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Abstract 

A nonlinear soft-core ferrite (ferromagnetic material) inductor that obeys of a 

polynomial current-magnetic flux relationship (typically a power series in the 

magnetic flux) is introduced. The quantum Hamiltonian of a nonlinear LC-circuit 

consisting of  a linear capacitor and a nonlinear inductor under the influence of an 

external field is found. The energy spectrum is obtained and the quantum behavior 

of the nonlinear coefficients is studied numerically. The quantum fluctuations of 

electric charge and current are obtained as a function of the characteristic parameters 

then the time-dependent of the characteristic parameters and the digger squeezing is 

analyzed by numerical approach. 

Keyword:  nonlinear inductor, squeezing effect, quantum LC-circuit, quantum 

fluctuation, quantization, numerical solution, Duffing’s electrical oscillator 

PACS: 73.23.-b, 03.65.Ca, 45.50.Lc 

 

1.Introduction 

Nonlinear inductors are described in terms of  current through inductance and can 

be made with various core shaps. The core material of the inductors plays an 

important role and is usually made with ferromagnetic material which creates 

magnetic flux through the inductance coil. Ferromagnetic materials are characterized 

by the magnetic hysteresis. Magnetic hysteresis is the gap between the change in 

magnetic induction B and the change in magnetic field strength H.The nonlinear 
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behavior of the inductor using ferrite nuclei (ferromagnetic material) show in  [1] 

and [2] experimentally. Non-linear inductors are one of the most basic devices of 

nonlinear electrical LC-circuits (inductance L and capacitance C). Such nonlinear 

electrical circuits were classically studied many years ago before by [3-6]. When this 

nonlinear electric circuit is driven by a sinusoidal voltage source, it is known as a 

Duffing electric oscillator [4-9]. As progress in experimental control at the 

nanometer scale in nanotechnology, mesoscopic physics and nanoelectronics is 

under going a dramatic development [10]. People are intrested in  miniaturizing 

integrated circuit and components to atomic-scale dimensions [11]. When the 

transport dimension of electric devices in the electric circuits reaches to coherence 

length, the quantum effects must be taken in to account. Therfore, a suitable  

quantum theory for electronic devices in nanoelectronic integrated circuits is 

necessary. For this propose, by comparing the electron motion equation with a 

harmonic oscillator, the LC- design circuit was quantized by Louisell [12] and its 

use expanded in [13-15]. Also, with much progress in many characters, such as 

quantum fluctuation, squeezing effect etc, studies have been done for various  

mesoscopic RLC circuits in [16-19]. 

To make the discussion more concrete, let us imagine a nonlinear electrical LC-

circuit with  a nonlinear inductor fabricated with the technology of microelectronic 

chips. Typical values that can be easily considered for the inductance and  

capacitance are in the nanohanry and picofarad range, it leads to a resonant 

frequency in the microwave range. Recently, it has been obtained by  miniaturization 

the dimensions of the inductor to self-induction coefficient of the  nanohenry order 

in [20-21]. When the overall dimensions of the circuit do not exceed a few hundred 

micrometers, it is much smaller than the corresponding wavelength, the electrical 

circuit is well within the bulk element limit. This is a very good approximation in 

the ‘bulk element’ limit where the physical size of the electronical devices in the 

nonlinear LC - oscillator is much smaller than the wavelength of electromagnetic 

waves at the frequency of the oscillator i.e., the dimensions of the devices are about  

the length of the carrier coherence.  In this range, the electron behavior is wave-like, 

therefore by importance of the inductor in the electrical circuit, it seems necessary 

study the quantum nonlinear inductor. According to the views mentioned,  in this 

paper, we consider an electrical circuit consisting of a linear capacitor and nonlinear 

inductor under the influence of a sinusoidal external source. we consider current-

dependence of the inductance up to the order fifth magnetic flux   and  find the 

quantum Hamiltonian of such nonlinear circuit. The quantum extended Duffing 
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equation is found by the Heisenberg motion equation. We find the energy spectrum 

and the quantum fluctuations of electric charge  and current flow of this circuit by 

analytical and  numerical methods and study squeezing effect in this quantum 

electrical circuit  

 

2. Quantization of an electrical LC-Circuit with a nonlinear inductor 

A nonlinear electric circuit including a linear capacitor and a nonlinear inductor  

under the influence of an external field (a sinusoidal voltage source) is shown in 

Figure 1. The nonlinear inductor nature in the such nonlinear electric circuit exhibits 

the Duffing’s electrical oscillator that was classically studied by years ago in [5, 7-

8].   

