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Abstract

Rational solutions to the KdV are constructed from the finite gap so-

lutions of the KdV equation given in terms of abelian functions. For this

we use a previous result giving the connection between Riemann theta

functions and Fredholm determinants and also wronskians.

By choosing the parameters of these solutions according to a number in-

tended to move towards zero, we obtain rational solutions when this num-

ber tends towards zero. So, we construct a hierarchy of rational solutions

depending on multi real parameters and we give explicitly expressions for

the first orders.

1 Introduction

Korteweg and de Vries [10] introduced the following equation

ut = 6uux − uxxx, (1)

where the subscripts x and t denote partial derivatives, for the first time in 1895
to describe the propagation of waves with weak dispersion.
A lot of studies have been realized for this equation. A method of resolution
was proposed by Gardner et al. [6] in 1967. Solutions were constructed with the
bilinear method [7] by Hirota in 1971; Its and Matveev constructed solutions in
terms of Riemann theta functions [8] in 1975. Other works can be quoted: for
example Airault et al. in 1977 [1], Freeman and Nimmo in 1984 [3], Ma in 2004
[12].

We use a recent paper [5], in which we have degenerated the solutions to this
KdV equation given in terms of Riemann theta functions. We have constructed
solutions in terms of Fredholm determinants and wronskians. From this repre-
sentations we construct rational solutions to the KdV equation by degenerating
these solutions when parameters are chosen to tend to 0.
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2 Solutions to the KdV equation in terms of

Fredholm determinants and wronskians

2.1 Solutions to the KdV equation in terms of Fredholm

determinants

We briefly recall the approach in terms of Riemann theta functions given in [8]
in 1975. We consider the Riemann surface Γ of the algebraic curve defined by

ω2 =

2g+1
∏

j=1

(z − Ej),

with Ej 6= Ek, j 6= k. Let D be some divisor D =
∑g

j=1 Pj , Pj ∈ Γ, then the
finite gap solution of the KdV equation

ut = 6uux − uxxx (2)

can be written in the form [8]

u(x, t) = −2∂2
x [ln θ(xg + tv + l)] + C. (3)

In (3), θ is the Riemann function defined by

θ(z) =
∑

k∈Zg

exp{πi(Bk|k) + 2πi(k|z)}, (4)

constructed from the matrix of the B-periods of the surface Γ.
In [5], we have realized the degeneracy of these solutions following the ideas
exposed for example in [2]). For Ej reals such that Em < Ej if m < j, we have
evaluated the limits of all objects in formula (3) when E2m, E2m+1 tends to
−αm, −αm = −κ2

m, κm > 0, for 1 ≤ m ≤ g, and E1 tends to 0.
All the details of the degeneracy of the components of the solution can be found
in [5].
Different representations in terms of Fredhholm determinants have been given,
in particular, we got the following representation of the solutions to the KdV
equation

Theorem 2.1 The function u defined by

u(x, t) = −2∂2
x ln(det(I +D)), (5)

with D the matrix defined by D = (djk)1≤j,k≤m

djk = (−1)j exp
[

2(κjx− 4κ3
j t+ κjkj)

]

∏

l 6=j

∣

∣

∣

∣

κl + κk

κl − κj

∣

∣

∣

∣

, (6)

and κj, kj arbitrary real parameters, is a solution to the KdV equation (1).

Proof: see [5].
2
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2.2 Solutions to the KdV equation in terms of wronskians

In [5], we have given a connection between Fredholm determinants and wron-
skians. We use here these results.
We consider the following functions

φa
j (x) = sinh(κjx− 4κ3

j t+ κjkj +
1

2
ln(

z + iκj

z − iκj

)) = sinh(θaj ),

φb
j(x) = sinh(κjx− 4κ3

j t+ κjkj) = sinh(θbj),
(7)

with kj , Kj arbitrary parameters.
W = W (φj , . . . , φN )(x, t) is the classical wronskianW = det[(∂j−1

x φi)i, j∈[1,...,N ]].
We consider the matrix D = (djk)j, k∈[1,...,N ] defined in (6)

djk = (−1)j exp
[

2(κjx− 4κ3
j t+ κjkj)

]

∏

l 6=j

∣

∣

∣

∣

κl + κk

κl − κj

∣

∣

∣

∣

.

