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Abstract The Rayleigh–Taylor instability of a heavy

fluid supported by a lighter one is investigated, with the

suspended dust particles and small uniform general rota-

tion. The fluids are assumed to be incompressible. The

solutions of the linearized equations of motion using the

boundary conditions lead to deriving the dispersion equa-

tion in complex formula. The real formula of dispersion

relation has been analyzed and the behavior of growth rate

with respect to the suspended dust particles and compo-

nents of rotation have been examined. The results show

that relaxation frequency of the suspended particles beside

the general rotation will bring about more stability on the

growth rate of unstable configuration.

Keywords Rayleigh–Taylor instability � General

rotation � Suspended particles

Introduction

The Rayleigh–Taylor instability (RTI) [1, 2] occurs when

heavy fluid lies over a lighter one, in the presence of a

gravitational field. The RTI occurs in some natural

phenomenon in a variety of astrophysical contexts,

including supernova explosions [3], the interaction of

shock waves with dense clouds present in the interstellar

medium [4] and in the strong shocks in young supernova

remnants [5, 6]. Also RTI takes place in inertial confine-

ment fusion (ICF) [7–9]. For example, in ICF a directed

high energy density provided by a set of laser beams is

used to strongly compress a small pellet filled with deu-

terium–tritium in order to initiate nuclear burn. The per-

turbations which are generated in various locations in the

pellet may grow with time through RT-type instabilities.

Several attempts to determine the effect of rotation on

stability of one, two or three fluids have been studied alone

or in the presence of other different factors. The effect of

rotation (about the z-axis) on the interface between two

superposed incompressible, inviscid fluids has been studied

by Bjerknes et al. [10], Chandrasekhar [11] and then by

Chakaraborty and Chandra [12]. The effect of vertical

rotation and horizontal magnetic field on the RTI problem

has been considered by Talwar [13] and Chakraborty [14].

The effect of rotation making an angle (the angular

velocity about x-axis and z-axis) on the RTI has been

considered by Hide [15, 16]. The RTI of rotating com-

pressible inviscid fluids has been studied by Verma and

Pratibha [17]. The RTI of two superposed non-viscous

fluids under imposed horizontal and parallel rotation and

horizontal magnetic fields has been considered by Davalos-

Orozco [18]. The RTI of continuously stratified fluid under

a general rotation has been studied by Davalos-Orozco and

Aguilar-Rosas [19], while the effect of general rotation on

RTI of two fluids has been studied by Davalos-Orozco

[20]. The RTI of two-fluid layer system under the effect of

a general rotation field and horizontal magnetic field has

been investigated by Davalos-Orozco [21]. The effect of

rotation on RTI for three layers has been considered by
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Chakaraborty and Chandra [22], Khater and Obied Allaah

[23] and Obied Allah [24]. El-Ansary et al. [25] studied the

influence of uniform vertical rotation with the surface

tension on RTI of three fluids.

In the visible Universe situations, the fluids are often not

pure but contain suspended particles. The suspended par-

ticles may play an important role in the fluids’ stability

problems, like, RTI, Kelvin–Helmholtz instability. Also,

several attempts to determine the effect of suspended par-

ticles on this stability have been considered with various

factors. Scanlon and Segel [26] considered the effect of

suspended particles on the onset of Bénard convection.

They found that the critical Rayleigh number was reduced

solely because the heat capacity of the pure gas was sup-

plemented by that of the particles. Sharma et al. [27]

