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Investigation of the Poynting flux ratio in the helix
traveling wave tube
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Abstract
The study deals with amplification of a propagating slow wave interacting with an annular hollow electron beam
in a helix slow wave structure (SWS). The role of thermal plasma density in a ratio of the axial pointing flux in the
plasma region is also investigated. This ratio is small for lower plasma densities. The effects of the variations of
the hollow electron beam velocity on the normalized growth rate and the poynting flux ratio at the hybrid mode
frequency are presented. The maximum gain is obtained in the frequency of hybrid mode and the poynting flux
ratio reaches its maximum value at the hybrid mode frequency. Also is analyzed the trend of changes for the
normalized growth rate for a different beam velocities. The results show that for all beam velocities the maximum
growth rate is for hybrid mode frequencies. The numerical method used in this paper is complex transcendental.
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1. Introduction

Investigation into the helix traveling wave tube (TWT) started
by Pierce four decades ago [1–3]. Initial works were based on
a coupled-wave analysis while an electromagnetic analysis of
Maxwell’s equation was later introduced by Rydbeck [4] and
Chu and Jackson [2]. Inserting plasma into the traveling wave
tube to facilitate the electron beam performance has been
studied by many authors [5]. Among them thermal plasma
tecnology has also been investigated in increasing the gain of
different systems [6].
In this paper, we investigated the effects of a thermal plasma
injection into the helix TWT on the growth rate and the poynt-
ing flux ratio. For this purpose we developed a field theory
by a solution of the fluid equation and Maxwell’s equations.
The growth rate of the modes is determined by the disper-
sion relation in the helix traveling wave tube. The dispersion
relation is obtained by applying the appropriate boundary con-
ditions at different regions. It has already been shown that the
presence of thermal plasma enhances the growth rate of the
system [7]. In recent years, the hybrid modes have received
much attention from researchers. These modes are present in
plasma loaded slow wave structure at frequencies where the
phase velocities of the electromagnetic wave and slow plasma
wave coincide.
The field of the hybrid mode was strong enough inside the
plasma as well as near the structure, so the interaction of this
mode with an electron beam inside the plasma caused the
energy to be extracted from the beam as radiation. Poynting
flux ratio in the helix traveling wave tube in the presence of
the solid electron beam was investigated by Saturo Kobayashi

and et al [8]. In this paper, we examined the same issue in the
presence of the hollow electron beam.

2. The case of an annular electron beam
We used a hollow electron beam propagating through a plasma-
loaded helix within the cylindrical drift tube. Our traveling
wave tube consists of a helix that helps the propagation of an
electromagnetic wave and an annular hollow electron beam
which is produced by means of the electron gun on the left
side of the tube. The thermal plasma is partially loaded inside
the helix. The plasma is confined by a finite magnetic field
B0 = B0êz . The electrons of an electron beam influenced
by the field of the wave will be bunched. So there will be
an energy transfer from the electron beam to the wave and
vice versa. The present manuscript is an improvement on
the analysis in [7]. The circuit configuration in regions 1-5
in Fig. 1 consists of a conducting waveguide of radius Rw,
a hollow electron beam with an inner radius of Rb and an
outer radius of Rc, background thermal plasma of a radius
Rp, and the helix of a radius Rh which is thin enough to be
considered as a cylindrical sheath. For simplicity, we restrict
the electron motion to the axial direction by applying a strong
DC magnetic field parallel to the helix axis.

3. General formulation
The analysis of charge-electromagnetic wave interactions is
simplified through Maxwell’s equations. To calculate the
fluctuating electric and magnetic fields in different regions,
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first we start with the linear continuity and momentum trans-
fer equations. We considered homogeneous plasma and the
electrons are assumed to move in only one- dimension. We
neglected the nonlinear effects. The equations are solved for
small perturbations about a steady state as ne = n0e + δne,
νe = ν0e +δνe for electron beam and np = n0p +δnp, νp =
δνp for thermal plasma. These equations are as follows:
For electron beam:

[
∂

∂ t
+ν0e

∂

∂ z
]δne +n0e∇.δνe = 0 (1)

[
∂

∂ t
+ν0e

∂

∂ z
]δνe = Ωceêz ×δνe − (

e
γ0eme

)

[(I −β
2
0eêzêz).δE +β0eêz ×δB] (2)

Here β0e = ν0e/c is the normalized axial velocity of the elec-
tron beam, γ0e = (1−β 2