Then we recall the result proven in [5]

Theorem 2.2

det(I +D) =
2N (−1)

N(N+1)
2 exp(

∑N

j=1 θ
b
j)

∏N

j=2

∏j−1
i=1 (κj − κi)

W (φb
1, . . . , φ

b
N )(x, t) (8)

Proof: see [5].
2

2.3 Some examples

Example 2.1 Solution of order 1: the function u defined by

u(x, t) = 8
e−2K1(4 tK1

2−x−k1)K1
2

(

−1 + e−2K1(4 tK1
2−x−k1)

)2 .

is a solution to the KdV equation (1).
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Figure 1. Solution of order 1 to KdV, on the left for K1 = 0, 1, k1 = 0, 1; in
the center for K1 = 0, 5, k1 = 0, 5; on the right for K1 = 1, k1 = 1.

Example 2.2 Solution of order 2: the function u defined by

u(x, t) =
nu(x, t)

du(x, t)

nu(x, t) = 16 e2K1x−8K1
3t+2K1k1+2K2x−8K2

3t+2K2k2K1
4−8 e−2K1(4 tK1

2−x−k1)K1
4−

8K1
4e2K1x−8K1

3t+2K1k1+4K2x−16K2
3t+4K2k2 + 8 e−2K2(4 tK2

2−x−k2)K2
2K1

2 +
8K1

2e−16K1
3t+4K1x+4K1k1+2K2x−8K2

3t+2K2k2K2
2

− 32K1
2e2K1x−8K1

3t+2K1k1+2K2x−8K2
3t+2K2k2K2

2

+8K1
2e2K1x−8K1

3t+2K1k1+4K2x−16K2
3t+4K2k2K2

2+8 e−2K1(4 tK1
2−x−k1)K1

2K2
2+

16 e2K1x−8K1
3t+2K1k1+2K2x−8K2

3t+2K2k2K2
4 − 8 e−2K2(4 tK2

2−x−k2)K2
4

− 8 e−16K1
3t+4K1x+4K1k1+2K2x−8K2

3t+2K2k2K2
4

and
du(x, t) = (−e−2K2(4 tK2

2−x−k2)K1 +K1 + e−2K1(4 tK1
2−x−k1)K1

−K1e
2K1x−8K1

3t+2K1k1+2K2x−8K2
3t+2K2k2+e2K1x−8K1

3t+2K1k1+2K2x−8K2
3t+2K2k2K2−

K2 − e−2K2(4 tK2
2−x−k2)K2 + e−2K1(4 tK1

2−x−k1)K2)
2

is a solution to the KdV equation (1)

Figure 2. Solution of order 1 to KdV, on the left for K1 = 0, 5, K2 = 0,
k1 = 0, 5, k2 = 0; in the center for K1 = 0, K2 = 0, 5, k1 = 0, k2 = 0, 5; on the

right for K1 = 1, K2 = 0, k1 = 1, k2 = 0.

We could go on for greater orders, but even in the simple case of order 3, the
explicit expression of the solution to the KdV equation takes more than 5 pages.
For this reason, we cannot give it here.

3 Rational solutions to the KdV equation

Using Riemanns theta functions, the solutions to the KdV equation were con-
structed in terms of Fredholm and wronskiens determinants. By degenerating
these solutions, we obtain rational solutions that are simpler and more suitable
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for use in physics. The simplest possible solutions for small orders have been
built.
To obtain rational solutions to the KdV equation, we choose K(j) and kj as
functions of e for each integer j and we perform a limit when the parameter e
tends to 0.