 

Figure 1. A nonlinear electric circuit including a linear capacitor and  a nonlinear inductor  under the 

influence of an external field. 

When the inductor is assumed to be linear, the relationship between current I and 

magnetic flux   in the inductor core is given as follows 

I
L


                                                                                (1) 

where L is the self-induction coefficient of inductor or inductance. The voltage 

difference LV  across the inductor is equivalent to 

L

d
V N

dt


                                                                        (2) 
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where N is the number of turns of the coil (inductor).  Using the electrical laws, the 

differential equation of the electrical circuit under the action of the external time-

dependent field (the potential difference across the capacitance C) ( )t  is given by 

( )
d q

N t
dt C


                                                                  (3) 

When the inductor acts as a nonlinear electric devices in the nonlinear circuit Figure 

1, it has a ferromagnetic core that  can be modeled using nonlinear characteristic if 

the hysteresis phenomenon is abstracted. In this paper, we consider the nonlinear 

relationship between the current and magnetic flux as a function of  flux individual 

powers series based on representation Biermanns [4] and Hayashi [5]. Here, we 

expand this function up to the order fifth i.e. 

1

3 5

1 3 5

k

k

k

I a

I a a a



  







  



                                                                (4) 

 where a1, a3, a5, ... are constants characterizing the core i.e., they depend on the type 

of the inductor [5, 22-23] and thier dimensional are      
2 4 6

1 3 53 5
, ,  

A A A
a a a

J J J
 

respectively. Although theoretical inductors do not have any of these real-world 

nonlinearities, engineers dealing with realistic inductors usually need to consider 

these nonlinear effects to ensure that their design works properly in the expected 

conditions. In the differentiating equation (3), we consider ( ) cos( )t E t  then 

2

2
sin( ) 

d I
N E t

dt c


                                                                  (5) 

where, the current I  in the nonlinear circuit generates a magnetic field, which 

induces an electric current in the coil. Substituting Eq. (4) into Eq. (5), we find  

2
3 5

1 3 52

1
( ) sin( )

d E
a a a t

dt NC N

 
                                           (6)                                                         

Where 
1 n

n

a

L N
   and  1,3,5n    

When 1n   the  linear natural frequency of this circuit is given by  
1

1

L C
  . The 

Eq. (6) can be written as  
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2
3 5

2

1 3 5

1 1 1
sin( )

d E
t

dt L C L C L C N

 
                                  (7)                                                                

Equation (7) occurs in several studies [24-27], Based on the classical equation of 

motion (7), we can be formulated the classical Hamiltonian of nonlinear electric 

circuit (nonlinear inductor) as follows 

 

2 4 6 2

1 3 5

   
2 4 6 2

inductor capacitnonlin orearH u u

p p p q

L L L C

 

   
                                                  (8) 

For n=1, parameters are 
1

1


N

a
L

, 3 5 0 a a  , then the Hamiltonian  (8) becomes 

2 2

12 2

p q
H

L C
                                                                     (9) 

The classical equation of motion for an electric circuit of LC design is the same as 

that for  a harmonic oscillator, Since the mesoscopic dissipation less LC circuit has 

been quantized by Louisell [12]. According to the standard canonical quantization 

principle the canonical conjugate quantities q and  are replacing by the 

corresponding operators q̂ and ̂  as we know p   then the quantum 

Hamiltonian operator (9) can be expressed as  

2
2 4 6 ˆˆ ˆ ˆ ˆ

2

q
H p p p

C
                                                        (10) 

where 

2

1

3 5

1 1 1
, ,

2 2 4 6

La

L L L
                                                 (11)                                                                                    

and  ˆ ˆ,q p i .  

 

We assume that thermal fluctuations are smaller than quantum fluctuations. As we 

know,  higher order momentums are caused by the presence of nonlinear elements 

in the quantum electrical circuit, which are included in the Hamiltonian interaction 

term and can be the contribution of quantum noises. 
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It also promises the existence of the squeeze effect in quantum nonlinear circuits, 

which is only a quantum phenomenon.That is, this nonlinear crystal-like circuit can 

squzzing the light in one direction, but the uncertainty principle will not change. 

Higher order quantum theory is an extension of the quantum theory that is discussed 

in this work. In this way, the discussed higher order quantum theory has a 

fundamental value, which is a new perspective to analysis the properties of quantum 

theory. In a new method to study electrical circuits in the nano quantum scale by 

introducing a thermal  momentum operator that  is similar to the momentum operator  

that only introduces a nonlinear term [28-30]. 

