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Abstract
We used standard Monte Carlo simulations to investigate the magnetic properties of a spin-1 Ising multilayer
system composed of two non-equivalent planes A and B, where B being site-diluted. Antiferromagnetic interlayer
and ferromagnetic intralayer spin couplings have been considered. Our calculations indicated the occurrence of
a compensation phenomenon where the magnetization vanishes before the critical temperature. The effects of
various model parameters on the system magnetic properties have been examined in detail and presented in
the form of phase diagrams. The results bore some resemblance with those reported in some previous works
on systems with or without site-dilution. Depending on values of the spin concentration parameterP the model
displayed first- and second-order phase boundaries with the existence of a tricritical point.
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1. Introduction

One of the main research subjects in recent years, in the field
of condensed matter and statistical mechanics, is the study of
the magnetic properties of thin magnetic films with a multi-
layer structure [1]. As a result, magnetic multilayers present
an extremely useful and wide range of magnetoelectronic
phenomena, notably magnetoresistance, spin transfer torque,
and interlayer exchange coupling [2]. In general, magnetic
multilayers comprise alternating stacks of ferromagnetic and
non-ferromagnetic spacer layers. Typical thickness of an in-
dividual layer varies from a few atomic layers (AL) to a few
tens of AL. Usually, magnetic layers are composed of ele-
mental metallic ferromagnets (Fe, Co, Ni) or alloys of them (
for example, permalloy). The spacer layers may be made of
any transition or noble metal; they may be paramagnetic (Cu,
Ag, Au, Ru, Pd, V, etc.) or antiferromagnetic (Cr, Mn) [3].
On the other hand, multilayer magnetic systems consisting
of alternating layers of different magnetic materials are of
high importance due to their novel and even useful proper-
ties [4–8]. Furthermore, when a multilayer system consists of
two materials with different interactions, for example, antifer-
romagnetic and ferromagnetic, rather unusual and interesting
phase diagrams can result [5].

The investigation of ferrimagnetic materials has received con-
siderable interest in recent decades, particularly because a
number of phenomena related to these materials have great
potential for technological applications [9–11]. In addition to
these features, the presence of a temperature compensation
is an interesting phenomenon of such layered materials. The
compensation temperature (Tcomp) is a temperature below the
critical one, for which the total magnetization is zero [12],
even if the magnetization of the sublattice is not zero. In
mixed spin systems, the compensation phenomenon is usually
investigated. This phenomenon has been examined, espe-
cially by mean-field theory on a square [13] and hexagonal
lattices [14] and by Monte Carlo simulations on a square lat-
tice [15–17] in the mixed spin-3/2 and spin-5/2 Ising model.
Certain single-spin systems, like layered magnets consist-
ing of stacked nonequivalent ferromagnetic planes, also have
been used successfully to model ferrimagnetics. A bilayer
Ising system with spin-1/2 and no dilution has been exam-
ined via transfer matrix (TM) [18, 19], renormalization group
(RG) [20–22], mean-field approximation (MFA) [20], and
Monte Carlo (MC) simulations [20–23].
It has also been implemented in the pair approximation (PA)
to investigate related systems such as Ising-Heisenberg bilay-
ers [24,25] and multilayers [24] with spin-1/2 and no dilution.
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While site dilution is a crucial ingredient for the occurrence
of a compensation point in a single spin system with an even

Figure 1. A schematic representation of the multilayer
systems. The intralayer exchange integrals for two adjacent
atoms in the same layer are JAA > 0 (A layer) and JBB > 0 (B
layer). The intralayer exchange integral is JAB < 0.

number of layers, the compensation effect will only be foundin
very specific conditions even in diluted systems, as verified
by PA calculations for the Ising-Heisenberg bilayer [26] and
multilayer [27], and by the Monte Carlo method for the Ising
bilayer [28] and multilayer [29]. Examples of the realization
and research of such bilayer [30], trilayer [31, 32] and mul-
tilayer [33–37] systems can be found in recent experimental
studies. Regarding ferromagnetic bilayers with antiferromag-
netic couplings, there is very little theoretical work dealing
with this problem [38–41] or with a similar case of multi-
layers [42, 43]. The properties of some more complicated
multilayer structures were also investigated [44–46].
Recently, there has been an interest in Monte Carlo simulation,
of the effect of Ruderman-Kittel-Kasuya-Yosida (RKKY) in-
teraction and the influence of the four-spin interaction J4, on
the multilayer transition and magnetic properties of a spin-1/2
Ashkin Teller model [47], and on the critical behaviours of
thin magnetic Ashkin Teller films at the special point [48, 49].
In the latest years, particular attention has been given to the
theoretical and experimental study of higher order spin cou-
plings in Ising models [50]. The spin-1 Ising model in the pres-
ence of a crystal field, called the Blume-Capel (BC) model, is
one of the most studied higher spin Ising models in statistical
physics. This model has been widely explored, not only due
to the fundamental theoretical interest arising from the rich
phase diagram it provides, but also due to the fact that variants
and extensions of the model have gained application in the
description of ternary fluids [51], solid-liquid-gas mixtures
and binary fluids [52, 53], microemulsions [54, 55], ordering
in semiconducting alloys [56] and electron conduction mod-
els [57].
In this paper, we focus on the type of multilayer systems
[27,29] with site dilution, where dilution is a necessary condi-
tion for the presence of a non-zero compensation temperature.
No studies to the best of our knowledge have yet been per-
formed on multilayer systems with site dilution in the spin-1