3.1 Rational solutions as a limit case

We get the following result :

Theorem 3.1 Let D̃ be the matrix defined by

d̃jk = (−1)j exp
[

2(−4κ̃3
j t+ κ̃j k̃j)

]

∏

l 6=j

∣

∣

∣

∣

κ̃l + κ̃k

κ̃l − κ̃j

∣

∣

∣

∣

, (9)

then the function u defined by

u(x, t) = −2 lim
e→0

∂2
x ln(det(I + D̃)), (10)

is a rational solution to the KdV equation (1)

ut = 6uux − uxxx (11)

Proof : It is sufficient to perform a passage to the limit when e tends to 0, it
is an obvious consequence of the previous result.
2

So a hierarchy of rational solutions to the KdV equation depending on the
integer N is obtained.
In the following we give some examples of rational solutions.

3.2 First order rational solutions

We replace K1 by K1e and choose k1 independent of e. We have the following
result at order N = 1:

Proposition 3.1 The function u defined by

u(x) =
2

x2 + 2k1x+ k1
2 (12)

is a solution to the KdV equation (1).
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Figure 3. Rational solution of order 1 to KdV, on the left for k1 = 1; in the
center for k1 = 10; on the right for k1 = −10.

3.3 Second order rational solutions

Here we replace Kj by Kje and kj by kje
2. Then we get:

Proposition 3.2 The function u defined by

u(x) =
nu(x, t)

du(x, t)
(13)

with
nu(x, t) = −6x(24K1

4t−6K1
2k1−48K2

2K1
2t+6K2

2k1+24K2
4t−6K2

2k2+
6K1

2k2 −K1
4x3 + 2K2

2K1
2x3 −K2

4x3)
and
du(x, t) = 72K1

2tk2−48K2
2K1

2tx3−6K1
2k1x

3+72K2
2k1t−18 k1k2+6K2

2k1x
3+

6K1
2x3k2 − 72K2

2tk2 + 24K2
4tx3 − 6K2

2k2x
3 − 72K1

2tk1 + 24K1
4tx3 −

288K2
2K1

2t2 + 144K1
4t2 + 9 k1

2 +K1
4x6 − 2K2

2K1
2x6 + 144K2

4t2 + 9 k2
2 +

K2
4x6

is a solution to the KdV equation (1).

The structure of the solutions being very insensitive to the coefficients K, we
choose to take Kj = j in all the following figures.

6



Figure 4. Rational solution of order 1 to KdV, on the left for k1 = 0, k2 = 0;
in the center for k1 = 10, k2 = 10; on the right for k1 = 100, k2 = 100.

3.4 Rational solutions of order three

We replace Kj by Kje and kj by kje. Then we get the following rational
solutions given by :

Proposition 3.3 The function u defined by

u(x) =
nu(x, t)

du(x, t)
,

with
nu(x, t) = −6x(24K1

4t−6K1
2k1−48K2

2K1
2t+6K2

2k1+24K2
4t−6K2

2k2+
6K1

2k2 −K1
4x3 + 2K2

2K1
2x3 −K2

4x3)
and
du(x, t) = 72K1

2tk2−48K2
2K1

2tx3−6K1
2k1x

3+72K2
2k1t−18 k1k2+6K2

2k1x
3+

6K1
2x3k2 − 72K2

2tk2 + 24K2
4tx3 − 6K2

2k2x
3 − 72K1

2tk1 + 24K1
4tx3 −

288K2
2K1

2t2 + 144K1
4t2 + 9 k1

2 +K1
4x6 − 2K2

2K1
2x6 + 144K2

4t2 + 9 k2
2 +

K2
4x6

is a solution to the KdV equation (1).

In this case the solution has the following structure: the numerator is polyno-
mial of degree 0 in x, 0 in t; the denominator is polynomial of degree 2 in x, 0 in t.

The shape of the solutions depending very little on the K coefficients, we choose
to take Kj = j in all these following figures.
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Figure 5. Rational solution of order 1 to KdV, on the left for k1 = 0, k2 = 2,
k3 = 3; in the center for k1 = 1, k2 = 0, k3 = 3; on the right for k1 = 10,

k2 = 20, k3 = 30.