We assume 1

1
a

L
,  as a result 1

2L
  , therefore, the quantum  Hamiltonian (10)  

under the influence of an external field ( )t becomes 

2
2 4 6 ˆ1ˆ ˆ ˆ ˆ ˆ( )

2 2

q
H p p p t q

L C
                                            (12) 

The current-dependence of the inductance in the Figure 1 makes the a Duffing 

electrical LC-oscillator (nonlinear LC- circuit). We can understand that the nonlinear 

LC- oscillator has a very good approximation only a single low energy degree of 

freedom, namely uniform divergence less current flow in the wire of the inductor 

which does not build up charge anywhere except on the plates of the capacitor. This 

is a very good approximation in the ‘bulk element’ limit where the physical size of 

the nonlinear LC-oscillator is much smaller than the wavelength of electromagnetic 

waves at the frequency of the oscillator. Therefore, the Duffing electrical LC-

oscillator (nonlinear LC- circuit) of Figure 1 can now be treated quantum 

mechanically. It is known that the rigorous study and design optimization of such 

electronical devices with  ferromagnetic cores in the quantum mechanic  is difficult 

because of nonlinearity. Therfore, we introducing the usual annihilation and creation 

operators such that 

†

1
ˆ ˆ ˆ( )

2

1
ˆ ˆ ˆ( )

2

a Lq ip
L

a Lq ip
L







 

 

                                                     (13) 

†ˆ ˆ, 1a a                                                                           (14) 
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where 
1

LC
  . The quantum Hamiltonian (12)  in the terms of creation and 

annihilation operators is given by 

2 3
† † † 4 † 61 ( ) ( )ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( )+ ( ) ( )

2 2 4 8

L L
H a a t a a a a a a

L

 
   


             (15) 

We can rewrite Hamiltonian (15) in the rotating-wave approximation [31-33] as                                                                                     

† 1 † 2 † 3

1 2 1 2 2
ˆ ˆ ˆ ˆ ˆ ˆ ˆ[( )( ) ( )( ) ( ) ]H a a a a a a                      (16) 

 where 

2 2 3

1 2

3 5
( ) , ( )

2 2
L L                                               (17) 

The Hamiltonian (16) is probably for study quantum nonlinear dynamics in such 

electrical nonlinear circuits. In the Hamiltonian (16) when 2 0  , it is well 

described nonlinear Kerr medium and show the nonclassical effects in the context 

of quantum optics [34]. A simple way to achieve a superposition of different number 

states is to displace the quantum oscillator with a classical external driving force so 

that the ground state is mapped to a so-called “coherent state”. For this propose, we 

suppose that the initial state of the nonlinear circuit (16) is coherent state i.e. 

2

0

1
( )

2 !

n

n

exp n
n


 





                                          (18) 

With this choice, we can easily find the eigenvalues of energy as 

2 3

1 2 1 2 2( ) ( )     nE n n n                      (19) 

To determine the behavior of λ and γ nonlinear coefficients in the Eq. (19), we 

plotted the changes energy diagram for different levels of n by numerical approach. 

In Figure 2, we can appreciate, when the value λ increases, the amount of energy in 

the levels increases (Figure 2(a)) and by increasing γ energy decreasing (Figure 

2(b)). 
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a) 

 

b) 

 
Figure 2.  (a) Energy vs λ ( 61, 100, 1, 10 , 1,2,3    L C n ) and (b) energy vs γ (

31, 100, 1, 10 , 1,2,3    L C n ) 

As we see in Figure 2 the nonlinear inductor, as any resonator in general, possesses 

a discrete energy spectrum. In this nonlinear electrical circuit, the energy difference 

between the ground and the first excited state is significantly different. (i.e. larger 

than the width of the levels than the difference between the first and the second 

excited states). Such LC-circuit resonator can be used as a qubit that is studied in 

[35]. 

 

3. The quantum dynamic of a LC-circuit with a nonlinear inductor 

In order to study the quantum dynamical the electrical circuit, we employ the  

interaction picture and consider 
† 2 † 3

1 2 2
ˆ ˆ ˆ ˆ(( )( ) ( ) )a a a a     as the interaction part. 