studied the effect of suspended particles on the onset of

Bénard convection in hydromagnetics. Also, they found

that the suspended particles have a destabilizing role on

their selected problem. The RTI of two superposed con-

ducting fluids in the presence of suspended particles and

horizontal magnetic field is studied by Sharma et al. [28,

29]. The RTI of the plane interface separating the two

partially-ionized superposed fluids through porous medium

in the presence of a variable horizontal magnetic field is

studied by Vaghela and Chhajlani [30]. The RTI of a

Newtonian viscous fluid overlying a Rivlin–Ericksen vis-

coelastic fluid containing suspended particles in a porous

medium is considered by Kumar [31]. The RTI of a

Newtonian viscous fluid overlying Walters B
0

viscoelastic

fluid containing suspended particles in porous medium has

been studied by Kumar and Sharma [32]. Electro-hydro-

dynamic Kelvin–Helmholtz instability of two superposed

Rivlin–Ericksen viscoelastic dielectric fluids containing

suspended particles in a porous medium is considered by

El-Sayed [33]. The effect of viscosity, finite ion Larmor

radius and suspended particles on Kelvin–Helmholtz

instability of two superposed incompressible fluids in the

presence of a uniform magnetic field is considered by El-

Sayed [34]. The stability of the plane interface separating

two viscoelastic (Rivlin–Ericksen) superposed fluids in the

presence of suspended particles are studied by Kumar and

Singh [35]. The instability of two rotating viscoelastic

(Walters B
0
) superposed fluids permeated with suspended

particles in porous medium is considered by Kumar and

Singh [36]. The RTI of a Newtonian viscous fluid overly-

ing an Oldroydian viscoelastic fluid containing suspended

particles is considered by Kumar and Singh [37]. The

stability of the plane interface separating two Rivlin–Er-

icksen viscoelastic superposed fluids permeated with sus-

pended particles and uniform horizontal magnetic field is

considered by Kumar and Abhilasha [38]. The stability of

stratified Oldroyd viscoelastic fluid of the depth (d) in the

presence of suspended particles and variable magnetic field

in porous medium has been studied by Singh and Dixit

[39]. The RTI of two superposed incompressible fluids of

different densities in the presence of small rotation, surface

tension and suspended dust particles is investigated by

Sharma et al. [40].

In all the papers mentioned above, whereas the rotation

with the suspended particles is considered, it was in the

horizontal or vertical direction only. In this paper, the RTI

problem for two incompressible fluids in the presence of

general rotation is considered and the system consists of

suspended (or dust) particles. The goal is to obtain the

dispersion relation that determines the growth rate as a

function of the physical parameters of the system consid-

ered and the role of these parameters are determined,

whereas, the RTI model may be important in the deter-

mination of the instability of planetary interiors, in par-

ticular, for the external core of Uranus that may be

containing suspended particles [41, 42]. The appearance of

such instabilities in previous topics has inspired us to study

it and this is the main motivation of this work.

Formulation of the problem and perturbations

equations

Consider a fluid of density q, stratified in the vertical

z-direction. It is assumed that the fluid is permeated with

suspended dust particles of uniform shape and size. The

density of fluid is greater than the density of dust parti-

cles. The fluid is assumed to be infinitely extending

having the free horizontal surface in the x–y plane.

Also, the fluid is acted upon by a general rotation X
*

¼
ðXx;Xy;XzÞ. Under the foregoing assumptions, equations

of momentum and continuity can be written as (see Refs.

[18–21, 40]):

q
o

ot
þ U~ � r~

� �
U~ ¼ �r~P þ q g~þ 2q U~ � X~

� �

þ KN V~� U~
� �

; ð1Þ

oq
ot

þr~ � ðq U~Þ ¼ 0: ð2Þ

Here U~ðx; y; z; t) is the velocity of the fluid, q is the

density, p the fluid pressure, g~¼ ð0; 0;�gÞ is the gravi-

tational acceleration. V~ðx; y; z; t) and Nðx; y; z; t) denote

the velocity and number density of the suspended particles,

where K = 6pqma, m denotes the kinematic viscosity of the

clean fluid, a the particle radius, is the Stokes0 drag

coefficient.

In the equations of motion (1), by assuming a uniform

spherical particle shape and small relative velocities

between the fluid and the particles, the presence of particles

adds an extra force term proportional to the velocity
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difference between the particles and the fluid. Since the

force exerted by the fluid on the particles is equal and

opposite to that exerted by the particles on the fluid, there

must be an extra force term, equal in magnitude but

opposite in sign, in the equations of motion of the particles.

The distances between particles are assumed quite large

compared with their diameter, so that inter-particle reac-

tions are ignored. The effects of pressure and gravity force

on the suspended particles are negligibly small and there-

fore ignored. If mN is the mass of particles per unit volume,

then the equations of motion and continuity for the parti-

cles, under the above assumptions are

mN
o

ot
þ V~ � r~
� �

V~
� 	

¼ KN U~ � V~
� �

þ FCor þ Ftrans þ FCent;

ð3Þ
oN

ot
þr~ � ðN V~Þ ¼ 0: ð4Þ

Where FCor = -2 mX 9 r•, Ftrans = -mX 9 r, Fcent =

-mX 9 (X 9 r) are the Coriolis force, transverse force

and centrifugal force, respectively. r is position vector of

the particle. They are present only if a particle is moving

in a rotating coordinate system. The Coriolis force

direction is always perpendicular to the velocity vector

of the particle in the moving system. The Coriolis force

thus seems to deflect a moving particle at right angles to

its direction of motion. The transverse force is present

only if there is an angular acceleration of the rotating

coordinate system. This force is always perpendicular to

the radius vector r, hence the name transverse. Finally,

the centrifugal force is the familiar force arising from

rotation about an axis. This force is always directed

outward away from the axis of rotation and is

perpendicular to that axis. The solution of our problem

exploits the fact that the system is in the initial stage at

rest (static case), then the terms FCor, Ftrans and Fcent in

the Eq. (3) will vanish.