3.5 Quasi rational solutions of order four

We replace Kj by Kje and lj by lje
2. We get the following rational solutions

given by :

Proposition 3.4 The function u defined by

u(x) =
nu(x, t)

du(x, t)
,

with
nu(x, t) = −6 (K1

4K2
2k3 −K1

4K2
2k4 −K1

4K3
2k2 +K1

4K3
2k4 +K1

4K4
2k2 −

K1
4K4

2k3 − K1
2K2

4k3 + K1
2K2

4k4 + K1
2K3

4k2 − K1
2K3

4k4 − K1
2K4

4k2 +
K1

2K4
4k3 + K2

4K3
2k1 − K2

4K3
2k4 − K2

4K4
2k1 + K2

4K4
2k3 − K2

2K3
4k1 +

K2
2K3

4k4 + K2
2K4

4k1 − K2
2K4

4k3 + K3
4K4

2k1 − K3
4K4

2k2 − K4
4K3

2k1 +
K4

4K3
2k2)x(−x3K1

4K2
2k3+x3K1

4K2
2k4+x3K1

4K3
2k2−x3K1

4K3
2k4−x3K1

4K4
2k2+

x3K1
4K4

2k3 + x3K1
2K2

4k3 − x3K1
2K2

4k4 − x3K1
2K3

4k2 + x3K1
2K3

4k4 +
x3K1

2K4
4k2 − x3K1

2K4
4k3 − x3K2

4K3
2k1 + x3K2

4K3
2k4 + x3K2

4K4
2k1 −

x3K2
4K4

2k3 + x3K2
2K3

4k1 − x3K2
2K3

4k4 − x3K2
2K4

4k1 + x3K2
2K4

4k3 −
x3K4

2K3
4k1 + x3K4

2K3
4k2 + x3K4

4K3
2k1 − x3K4

4K3
2k2 + 24 tK1

4K2
2k3 −

24 tK1
4K2

2k4−24 tK1
4K3

2k2+24 tK1
4K3

2k4+24 tK1
4K4

2k2−24 tK1
4K4

2k3−
24K1

2tK2
4k3+24K1

2tK2
4k4+24K1

2tK3
4k2−24K1

2tK3
4k4−24K1

2tK4
4k2+

24K1
2tK4

4k3+24K2
4tK3

2k1−24 tK2
4K3

2k4−24K2
4tK4

2k1+24 tK2
4K4

2k3−
24 tK2

2K3
4k1+24K2

2tK3
4k4+24 tK2

2K4
4k1−24K2

2tK4
4k3+24K3

4tK4
2k1−

24K3
4tK4

2k2−24 tK4
4K3

2k1+24 tK4
4K3

2k2−6K1
2K2

2k1k3+6K1
2K2

2k1k4+
6K1

2K2
2k3k2−6K1

2K2
2k4k2+6K1

2K3
2k2k1−6K1

2K3
2k1k4−6K1

2K3
2k3k2+

6K1
2K3

2k3k4−6K1
2K4

2k2k1+6K1
2K4

2k1k3+6K1
2K4

2k4k2−6K1
2K4

2k3k4−
6K2

2K3
2k2k1+6K2

2K3
2k1k3+6K2

2K3
2k4k2−6K2

2K3
2k3k4+6K2

2K4
2k2k1−

6K2
2K4

2k1k4−6K2
2K4

2k3k2+6K2
2K4

2k3k4−6K3
2K4

2k1k3+6K3
2K4

2k1k4+
6K3

2K4
2k2k3 − 6K3

2K4
2k2k4)
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du(x, t) = (x3K1
4K2