0e)
−0.5 is the relativistic factor, Ωce =

eB0/γ0emec is the electron cyclotron frequency and I is the
unit dyadic. To calculate the perturbed quantities, we use the
Fourier analysis representation as δ f (x, t) = δ f̂ (r)exp[ikz−
iωt], where, k and ω represent the wave number and the an-
gular frequency.
For thermal plasma:

∂δnp

∂ t
+n0p∇.δνp = 0 (3)

∂δνp

∂ t
=− e

me
δE + γ0eΩceêzδνp +

∇P
men0p

(4)

We can derive the perturbed current density with the aid of 1
to 4 as follows. In region 2 we have:

δ ĴI =
iω2

b
4π∆ω0

[
ω

∆ω0γ2
0e
(êz.δ Ê)êz

+
iΩce∆ω0

(∆ω2
0 −Ω2

ce)
(êz ×δ Ê⊥−β0eδ B̂⊥)

+
∆ω2

0
(∆ω0 −Ω2

ce)
(δ Ê⊥+β0eêz ×δ B̂⊥)

− iν0e∆ω0

(∆ω0 −Ω2
ce)

[êz∇⊥.δ Ê⊥−β0e∇⊥×δ B̂⊥]

− ν0eΩce

(∆ω2
0 −Ω2

ce)
êz× [êz(êz.∇⊥×δ Ê⊥)+β0eêzêz∇⊥.δ B̂⊥]

+
iω2

pγ0e

4πω
(êz.δ Ê)+

ω2
T

kωA
iω2

pγ0ek
4πω2 (êz.δ Ê)

+
iω2

pγ0e

4πω
[

−iΩceγ0e

ω2 − (Ωceγ0e)2 (êz.∇⊥×δ Ê⊥)

+
ω

ω2 − (Ωceγ0e)2 ∇⊥.δ Ê⊥êz (5)

where ω2
b = 4πn0ee2/γ0eme, ω2

p = 4πn0pe2/γ0eme, ∆ω0 =

ω − kν0, ω2
T = 3kbTek2/me, and A = 1−ω2

T/ω2 .
In regions 1 and 3:

δ ĴII =
iω2

pγ0e

4πω
(δ Êz +

ω2
T

kωA
(

iω2
pγ0ek

4πω2 δ Êz

+
ω2

pγ0e

4πω
[

−iΩceγ0e

ω2 − (Ωceγ0e)2 (êz.∇⊥×δ Ê⊥)

+
ω

ω2 − (Ωceγ0e)2 ∇⊥δ Ê⊥]))êz

+
−iΩceγ0eω

ω2 − (Ωceγ0e)2 (êz ×δ Ê⊥)+
ω2

ω2 − (Ωceγ0e)2 δ Ê⊥ (6)

Similarly, the perturbed charge densities can be written as:

δ ρ̂e =
iω2

b

4π∆ω2
0

k
γ2

0e
(êz.δ Ê)

−(
i∆ω2

0

∆ω2
0 −Ω2

ce
)[∇⊥.δ Ê⊥−β0eêz.∇⊥×δ B̂⊥]

−(
∆ω0Ωce

∆ω2
0 −Ω2

ce
)[êz.∇⊥×δ Ê⊥+β0e∇⊥.δ B̂⊥] (7)

δ ρ̂p =
iω2

b γ0e

4πω2 (1+
ω2

T
Aω2 )k(êz.δ Ê)

− iω2

ω2 − (Ωceγ0e)2 (∇⊥.δ Ê⊥)

− ωΩceγ0e

ω2 − (Ωceγ0e)2 (êz.∇⊥×δ Ê⊥) (8)

By employing Maxwell’s equations and Floquent’s theorem,
the fluctuating transverse electric and magnetic fields is de-
rived. The results are:

∇
2E− 1

c2
∂ 2E
∂ t2 =

∇ρ

ε0
+µ0

∂J
∂ t

(9)

Figure 1. Schematic of the helix TWT structure cross section.
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Figure 2. Graph of the frequency versus wavenumber for
np = 1×1012cm−3, np = 1.7×1012cm−3

δ Ê⊥ =
i

χ2
0
[k∇⊥δ Êz −

ω

c
êz ×∇⊥δ B̂z −

4πω

c2 δ Ĵ⊥] (10)

δ B̂⊥ =
i

χ2
0
[k∇⊥δ B̂z+

ω

c
êz×∇⊥δ Êz−

4πk
c

êz×δ Ĵ⊥] (11)

in which χ2
0 = ω2/c2 − k2.