Now, to investigate the stability of hydrodynamic

motion, we ask how the motion responds to a small fluc-

tuation in the value of any of the flow variables appearing

in the Euler equations. If the fluctuation grows in amplitude

so that the flow never returns to its initial state, we say that

the flow is unstable with respect to fluctuations of that type.

Accordingly, we replace the variables in Eqs. (1, 2, 3, 4)

as follows: U~ ¼ U~0 þ U~1;V~ ¼ V~1 þ V~0; q ¼ q0 þ q1;

N ¼ N1 þ N0; and p = p0 ? p1. The quantities with sub-

scripts ‘‘0’’ represent the unperturbed or ‘‘zeroth-order’’

motion of the fluid, while the quantities with subscripts ‘‘1’’

represent a small perturbation about the zeroth-order

quantities (first-order or linearized quantities). Substituting

these expressions into Eqs. (1, 2, 3, 4) and in particular

example of RTI we consider the fluid is initially at rest (this

means that U~0 ¼ 0 and V~0 ¼ 0). Then the relevant line-

arization perturbation equations may be written from Eqs.

(1, 2, 3, 4) as

q0

oU~1

ot
¼ �r~p1 þ q1g~þ 2q0 U~1 xX~

� �
þ KN0 V~1 � U~1

� �
; ð5Þ

oq1

ot
þ r~ � q0U~1

� �
¼ 0; ð6Þ

mN0

oV~1

ot
¼ KN0 U~1�V~1

� �
; or s

o

ot
þ 1

� �
V~1 ¼ U~1; ð7Þ

oN1

ot
þ N0r~ � V~1 ¼ 0; or

oM1

ot
þr~ � V~1 ¼ 0; ð8Þ

Here s ¼ m
K

(relaxation time for the suspended dust

particles) and M1 ¼ N1

N0
. We now appeal to the fact that for

many situations of interest in ICF, unstable flow occurs at

velocities much smaller than the local sound speed. This

has the effect that accelerations in the flow are not strong

enough to change the density of a fluid element signifi-

cantly, so the fluid moves without compressing or

expanding. In such a situation we call the flow incom-

pressible. Provided that we are well away from shock

waves or centers of convergence, the assumption of

incompressible flow is often valid. To say that fluid ele-

ments move without changing density is to say that the

Lagrangian total derivative of density is zero, that is

dq
dt

¼ o

ot
þ U~ � r~

� �
q ¼ 0 ð9Þ

We also linearize this equation, where the first-order

quantities become

oq1

ot
þ ðU~1 � r~ Þ q0 ¼ 0: ð10Þ

Comparing this equation to Eq. (6), we can rewrite in

expanded form as

oq1

ot
þ U~1 � r~
� �

q0 þ q0r~ � U~1 ¼ 0; ð11Þ

we see that subtracting Eq. (10) from Eq. (11) yields

r~ � U~1 ¼ 0: ð12Þ

This is a consequence of the assumption of incom-

pressible flow. We can use either Eq. (10) or Eq. (12) to

replace the linearized continuity equation Eq. (6) under this

assumption. One can see that the set of Eqs. (5, 7, 8, 10)

and (12) is complete for describing the suspended dust

particles effects on the RTI of incompressible rotating

fluid.

Now, Let U~1 ¼ ðux1; uy1; uz1 Þ, and V1

!
¼ vx1 þð

vy1 vz1Þ. The fluid is arranged in horizontal strata, then q0 is
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a function of the vertical coordinate only [q0 = q0(z)], and