2k3−x3K1
4K2

2k4−x3K1
4K3

2k2+x3K1
4K3

2k4+x3K1
4K4

2k2−
x3K1

4K4
2k3 − x3K1

2K2
4k3 + x3K1

2K2
4k4 + x3K1

2K3
4k2 − x3K1

2K3
4k4 −

x3K1
2K4

4k2 + x3K1
2K4

4k3 + x3K2
4K3

2k1 − x3K2
4K3

2k4 − x3K2
4K4

2k1 +
x3K2

4K4
2k3 − x3K2

2K3
4k1 + x3K2

2K3
4k4 + x3K2

2K4
4k1 − x3K2

2K4
4k3 +

x3K4
2K3

4k1 − x3K4
2K3

4k2 − x3K4
4K3

2k1 + x3K4
4K3

2k2 + 12 tK1
4K2

2k3 −
12 tK1

4K2
2k4−12 tK1

4K3
2k2+12 tK1

4K3
2k4+12 tK1

4K4
2k2−12 tK1

4K4
2k3−

12K1
2tK2

4k3+12K1
2tK2

4k4+12K1
2tK3

4k2−12K1
2tK3

4k4−12K1
2tK4

4k2+
12K1

2tK4
4k3+12K2

4tK3
2k1−12 tK2

4K3
2k4−12K2

4tK4
2k1+12 tK2

4K4
2k3−

12 tK2
2K3

4k1+12K2
2tK3

4k4+12 tK2
2K4

4k1−12K2
2tK4

4k3+12K3
4tK4

2k1−
12K3

4tK4
2k2−12 tK4

4K3
2k1+12 tK4

4K3
2k2−3K1

2K2
2k1k3+3K1

2K2
2k1k4+

3K1
2K2

2k3k2−3K1
2K2

2k4k2+3K1
2K3

2k2k1−3K1
2K3

2k1k4−3K1
2K3

2k3k2+
3K1

2K3
2k3k4−3K1

2K4
2k2k1+3K1

2K4
2k1k3+3K1

2K4
2k4k2−3K1

2K4
2k3k4−

3K2
2K3

2k2k1+3K2
2K3

2k1k3+3K2
2K3

2k4k2−3K2
2K3

2k3k4+3K2
2K4

2k2k1−
3K2

2K4
2k1k4−3K2

2K4
2k3k2+3K2

2K4
2k3k4−3K3

2K4
2k1k3+3K3

2K4
2k1k4+

3K3
2K4

2k2k3 − 3K3
2K4

2k2k4)
2

is a solution to the KdV equation (1).

In this case, the solution to the KdV equation has the following structure : the
numerator is a polynomial of degree 4 in x, 1 in t; the denominator is a polyno-
mial of degree 6 in x, 2 in t; the solution depends on six arbitrary parameters
kj and Kj for 1 ≤ j ≤ 3.

The structure of the solutions depending very little on the K coefficients, we
choose to take Kj = j in all the following figures.

Figure 6. Rational solution of order 1 to KdV, on the left for k1 = 0, k2 = 2,
k3 = 3, k4 = 4; in the center for k1 = 10, k2 = 0, k3 = 0, k4 = 0; on the right

for k1 = 10, k2 = 0, k3 = 30, k4 = 0.

These simple solutions could be used in various fields, including in particular
physics. These solutions are singular. These solutions are new and different
from the previous ones built by the author [5, 14, 15]. For example, in this
paper, in the case of order 3, the denominator of the solution is a polynomial
od degree 6 in x and 2 in t; in [5], the denominator of the solution of order 3 is
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a polynomial of degree 12 in x, 4 in t; in [14], the denominator of the solution
of order 3 is a polynomial of degree 12 in x, 4 in t different from this of [5]; in
[15], the denominator of the solution of order 3 is a polynomial of degree 12 in
x, 4 in t different from the previous ones.
I must mention the article [16] in connection with my research which deals with
equations such as the KdV equation and the representation of solutions as sum
of solitons, and also the relationship of these solutions with Riemann’s theta
functions in particular.

4 Conclusion

From the degenerate θ solutions to the KdV equation expressed in terms of
Fredholm determinants or wronskians, we succeeded to get rational solutions
to the KdV equation. So we obtain an infinite hierarchy of multi-parametric
families of rational solutions to the KdV equation as a quotient of a polynomials
depending on real parameters.
The quasi-rational solutions to the KdV equation were obtained by the passage
to the limit when one of the parameters tends towards zero. These solutions are
not obtained uniformly as in the construction of the solutions for example to the
non-linear Schrödinger equation [4]. In the quasi-rational solutions constructed,
the parameters were chosen in such a way as to obtain quasi-rational solutions
of maximum degree in x and in t. It would be relevant to continue this work for
higher orders and to study the structure of polynomials defining these solutions.
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