Then the time-depending  eigenvectors of Hamiltonian (16) are given by 

2 2

1 2 2

0

1
( ) ( ) exp( ( ) )

2 !

n

I
n

t exp in n t n
n


    





                             (20) 

where 1.  The Heisenberg equation of motion for the annihilation operator a is 

† † 2

1 2 1 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, {( ) 2( ) 3( ) }
da

i H a i a a a a a
dt

            
 

                        (21) 

Since †ˆ ˆa a  is a constant of motion with the exact solution (21) we  have 

† † 2

1 2 1 2
ˆ ˆ ˆ ˆ ˆ ˆ( ) exp( (( ) 2( ) 3( ) ))      a t it a a a a a                                   (22) 

Also, the evolution equations for the operators q̂ and p̂  in the Heisenberg 

representation using the quantum Hamiltonian  (12), can be computed explicitly as 
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                                                                         (23) 

and 

1 ˆˆ ˆ ,

ˆ
   =-

p p H
i

q

C

 
 

                                                                                     (24)                                                                                     

By differentiating from relation (24) and substituting Eq. (23) into it, we have 

3 51 4 6
ˆ ˆ ˆ ˆ 0p p p p

LC C C

 
                                                                                           (25) 

Equation (25) is the fifth order quantum Duffing  equation or quantum extended 

Duffing equation[36-38] . 

To study the time behavior the quantum differential Eq  (25) one needs to calculate 

expected value the operators in the Eq (25). For this Purpose, quadrature operators 

are introduced as follows [31-33] 

†1
ˆ ˆ( ),  ( 1, 2)

2


  j ji i

jX ae a e j
                                                                           (26) 

where 1 20, 2     , then ˆ ˆ,jX q p  

Now using the Eqs (20) and (22)  we can obtain 

1 2 1 2 2
( ) 2 (2( ) 3 )2Re{ exp( ( 1))}jit i it

jX e e
       

      
                                    (27) 

and 

1 2 2 1 2
2 2 22 ( 3 6 ) 2 (4( ) 6 )2 1

(1 2 2Re{ exp( ( 1))})
4

      
   jit i i it

jX e e
                 (28) 

 

3-1.  The degree of squeezing 

Squeezing states have no classical counterpart and states are non-classical. 

Squeezed light is produced by various nonlinear processes, and as a means of 

reducing noise in optical interference, it has attracted much attention in the creation 

of optical communication networks. Because even in an ideal laser that works in  

3 5

1ˆ ˆˆ ˆ,

ˆ
ˆ ˆ   = 4 6

I q q H
i

p
p p

L
 

  
 

 
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coherence state, it still has quantum noise due to zero-point fluctuations [39-42]. 

So, prliminary  experimental research is reported in references [43-44]. Therefore, 

the squeezed states are important because they have less quantum noise than 

coherent states. The nonlinear LC-circuit with  L-nonlinear is suitable to study 

Squeezing states.  To study the squeezing effect, we need to analyze the quantum 

fluctuations of the quadrature operators. Because the quantum fluctuations in a 

coherent state are equal to the zero-point fluctuations. We can find the time 

varying behavior of the quadrature variance using Eqs. (27) and (20) as
2 2

22

1 2

2

1 2 1 2

2 2 2

1 2 1 2 1 2

1
ˆ( q) 2 {( exp( ( 1 cos t(4 2 )))

4 2 2

                 cos( 2t( 2 5 ) sin t(4 2 )))

                 ( exp( ( 1 cos t(2 5 )))sin(t( 2 ) sin t(2 5 ))) }

 
           

          

               

 

(29) 

2 2

22

1 2

2

1 2 1 2

2 2 2

1 2 1 2 1 2

1 1
ˆ( p) {( exp( ( 1 cos t(4 2 )))

2 4 2 2

                 cos( 2t( 2 5 ) sin t(4 2 )))

                 ( exp( ( 1 cos t(2 5 )))sin(t( 2 ) sin t(2 5 ))) }
2

 
          



          


                 

  

(30) 

The quadrature variances (29) and (30) satisfy the following Heisenberg's 

uncertainty principle relationship 

2 2 1
ˆ ˆ( q) ( p)  

16
                                         (31) 

The Heisenberg's uncertainty principle in the measured values of these quantities 

play a central in understanding quantum noise [45]. For coherent states obey (or 

for the special case of the vacuum state),  

2 2 1
ˆ ˆ( q) ( p)

4
                                    (32) 

We illustrate the time- evolutions of quantum fluctuation 
2ˆ( )  q  and 

2ˆ( )  p  by 

numerical approach in Figures 3(a), 3(b). 
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a) 

  

b) 

 

Figure 3.  (a) 
2ˆ( )  q   vs time and (b) 

2ˆ( )  p  vs time  

1 20.3, 0.1, 0.2        

 

As shown in Figure 3, both variances show oscillatory behavior with a minimum 

indicating a significant amount of squeezing.  