p0 = p0(z). So, the system of Eqs. (5, 7, 10 and 12, we take

curl of Eq. 5) become

o

ot
q0

ouz1

oy
� o

oz
ðq0 uy1Þ

� 	
 �
¼ �g

oq1

oy


 �

þ 2 q0

o

oy
½Xy ux1 � Xx uy1� �

o

oz
½q0 ðXx uz1 � Xz ux1Þ�


 �

þ o

oy
½KN0ðvz1 � uz1Þ� �

o

oz
½KN0ðvy1 � uy1Þ�


 �
ð13Þ

o

ot

o

oz
ðq0 ux1Þ � q0

ouz1

ox

� 	
 �
¼ g

oq1

ox


 �

� 2 q0

o

ox
½Xy ux1 � Xx uy1� �

o

oz
½q0 ðXy uz1 � Xz uy1Þ�


 �

� o

ox
½KN0ðvz1 � uz1Þ� �

o

oz
½KN0ðvx1 � ux1Þ�


 �
ð14Þ

q0

o

ot

ouy1

ox
� oux1

oy


 �

¼ 2q0 ðXx

o

ox
þ Xy

o

oy
Þuz1 � Xz ð

oux1

ox
þ ouy1

oy
Þ


 �

þ o

ox
½KN0ðvy1 � uy1Þ� �

o

oy
½KN0ðvx1 � ux1Þ�


 �
ð15Þ

oux1

o x
þ ouy1

o y
þ ouz1

o z
¼ 0; ð16Þ

oq1

o t
þ u1z

d q0

o z
¼ 0 ð17Þ

s
o

o t
þ 1


 �
vx1 ¼ ux1; s

o

o t
þ 1


 �
vy1

¼ uy1; s
o

o t
þ 1


 �
vz1 ¼ uz1; ð18Þ

Now, we assume that the perturbation in any physical

quantity is dependent on space coordinate (x, y, z) and time

t in the form

wðx; y; z; tÞ ¼ wðzÞ exp ikx x þ iky y þ n t
� �

ð19Þ

where kx, ky (k2 = kx
2 ? ky

2) are horizontal wave numbers

and n denotes the rate at which the system departs from the

equilibrium. Using expression (19) in the system of Eqs.

(13, 14, 15, 16, 17, 18), we have

n iq0kyuz1 � Dðq0uy1Þ
� 


¼ �iq1gky

þ 2 iq0ky½Xyux1 � Xxuy1� � D½q0Xxuz1 � Xzux1�
� 


þ iky½KN0ðvz1 � uz1Þ� � D½KN0ðvy1 � uy1Þ�
� 


ð20Þ

n Dðq0ux1Þ � iq0kxuz1f g ¼ iq1gkx

þ 2 D½q0ðXzuy1 � Xyuz1� � iq0kx½Xyux1 � Xxuy1�
� 


þ D½KN0ðvx1 � ux1Þ� � ikx½KN0ðvz1 � uz1Þ�f g ð21Þ

q0n ikxuy1 � ikyux1

� 

¼ 2q0 ðikxXx þ ikxXyÞuz1 � ikyðXzuy1 � Xyuz1

� 

þ ikx½KN0ðvy1 � uy1Þ� � iky½KN0ðvx1 � ux1Þ�
� 


ð22Þ

ikxux1 þ ikyuy1 þ Duz1 ¼ 0; ð23Þ

nq1 þ uz1

d q0

o z
¼ 0; ð24Þ

s n þ 1f g vx1 ¼ ux1; s n þ 1f g vy1

¼ uy1; s n þ 1f g vz1 ¼ uz1 : ð25Þ

Now, we eliminate some variables from the system of

Eqs. (20, 21, 22, 23, 24, 25) and get the following differ-

ential equation in uz1

n0 D q0Duz1ð Þ � k2q0uz1

� 

þ gk2

n
þ 2i X�


 �
Dq0ð Þ uz1

þ 4iq Xþ

n0 i Xþuz1 þ XzDuz1f g

þ 4Xz

n0 D q0 i Xþuz1 þ XzDuz1ð Þf g ¼ 0; ð26Þ

Xþ ¼ kxXx þ kyXy; X� ¼ kyXx � kxXy;

n0 ¼ n þ mN0n

q0ð1 þ n sÞ ; D ¼ d

dz
:

The instability for two layers

In this section we consider two incompressible fluids of

densities q1, q2. The fluids are acted upon by a general

rotation field. Moreover, the density is constant in each

region, i.e., we specialize to the case of constant densities,

which are defined as:

q ¼ q1; z\0;

q ¼ q2; z [ 0:
ð27Þ

For the case of constant density, Eq. (26) becomes

n
02 þ 4X2

z

n o
D2uz1 þ 8iXþXzDuz1

� k2n
02 þ 4ðXþÞ2

n o
uz1 ¼ 0; ð28Þ

The general solution of Eq. (28) in each region can

easily be found as

uz1 ¼ C expðq1zÞ; z\0;

uz1 ¼ �C expðq2zÞ; z [ 0;
ð29Þ

where C and �C are constants,

q1 ¼ 1

n
02 þ 4X2

z

�4i XþXz þ n
02k2ðn02 þ 4 X2

z Þ þ 4 n
02ðXþÞ2

h i1
2

( )

q2 ¼ �1

n
02 þ 4X2

z

4i XþXz þ n
02k2ðn02 þ 4 X2

z Þ þ 4 n
02ðXþÞ2

h i1
2

( )
:

ð30Þ

119 Page 4 of 11 J Theor Appl Phys (2014) 8:119

123



The boundary conditions which are to be satisfied at the

interface between the two fluids are

1. At the interface between the two fluids uz1 is contin-

uous at z = 0.