Ising model (Blume-Capel (BC) model). To this end, we
present a study on the magnetic properties of a Blume-Capel
system consisting of two types of non-equivalent planes, A
and B, alternately stacked. One of the planes is randomly
diluted, under the effect of the crystal field D. All intra-layer
interactions are ferromagnetic, whereas inter-layer interac-
tions are antiferromagnetic. Our objective is to determine
the conditions for the occurrence of the compensation effect
and the contribution of each parameter to the appearance of
this effect. As a result, we carried out this study with the
help of a Monte Carlo simulation based on the Metropolis
algorithm [58]. In Sec. 2, we introduce our multilayer model,
write down its Blume-Capel Hamiltonian, and describe the
simulation method. Next, we present our results and discus-
sion in Sec. 3. And finally, the conclusion is presented in
Sec.4.

2. Model and simulations method
We investigate the multilayer system, in which the spins are
located at the sites of simple cubic (sc) crystalline lattices.
The system is composed of non-equivalent parallel monolay-
ers (A and B) that are stacked alternately (see Figure 1). The
A-planes are made up exclusively of atoms of type A, whereas
the B-planes contain B-type atoms and non-magnetic impuri-
ties. Our system is defined by the conventional Blume-Capel
Hamiltonian [59, 60]:

−βH =+Σ<i∈A, j∈A>KAASiS j +Σ<i∈A, j∈B>KABSiS jε j (1)

+Σ<i∈B, j∈B>KBBSiS jεiε j +βDΣi∈AS2
i +βDΣ j∈BS2

j ε j

where:
• < i ∈ A, j ∈ A > and < i ∈ B, j ∈ B > represent the sum of
all pairs of closest sites in the same layer.
• < i ∈ A, j ∈ B > are located on the closest pairs of sites in
the neighboring layers.
• Si is the spin variables taking the values ±1,0.
• β = 1/KBT , T is the temperature and kB is the Boltzmann
constant, kB = 1 for the sake of simplicity.
• The couplings are Kγτ = βJγτ where γ = A,B andτ = A,B
with KAA > 0 for an AA pair, KBB > 0 for a BB pair and
KAB < 0 for and AB pair.
• The corresponding exchange integrals (see Fig. 1) are pre-
sented by: Jγτ = β−1Kγτ , where γ = A,B and τ = A,B.
• JAA and JBB designate the intralayer nearest-neighbor bilin-
ear exchange coupling parameters.
• JAB: is the interlayer bilinear interaction of nearest-neighbor
spins between the layers.
• D: represents the crystal field.
The site occupation operators εi are uncorrelated, quenched,

random variables that assume the values εi = 1 with proba-
bility P(spin concentration) or εi = 0 with probability 1−P
(spin dilution, or impurity concentration).
To simulate the Hamiltonian (1), we performed the Metropo-
lis algorithm [58] for the Monte Carlo simulation, on cubic
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Figure 2. The magnetic susceptibility χtot as a function of the
dimensionless temperature kBT/JBB, for JAA/JBB = 0.80,
JAB/JBB=-0.5, P = 0.60, for the value of the crystal field
D/JBB = 1.0, and linear lattice sizes L ranging from 10 to 60.
The error bars are not shown, as they are smaller than the
symbols.

lattices of size L3 with periodic boundary conditions. We ran
simulations for linear sizes L from 10 to 60 and for a variety
of values of Hamiltonian parameters: 0.0 < JAA/JBB ≤ 1.0,
−1.0 ≤ JAB/JBB < 0.0 and 0.0 < P ≤ 1.0.
For each set of values chosen for the above parameters, we
ran simulations for a range of temperatures near the critical
point or the compensation point. Our simulations ran typically
from 106 to 3×106 MC steps. We discarded up to 105 steps
to account for the equilibrium. When running Monte Carlo
simulations, we compute some observables such as the dimen-
sionless extensive energy E ≡ H/JBB, the magnetizations of
A-type atoms and B-type atoms:

E =− ∑
<iεA, jεA>

(
JAA

JBB
)SiS j − ∑

<iεA, jεB>
(

JAB

JBB
)SiS jε j (2)

− ∑
<iεB, jεB>

SiS jεiε j −
D

JBB
∑
iεA

S2
i −

D
JBB

∑
jεB

S2
j ε j

mA =
1

NA
ΣiεASi (3)

mB =
1

NB
ΣiεBS jε j (4)

Where NA = L3/2 is the total number of A-type atoms in
the system and NB = pL3/2 is the number of B-type atoms.
Then, the total magnetization of the system, and the magnetic
susceptibilities are given respectively by:

mtot =
1
2
(mA + pmB) (5)

Figure 3. Total susceptibility χtot as a function of the
dimensionless temperature kBT/JBB, for JAA/JBB = 0.80,
JAB/JBB=-0.5, P = 0.60, for the value of the crystal field
D/JBB = 3.0, and linear lattice sizes L ranging from 10 to 60.
The error bars are not shown, as they are smaller than the
symbols.

χτ = Nτ K(< m2
τ >−< |mτ |>2) (6)

Where < ... > denotes the thermal average for a single dis-
order configuration, while we shall designate the subsequent
average over disorder configurations of < ... > as < ... >,
K = JBB(kBT )−1 represents the inverse dimensionless tem-
perature, and τ = A,B, tot. The total number of atoms in the
system is: Ntot = NA +NB. The errors related to magneti-
zation and susceptibilities were calculated by the jackknife
method [61].

3. Results and discussion
We carried out our study of the magnetic behavior of multi-
layer systems with site dilution, where dilution is a necessary
condition for the presence of a non-zero compensation tem-
perature, in the spin-1 Blume-Capel (BC) model by Monte
Carlo simulations.
We begin our investigation by examining the temperature
dependence of the total magnetic susceptibility of the sys-
tem for a variety of values of the Hamiltonian parameters
JAA/JBB = 0.80, JAB/JBB =−0.50, P= 0.60, for different sys-
tem sizes L= 10 to 60 and for crystal field values D/JBB = 1.0
in Figure 2 and D/JBB = 3.0 in Figure 3. The peaks of the to-
tal susceptibility increases with increasing the lateral size L of
the system. These total susceptibility curves typically diverge
at critical temperature Tc for infinite size L. It is clear that the
critical temperatures (peak temperatures) increase with the
increase of the crystal field D/JBB as shown in Figures 2 and
3.
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Figure 4. The magnetizations < mA >, < pmB > and total
magnetization < mtot > as a function of the dimensionless
temperature kBT/JBB for P=0.80, JAB/JBB=-0.5 and L=60.
For (a) D/JBB=-1, JAA/JBB=0.80, shows no compensation
effect.(b) D/JBB=-1; JAA/JBB=0.20, indicates a compensation
temperature Tcomp such that < mtot >=0, whereas(c)
D/JBB=0.0 ; JAA/JBB=0.80, has no compensating effect, and
(d) D/JBB=0.0; JAA/JBB = 0.20, shows a compensation
temperature Tcomp. The error bars are smaller than the
symbols.

Our aim is to provide a detailed account of the regions in pa-
rameter space where the compensation phenomenon is present
or absent, for several crystal field values D/JBB and under the
effect of the intralayer bilinear exchange coupling parameter
of nearest-neighbor spins between the layers JAA/JBB. Then,
the compensation point for each set of Hamiltonian parameters
is defined as the temperature Tcomp where the total magnetiza-
tion is zero < mtot >= 0, while < mA ≯= 0 and < pmB ≯= 0.
The critical point is computed as the temperature where all
magnetizations disappear simultaneously.
To investigate the effect of D/JBB and JAA/JBB in the be-
havior of the system, we fixed values for JAB/JBB = −0.5,
P = 0.80 and L = 60, and plotted the magnetization < mA >
and < pmB > and total magnetization < mtot > versus dimen-
sionless temperature kBT/JBB as seen in Figures 4(a-d) and
5(a-d).

