —e—n=1k=4 - e-n=1k=3 )‘-
FY © ====n=1k=2 4.76 - -
A, .0 —&—n=1,k=-2 g P P
i LT —o—n=1,k=3 i 7
~ LA N eeinee n=1k=3 =2,k=- E N
£ ..0"’.” *‘1 - % —n=1k=5 T 482 | —e—n2ke4 = --?
a; 4.230 : .o..O e :\.. i ‘) — =
g -

4.228

4.227

4.226

Figure 3 Energy vs. H for spin symmetry limit for first choice
a=001fm",M=5fm",A=1,8=-2,C=1,D'=-1,D,=-08
fm™, C, =5.

oofee n=2,k=-2

s
n

434

4.20

Figure 4 Energy vs. a for spin symmetry limit for H=0.5, M =5
fm',A=1,B8=-2,C=1,D'=-1,D,=-08fm™", C;=5.
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0.8 -0.76 -0.72 -0.68 -0.64 -0.6 -0.56 -0.52

450 = # =n=0k=-5
—&—n=0k=2
——n=1k=-5

4.44 -

sesBee nN=1,k=-2

i~
g =amean=2k=5
I
o 438 —#—n=2k=2
=
v:"é
<3

4.32

4.26

420 -

D,

Figure 5 Energy vs. D, for spin symmetry limit for H = 0.5,

a=001fm" ,M=5fm",A=1,B=-2,C=1,D'=-1,C,=5.

Numerical results

We obtain the energy eigenvalues in the absence (H = 0)
and the presence (H =0.5 and I) of the Coulomb-like
tensor potential for various values of the quantum num-
bers # and . In Table 1, we have reported the numerical
values of the energy for various values of H. We can
clearly see that there is the degeneracy between the
bound states and in the presence of the tensor inter-
action, these degeneracies are changed or removed. Also,
we have reported the behavior of the energy in Figure 3,
which represent energy vs. H which clearly see the de-
generacy in the spin doublets for some values of H and
the energy eigenvalue difference between the degenerate
state increases as H increases. In Figure 4, we show the
behavior of the energy vs. a for spin symmetry limits. It
is seen that if the a-parameter increases, the bound
states become more bounded both for the spin

0.06 0.18 0.3 0.42 0.54 0.66 0.78 09 1.02 1.14
4.28

- ® =n=0k=5 ’

—— n=0,k=-2 ﬂ

4.26

425

Ep(1/fm)

4.22

4.20

Figure 6 Energy vs. A for spin symmetry limit for H= 0.5, a = 0.01
fm,M=5fm™",B=-2,C=1,0'=-1,D.=- 08 fm™, C =5.

4.30 1Y
% ~ ® =n=0k=5
i ‘\‘ —e—n=0k=2
‘\ ceedess N=1k=5
4.26 \ )\\ —¥—n=1k=-2
e N -—tmenz2k=5

E; (1/fm)

Figure 7 Energy vs. B for spin symmetry limit for H = 0.5, a = 0.01
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symmetry limit. Similarly, the energy has also been plot-
ted vs. the potential coefficients D,, A and B in Figures 5,
6, and 7. Finally, Figure 8 shows the plot of the energy
for different values of Ci. It is seen in Figures 5, 6, 7, and
8 that although bound states obtained in view of spin
symmetry become more bounded with increasing D,, A
and C;, they become less bounded with increasing B.

Conclusions

We have presented analytical expressions for the eigen-
values and wave function for the Dirac equation with a
generalized Morse potential including Coulomb-like po-
tential in view of the spin symmetry limit by using
Nikiforov-Uvarov method. We have found the radial
upper and lower wave functions in terms of the Jacobi
polynomials. We have also discussed two special cases of
this potential such as the attractive radial potential and
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a=004fm ", M=5fm",A=1,B=-2,C=1,D'=-0.8fm™".




Ikot et al. Journal of Theoretical and Applied Physics 2013, 7:53
http://www.jtaphys.com/content/7/1/53

Deng-Fan potential which is consistent with those found
in the literature [37,38,40,41]. These results we have
obtained will be useful in many areas of physics such as
theoretical, molecular, and nuclear physics.
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