2. From Eq. (26), the jump condition at the interface

z = 0 is given as

n0 q0Duz1ð Þz [ 0 � q0Duz1ð Þz\0

� 


þ gk2

n
þ 2i X�


 �
q0ð Þz [ 0 � q0ð Þz\0

� 

uz1ð Þs

þ 4Xz

n0 q0 i Xþuz1 þ X z Duz1

� �� 	
z [ 0




� q0 i Xþuz1 þ X z Duz1

� �� 	
z\0

�
¼ 0; ð31Þ

Using the above boundary conditions and eliminating

the constants C and �C, the dispersion relation is given by

equation

n0k 1þ4
X2

z

n
02
þ Xþ2

n
02k2

� �� 	1
2

¼ q2�q1

q2þq1

� 	
gk2

n
þ2iX�

� 	
; ð32Þ

in the absence of horizontal component of the rotation

(Xx = Xy = 0 ? X? = X- = 0), and we put Xz = X,

the dispersion relation (32) becomes

n0n 1 þ 4X
n

02

� 	1
2

¼ gk
q2 � q1

q2 þ q1

� 	
ð33Þ

This equation is similar to Eq. (21), in the absence of

surface tension that has been derived by Sharma et al. [40].

In the case of slow rotating fluids to discuss the RTI and

stability we assume parametric limit 4
X2

z

n
02 þ Xþ2

n
02k2

� �
� 1.

Then the dispersion relation (32) takes the form

n0 k 1 þ 2
X2

z

n
02
þ Xþ2

n
02k2

� �� 	
¼ q2 � q1

q2 þ q1

� 	
gk2

n
þ 2i X�

� 	
;

ð34Þ

Substituting the expression of n
0

into Eq. (34) and by

rearranging the new equation, the dispersion relation is

given by

Dðn;kÞ ¼ s2 n4 þ 2s 1þ að Þ � s2A ð2iX�Þ
k


 �
n3

þ 1þ að Þ
2

þ2s2

k2
ðXþ2 þ k2X2

z Þ



� sA ð2iX�Þ 2þ að Þ
k

� s2 A gk

�
n2

þ 4s
k2

ðXþ2 þ k2X2
z Þ � sgk A 2þ að Þ �Að2iX�Þ 1þ að Þ

k


 �
n

þ 2

k2
ðXþ2 þ k2X2

z Þ � gkA 1þ að Þ ¼ 0; ð35Þ

where A ¼ q2�q1

q2þq1
is the Atwood number and a ¼ mN0

q2þq1
is the

mass concentration of suspended dust particles.

Again, in the absence of horizontal component of the

rotation Xx = Xy = 0 ? X? = X- = 0, and we put

Xz = X, the dispersion relation (35) becomes

Dðn; kÞ ¼ s2n4 þ 2sð1 þ aÞn3

þ ð1 þ aÞ2 þ 2s2X2 � Agk
n o

n2

þ 4sX2 � sgkAð2 þ aÞ
� 


n

þ 2X2 � gkAð1 þ aÞ ¼ 0; ð36Þ

This equation is similar to Eq. (23), in the absence of

surface tension that has been derived by Sharma et al. [40]

Now, one can see that the roots of Eq. (35) are complex,

which means that physically the perturbation will have an

oscillating behavior with respect to time. So, to discuss the

role of our selected parameters we suppose that the rate

between the horizontal components of rotation (Xx, Xy) and

horizontal wave numbers components (kx, ky) is equivalent

(i.e., Xx

Xy
¼ kx

ky
) and if we consider the wave number of

perturbation makes an angle h with respect to the x-axis

and the horizontal component of the angular velocity

makes an angle U with respect to the x-axis. Then (kx,

ky) = (k sinh, k cosh) (Xx, Xy) = (X sinU, X cosU) )
X? = kxXx ? kyXy = kX cos (h-U) and X- = kyXx-kx-

Xy = kX sin (h-U). This leads to kyXx-kxXy = X- = 0

(this means that the perturbation wave vector is parallel to

the horizontal component of rotation) ) h = U )? =

kX. Then the dispersion relation (35) becomes in the

formula

Dðn; kÞ ¼ s2n4 þ 2s 1 þ að Þn3

þ 1 þ að Þ2þ 2s2

k2
ðXþ2 þ k2X2

z Þ � s2 A gk


 �
n2

þ 4s
k2

ðXþ2 þ k2X2
z Þ � s gk A 2 þ að Þ


 �
n

þ 2

k2
ðXþ2 þ k2X2

z Þ � gkA 1 þ að Þ ¼ 0; ð37Þ

Introducing the relaxation frequency parameter f �s ¼ 1
s

of the suspended particles, the above equation becomes

Dðn; kÞ ¼ n4 þ 2f �s 1 þ að Þn3

þ f �
2

s 1 þ að Þ
2

þ 2

k2
ðXþ2 þ k2X2

z Þ � Agk


 �
n2

þ f �s
4

k2
ðXþ2 þ k2X2

z Þ � gk A 2 þ að Þ

 �

n

þ f �
2

s

2

k2
ðXþ2 þ k2X2

z Þ � gkA 1 þ að Þ

 �

¼ 0;

ð38Þ

This equation may have real positive roots, whereas the

expression X? = kxXx ? kyXy represents a measure of the

horizontal components of rotation effects on the rate of
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growth. Also, if the parameters’ problem (general rotation

and relaxation frequency of suspended dust particles) are

neglected, then we return to the classical case, where the

growth rate is given by n ¼
ffiffiffiffiffiffiffiffiffi
A gk

p
.