The total magnetization curve mtot in Figure 4(b,d) and
Figure 5(b,d), shows a clear sign of the compensation phe-
nomenon, where we have observed a compensation temper-
ature Tcomp such as < mtot >= 0 and < mA >, < pmB ≯=
0, for {D/JBB = −1.0,D/JBB = 0.0 and JAA/JBB = 0.20}
(see Figure 4(a,d)), and for {D/JBB = 1.0,D/JBB = 3.0 and
JAA/JBB = 0.20} (see Figure 5(a,d)). Therefore, this com-
pensation temperature increases with increasing of the crys-
tal field D/JBB. For JAA/JBB = 0.80, on the other hand, we
did not find a compensating effect (Figure 4(a,c) and Figure
5(a,c)). This can be understood by the fact that when the

Figure 5. The magnetizations < mA >, < pmB >, and total
magnetization < mtot > as a function of the dimensionless
temperature kBT/JBB for P=0.80, JAB/JBB=-0.5 and L=60.
For (a) D/JBB=1.0; JAA/JBB=0.80, shows no compensation
effect.(b) D/JBB=1.0; JAA/JBB=0.20, indicates a
compensation temperature Tcomp such that < mtot >=0,
whereas (c) D/JBB=3.0; JAA/JBB=0.80, has no compensating
effect, and (d) D/JBB=3.0 ; JAA/JBB = 0.20, shows a
compensation temperature Tcomp. The error bars are smaller
than the symbols.

intralayer bilinear exchange coupling parameter increases, the
compensation phenomena disappears. This behavior is com-
parable to that found in multilayers with spin-1/2 and dilution
[29], and trilayers [62] with spin-1/2 and no dilution. The
nature of the phase transition is established by the discontinu-
ity and continuity of the order parameters. Consequently, a
second-order phase transition occurs.
In Figure 6(a,b), we showed the phase diagrams in the (kBTc/JBB,
D/JBB) plane for JAA/JBB = 0.80, JAB/JBB =−0.50 and L =
60, under the influence of P.

Figure 6a shows the case where P = 0.60; it is seen that
the disordered paramagnetic (Para) where (< S >= 0) and
ordered ferromagnetic (F) where (< S ≯= 0) phases are sep-
arated by the first-order phase transition line, for negative
values of D/JBB =−1.5 to 3.0. Then while, from D/JBB = 3
to 8, the transition becomes second order. The discontinuous
and continuous phase transition lines cross at a tricritical point,
which is denoted by the bold point (C1), whose coordinates
are (D/JBB = 3.0 and Tc = 2.3 at JAA/JBB = 0.80). We have
also noticed that when the values of the crystal field D/JBB
increase, the critical temperature kBTc/JBB also increases.
Furthermore, by increasing the value of spin concentration to
P = 0.80, Figure 6b also shows that there is a first order phase
transition between the (Para) and (F) phases. In addition,
from D/JBB = 2.0 to 8.0, the transition is of the second order.
These two lines meet at a tricritical point (C2) of coordinates
(D/JBB = 1.0 and Tc = 2.0 at JAA/JBB = 0.80). It can be seen
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Figure 6. Phase diagram of the critical temperature as a
function of the crystal field D/JBB for JAA/JBB=0.80,
JAB/JBB=-0.50 and L=60. Figure (a), for P=0.60. whereas
figure (b), P=0.80.

that when we increase the value of P, the tricritical point shifts
towards lower values of its coordinates kBTc/JBB and D/JBB.
We also notice that the critical line is characterized by an
increasing temperature kBTc/JBB increases with increasing of
the crystal field D/JBB.

4. Conclusion
In summary, we have studied the magnetic behavior of a spin-
1 Blume Capel multilayer model. The system consists of two
kinds of non-equivalent planes, A and B, where only the B
layers are site-randomly diluted, under the effect of the crystal
field D/JBB. The study was performed using Monte Carlo sim-
ulations based on the Metropolis algorithm. The occurrence of
a compensation phenomenon was checked, and the compen-
sation temperatures were determined for different crystal field
values Therefore, the magnetization curves show a second
order phase transition behavior. The phase diagrams in the
(kBTc/JBB, D/JBB) plane show a variety of phase transitions,
including first and second-order phase transitions meeting at
a tricritical points that depends on spin dilution P.
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63:664, 1989.

[12] L. Neél. Annals of Physics, 12:137, 1948.
[13] H. K. Mohamad. Journal of magnetism and magnetic

materials, 323:61, 2011.
[14] B. Deviren and M. Keskin. Journal of Superconductivity

and Novel Magnetism, 140:934, 2010.
[15] N. De La Espriella, C. Ortega López, and F. Torres Hoyos.
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