Heisenberg's uncertainty principle is one of the basic concepts in quantum systems 

and its investigation is also important in quantum electrical circuits. As we know, 

there is a limit to their simultaneous measuring  , which is governed by Heisenberg's 

uncertainty principle. However, the uncertainty values of each of these observables 

can be arbitrarily small, but there is a limit in their product [46-49]. According to 

equations (29) and (30), the uncertainty principle can be concluded  and we are 

expecting a generalization . Figure 4, the graph shows the uncertainty principle. 

 

Figure 4.   Uncertainty principle in this system ( 1 20.3, 0.1, 0.2       ) 

 

 It is  can also be seen from the figures that the fluctuations are exact periodic 

functions,  when  
1 2



 
 and  1

2




 are an integer. The squeezing effect occurs 
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with the evolution of time, this behavior is compatible with the results found in 

[41,50].  

With the numerical conditions that we have defined in Figure 3, the amounts of 

2ˆ( p)    is less than 0.25 and 
2ˆ( q)    is larger than 0.25, therefore, the squeezing  is 

happing in the direction of p component (The squeezing condition for the p 

quadrature is that its variance should be less than the value  of vacuum). As a result, 

if the quantum fluctuation in a component decrease, in the conjugate component 

increases correspondingly. For more attention, let us to check the degree of 

squeezing, for the  p component , which is defined as follows [31] 

2N 3N

j(2N)

j 3N

( X ) (2N)! (N!2 )
S

(2N)! (N!2 )

   
                                (33) 

 By plotting order.to the 2Nth  squeezed state isthe  
(2N)

jS 0 In this equation, when

 is squeezed, the quantum fluctuation component-pscale  time-longon a 
2

pS and 
2

qS

in the p-component can be smaller of than zero-point fluctuation (Figure 5(a)). 

constant. As we can  squeezingent values of the ferfor dif 
2

pS shows the )b(5 Figure

appreciate, by increasing the amount of α the digger squeezing in the direction of p 

component disappears. 

  

a) 

 

b) 

 
Figure 5. Squeezing p vs time, (a) 1 20.3, 0.1, 0.2         and (b) by changing  (

1 20.1, 0.01     ) 
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Therefore, it can be concluded that the quantum electrical circuit with a nonlinear 

inductor and a linear capacitor can be considered similar to the crystal with nonlinear 

structure, which has removed the uncertainty from the symmetric state and has led 

to the creation of squeezed states. 

 

3-2. Time-dependent the  persistent current  

In the following, in order to study of the behavior persistent current as function of 

the nonlinear coefficients γ and λ in the Eq. (23).  We have plotted the diagram of 

the time-dependent current in the Figure 6, by numerical approach. According to 

Figures 6(a) and 6(b), it can be result that with increasing λ and γ the current 

amplitude increases. By comparing the two graphs, it can be seen that the rate of 

change of λ is greater than γ. 

a) 

 

b) 

 
Figure 6. (a) Expected values of  electric current vs time by changing λ ( 0.1, 0.5, 0.00001     ) 

and (b) Expected values of electric current vs time by changing γ ( 0.1, 0.5, 0.01     ) 

 

4. Conclusion 

The progress in experimental control on the nanometer scale in nanoelectronics and 

nanotechnology have enabled the study of electronic devices in the nano-scale. One 

of these devices are nonlinear inductors that with the presence of a ferromagnetic 

core as the main component of many electronic devices. Soft ferrites demonstrate 

properties very useful and appropriate for use in  electronic devices applications, 

therefore, there is need to a quantum model that can accurately describe the operation 

of nonlinear inductors. Accordingly, we quantized  a nonlinear LC-circuit consisting 

of  a linear capacitor and a nonlinear inductor under the influence of an external field 
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and found the quantum Hamiltonian of this nonlinear LC-circuit. Unfortunately, the 

nature nonlinear  inductors and the wide variety of core topologies make modeling 

difficult to study the quantum behavior the characteristic parameters. So, we studied  

the quantum dynamical effect of the nonlinear parameters in the rotating-wave 

approximation. The energy spectrum equation as a function of the linear and 

nonlinear coefficients for such electrical circuit is found and by numerical approach, 

it was shown that such a nonlinear electrical LC-circuit can to behave like qubits. 

By quantum dynamical approach, the quantum fluctuations of the quadrature 

operators current and charge in a coherent state is studied then the time-behavior 

characteristic parameters λ and γ and the digger squeezing are discussed 

numerically. Our formulation presented a method from a new point of view to the 

analysis of  quantum effects in the quantum nonlinear electrical circuits with a 

nonlinear inductor device. We are well aware that, the theoretical study shows the 

numerical strength and  computational efficiency.  
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