Stability discussion

To check up the behavior of the growth rate in (38)

ascribable to the relaxation frequency of suspended dust

particles and the general rotation we need to calculate the

derivative of the growth rate of unstable R–T mode n0 with

relaxation frequency of the suspended dust particles (fs
*)

and components of the rotation (Xz, X?) (i.e. on0

of �s
, on0

oXz
, on0

oXþ)

that will be given in the subsections (‘‘At X? = Xz = 0,

fs
*
= 0’’, ‘‘At Xz = 0, X? = 0, fs

*
= 0’’, ‘‘X?

= 0,

Xz = 0, fs
*
= 0’’, ‘‘At X?

= 0, Xz = 0, fs
*
= 0’’).

Through this subsections some numerical calculations are

presented in Figs. 1, 2, 3, 4, 5, 6, 7 and 8. The parameters

in Eq. (38) take the next units g = 9.8 km/s2 or

g = 0.98 % 1 km/s2, 1 B k B 10 km-1, growth rate

0 B n B 2.5 s -1, the horizontal and vertical components

of rotation are 0 B Xz B 2 s-1, 0 B Xx B 20 s-1, relaxa-

tion frequency of suspended dust particles 0� f �s ¼
1
s � 20km�1 s�1 , A = 0.5 kg-1 km-3 and a = 0.5 km-3.

At X? = Xz = 0, fs
*
= 0

This means that we discuss the role of relaxation frequency

of suspended dust particles in the absence of both vertical

and horizontal rotation components, where from Eq. (38)

we find

on0

of �s
¼ �

2 1 þ að Þ n3
0 þ 2f �s 1 þ að Þ

2

n2
0 � gk A 2 þ að Þ n0 þ 2f �s 1 þ að Þ

� �
4n3

0 þ 6f �s 1 þ að Þ n2
0 þ 2f �2

s 1 þ að Þ2

n0 � A gk 2n0 þ f �s 2 þ að Þ
� �
 � :

ð39Þ

From Eq. (39) on0

of �s
will be negative under the two

conditions

2 1 þ að Þ n3
0 þ 2f �s 1 þ að Þ

2

n2
0

n o
� gk A 2 þ að Þ n0 þ 2f �s 1 þ að Þ

� 

[ 0; ð40Þ

4n3
0 þ 6f �s ð1 þ aÞn2

0 þ 2f �
2

s ð1 þ aÞ2
n0

n o

� Agkf2n0 þ f �s ð2 þ aÞg[ 0; ð41Þ

or under the two conditions

2 1 þ að Þ n3
0 þ 2f �s 1 þ að Þ

2

n2
0


 �

� gk A 2 þ að Þ n 0 þ 2f �s 1 þ að Þ

 �

\0; ð42Þ

4n3
0 þ 6f �s ð1 þ aÞn2

0 þ 2f �
2

s ð1 þ aÞ2
n0

n o

� Agkf2n0 þ f �s ð2 þ aÞg\0; ð43Þ

In this case the relaxation frequency of suspended dust

particles has a stabilizing influence on the growth rate of

unstable configuration (see refs. [34, 40]), which (the sta-

bilizing influence) increases with the relaxation frequency

of suspended dust particles increasing. This case has been

plotted in Fig. 1, where the magnitude of the growth rate

decreases with relaxation frequency of suspended dust

particles increasing and these values decreases with wave

number decreasing. Also it observes that the magnitudes of

growth rate in the presence of relaxation frequency of

suspended dust particles are less than their counterpart in

the classical case (X? = Xz = 0, fs
* = 0).

For our suggested values of Fig. 1 (relaxation frequency

of suspended dust particles fs
*, X? = Xz = 0 and the values

of growth rate generated, that has been generated) both

conditions (40) and (41) have been satisfied as in Fig. 2a

and b, where the values of these conditions are positive and

these values increase with wave number increasing.

At Xz = 0, X? = 0, fs
*
= 0

This means that we discuss the role of vertical rotation

component in the presence of relaxation frequency of

suspended dust particles, where from Eq. (38) we see that

Fig. 1 The role of relaxation frequency of suspended dust particles

on the growth rate in the absence of both vertical and horizontal

rotation components (X? = Xz = 0), where the other parameters are

A = 0.5, a = 0.5
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on0

oXz

¼
�4Xz n2

0 þ 2n0f �s þ f �
2

s

h i

4n3
0 þ 6f �s 1þ að Þn2

0 þ f �
2

s 1þ að Þ
2

þ2X2
z

n o
2n0þ

4X2
z f �s � gk A 2n0 þ f �s 2þ að Þ

� 

2
4

3
5

ð44Þ

From Eq. (44), on0

oXz
will be negative under the condition

4n3
0 þ 6f �s 1 þ að Þ n2

0 þ f �
2

s 1 þ að Þ
2

þ2X2
z

n o
2n0

þ 4f �s X2
z

2
4

3
5

� gk A 2n0 þ f �s 2 þ að Þ
� 


[ 0; ð45Þ

This indicates that the growth rate of unstable R–T

mode is decreased with increase in the vertical component

of rotation. Then under the restriction (45), the vertical

component of rotation has a stabilizing influence with

relaxation frequency of suspended dust particles kept

constant. For the second time, this case is plotted in Fig 3,

where the growth rate is plotted against the vertical com-

ponents of rotation. It can be seen that the values of growth

rate decreases with increasing Xz, that is less than their

counterpart in the absence of Xz (classical case) and that

decreases with increasing k. Numerical, the condition (45)

clears in Fig. 4, where the counterpart values of Fig. 3 are

greater than zero and that decreases as k decreases

(a)

(b)

Fig. 2 The stability condition of a Eq. (40) and b Eq. (41)

Fig. 3 The role of vertical rotation components on the growth rate,

where the other parameters are fs
* = 0, X? = 0, A = 0.5, a = 0.5

Fig. 4 The stability condition of Eq. (45)
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X?
= 0, Xz = 0, fs

*
= 0

This means that we discuss the role of horizontal rotation

components in the presence of relaxation frequency of

suspended dust particles, where from Eq. (38) we have

on0

oXþ ¼
�4Xþ n2

0 þ 2n0f �s þ f �
2

s

h i

k2

4n3
0 þ 6f �s 1 þ að Þ n2

0 þ f �
2

s 1 þ að Þ
2

þ 2

k2
Xþ2


 �
2n0þ

4

k2
Xþ2

f �s � gkA 2n0 þ f �s 2 þ að Þ
� �

2
664

3
775
:

ð46Þ

From Eq. (46) on0

oXþ will be negative under the condition

4n3
0 þ 6f �s 1 þ að Þ n2

0 þ f �
2

s 1 þ að Þ
2

þ 2

k2
Xþ2


 �
2n0




þ 4

k2
Xþ2

f �s

�
� gk A 2n0 þ f �s 2 þ að Þ

� 

[ 0; ð47Þ

Again, this indicates that the growth rate of unstable R–T

mode is decreased with increase in the horizontal compo-

nent of rotation. This means that under the restriction (47),

the horizontal component of rotation have a stabilizing with

relaxation frequency of suspended dust particles kept con-

stant. This role holds in Fig. 5, where the values of growth

rate decreases with increasing of X? and the stability con-

dition (Eq. 47) clears in Fig. 6, where the values of condi-

tion (47) and that is counterpart of Fig. 5 are positive.

From Figs. (3) and (5) and if we compare between the

above results in ‘‘At Xz = 0, X? = 0, fs
*
= 0’’ and

‘‘X?
= 0, Xz = 0, fs

*
= 0’’, it notices that the influence of

vertical component of rotation is felt more than horizontal

component, where at k = 10, the vertical component of

rotation suppresses the instability completely at Xz & 2,

while for X? the complete stability happens at X? & 19.

The same behavior holds for both vertical and horizontal

components of rotation at k = 5, 1.

At X?
= 0, Xz = 0, fs

*
= 0

This means that we discuss the role of relaxation frequency

of suspended dust particles in the presence of both vertical

and horizontal rotation components, where from Eq. (38),

we find that

Fig. 5 The role of horizontal rotation components on the growth rate,

where the other parameters are fs
* = 0, Xz = 0, A = 0.5, a = 0.5

Fig. 6 The stability condition of Eq. (47)

on0

of �s
¼

�
2 1 þ að Þ n3

0 þ 2f �s 1 þ að Þ
2

n2
0 þ 4

k2
ðXþ2 þ k2X2

z Þ

 �

n0þ

4f �s
k2

ðXþ2 þ k2X2
z Þ

� 	
� gk A 2 þ að Þn0 þ 2 1 þ að Þ f �s

� �

8>>><
>>>:

9>>>=
>>>;

4n3
0 þ 6f �s 1 þ að Þ n2

0 þ 2 f �
2

s 1 þ að Þ
2

þ 2

k2
ðXþ2 þ k2X2

z Þ
� 	

n0þ

f �s
4

k2
ðXþ2 þ k2X2

z Þ
� 	

� A gk 2n0 þ f �s 2 þ að Þ
� �

8>>><
>>>:

9>>>=
>>>;

: ð48Þ
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Then on0

of �s
will be negative under the two conditions

2 1 þ að Þ n3
0 þ 2f �s 1 þ að Þ

2

n2
0 þ 4

k2
ðXþ2 þ k2X2

z Þ

 �

n0

þ 4f �s
k2

ðXþ2 þ k2X2
z Þ

� 	

8>>><
>>>:

9>>>=
>>>;

� gk A
2 þ að Þn0

þ 2 1 þ að Þ f �s

( )
[ 0; ð49Þ

4n3
0 þ 6f �s 1 þ að Þ n2

0 þ 2 f �
2

s 1 þ að Þ
2

þ 2

k2
ðXþ2 þ k2X2

z Þ
� 	

n0

þ 4f �s
k2

ðXþ2 þ k2X2
z Þ

8>><
>>:

9>>=
>>;

� A gk 2n0 þ f �s 2 þ að Þ
� 


[ 0: ð50Þ

In this case the growth rate of unstable R–T mode is

decreased with increase in relaxation frequency of sus-

pended dust particles in the presence of general rotation.

This means that under the conditions (49) and (50) the

relaxation frequency of suspended dust particles has a sta-

bilizing influence. Also, in the presence of general rotation,

the relaxation frequency of suspended dust particles has the

same stabilizing role under the two conditions:

2 1þ að Þn3
0 þ 2f �s 1þ að Þ

2

n2
0 þ

4

k2
ðXþ2þ

k2X2
z Þ

8><
>:

9>=
>;n0

þ 4f �s
k2

ðXþ2 þ k2X2
z Þ

� 	

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

� gk A
2þ að Þn0

þ 2 1þ að Þ f �s

( )
\0; ð51Þ

and

4n3
0 þ 6f �s ð1þ aÞn2

0 þ 2 f �
2

s ð1þ aÞ2 þ 2

k2
ðXþ2 þ k2X2

z Þ
� 	

n0




þ 4f �s
k2

ðXþ2 þ k2X2
z Þ
�
� Agk 2n0 þ f �s ð2þ aÞ

� 

\0: ð52Þ

In the general case, the role of relaxation frequency of

suspended dust particles in the presence of general rotation

is plotted in Fig. 7, where if we compare between the

values of growth rate in Figs. 1 and 7. It can be seen that

the values of growth rate in the presence of general rotation

(Fig. 7) are less than their counterpart in the absence of

general rotation (Fig. 1). The stability role in the general

case stratifies under the two conditions (49) and (50). They

are shown in Fig. 8a and b, where the values of Eqs. (49)

and (50) and that counterpart of values of growth rate of

Fig. 7 are positive.

Fig. 7 The role of relaxation frequency of suspended dust particles

on the growth rate in the presence of both vertical and horizontal

rotation components (X? = Xz = 0.435), where the other parameters

are A = 0.5, a = 0.5

(a)

(b)

Fig. 8 The stability condition of a Eq. (49) and b Eq. (50)
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Conclusion

Finally, we have presented the analytical results of the RTI

in the presence of small rotation (vertical and horizontal

rotation components) and suspended dust particles of two

incompressible fluids. The dispersion relation is derived as

a function of the physical parameters of the system con-

sidered in Eq. (35) (complex formula). A real formula that

happens at the rate between horizontal components of

rotation (Xx, Xy) and horizontal wave number components

(kx, ky) given in the form ( Xx

Xy
¼ kx

ky
), is considered in

Eq. (38). According to Eq. (38) and at q2 [ q1 the condi-

tion of RTI can be obtained easily from the constant term

and it is given as ðXþ2 þ k2X2
z Þ\ 1

2
gk3 A 1 þ að Þ , where

the system remains unstable for all the values of rotation

smaller than this value. Some special cases from Eq. (38)

that isolate the effect of various parameters on the growth

rate of the RTI are discussed in (‘‘At X? = Xz = 0,

fs
*
= 0’’, ‘‘At Xz = 0, X? = 0, fs

*
= 0’’, ‘‘X?

= 0,

Xz = 0, fs
*
= 0’’, ‘‘At X?

= 0, Xz = 0, fs
*
= 0’’). The

numerical calculations have shown that both Xz and X?

have a critical strength to suppress the instability com-

pletely. The stabilizing role of vertical component of

rotation is greater than the stabilizing role of horizontal

component. The system was more stable in the presence of

both suspended dust particles, vertical and horizontal

rotation components. There are two stability conditions in

the presence of suspended dust particles, while in the

presence of rotation only (vertical or horizontal compo-

nent) there is one stability condition.
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