Using equations 5-8 as well as 10 and 11 simultaneously and
with the aid of equation 9, the wave equation will be derived
as follows:

Region 2:

(∇2
⊥+χ

2
+,I,bp)(∇

2
⊥+χ

2
−,I,bp)δ Êz = 0 (12)

(∇2
⊥+χ

2
+,I,bp)(∇

2
⊥+χ

2
−,I,bp)δ B̂z = 0 (13)

Region 1 and 3:

(∇2
⊥+χ

2
+,II,p)(∇

2
⊥+χ

2
−,II,p)δ Êz = 0 (14)

(∇2
⊥+χ

2
+,II,p)(∇

2
⊥+χ

2
−,II,p)δ B̂z = 0 (15)

χ2
±,I,bp, χ2

±,II,p and the related coefficients are given in [7].

Region 4 and 5:

(∇2
⊥+χ

2
0 )δ Êz = 0 (16)

(∇2
⊥+χ

2
0 )δ B̂z = 0 (17)

The solutions of 12 – 17 can be written as follows:

δEz = AJl(χ±,II,pr), 0 ≤ r ≤ Rb

Figure 3. The normalized growth rate versus frequency
np = 1×1012cm−3, Ib −0.4A.

BJl(χ±,I,bpr)+CYl(χ±,I,bpr), Rb < r < Rc

DJl(χ±,II,pr)+EYl(χ±,II,pr), Rc < r < Rp

FJl(χ0r)+GYl(χ0r), Rp < r < Rh

H[Jl(χ0r)Ýl(χ0Rw)− J́l(χ0Rw)Yl(χ0r)], Rh < r ≤Rw (18)

and

δBz = A1Jl(χ±,II,pr), 0 ≤ r ≤ Rb

B1Jl(χ±,I,bpr)+C1Yl(χ±,I,bpr), Rb < r < Rc

D1Jl(χ±,II,pr)+E1Yl(χ±,II,pr), Rc < r < Rp

F1Jl(χ0r)+G1Yl(χ0r), Rp < r < Rh

H1[Jl(χ0r)Ýl(χ0Rw)− J́l(χ0Rw)Yl(χ0r)], Rh < r ≤Rw (19)

The dispersion relation is obtained using the appropriate
boundary conditions.

[
−(M30ζ 21−M24ζ 24)
(−ζ 21ζ 23+ζ 22ζ 24)

]

[
M19M40ζ 17

M19
+

M41Z19ζ 20
Z19

]

+[
−(−M30ζ 22+M24ζ 23)
(−ζ 21ζ 23+ζ 22ζ 24)

]

[
M19M49ζ 18

M19
+

M41Z19ζ 19
Z19

] = 0 (20)

The coefficients were obtained in our previous work in [7].
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Figure 4. Poynting flux ratio of the plasma region to the total
poynting flux for (a)np = 1×1012cm−3, Ib −0.4A and (b)
np = 1.7×1012cm−3, Ib = 0.4A.

4. Poynting flux
The poynting vector represents the energy transfer per unit
area per unit time of an electromagnetic field. The group
velocity is the slope of ω − k curve at any point. The group
velocity is also the speed at which energy is propagated along
the system. According to our investigation the group velocity
is non-zero for the plasma mode representing that there is a
real power flow associated with these modes.
The total power flow along the helical sheath is given by the
poynting vector:

P =
1
2

Re
∫

δE×δH∗ (21)

This equation is written as follows in all TWT structure re-
gions:

P = πRe[
∫ Rb

0
(δ Ê1rδ Ĥ∗

1θ −δ Ê1θ δ Ĥ∗
1r)rdr

+
∫ Rc

Rb

(δ Ê2rδ Ĥ∗
2θ −δ Ê2θ δ Ĥ∗

2r)rdr]

+πRe[
∫ Rp

Rc

(δ Ê3rδ Ĥ∗
3θ −δ Ê3θ δ Ĥ∗

3r)rdr

+
∫ Rh

Rp

(δ Ê4rδ Ĥ∗
4θ −δ Ê4θ δ Ĥ∗

4r)rdr]

+πRe[
∫ Rw

Rh

(δ Ê5rδ Ĥ∗
5θ −δ Ê5θ δ Ĥ∗

5r)rdr] (22)

The fluctuating electric and magnetic fields in different regions
of the TWT are given in the appendix A.

Figure 5. Plot of the growth rate versus beam velocity for the
structure of Fig. 1 np = 1×1012cm−3, f = 4.20GHz,
I = 0.4A.

Figure 6. Poynting flux ratio versus beam voltage
np = 1×1012cm−3, f = 4.20GHz, I = 0.4A.

5. Numerical results
In this section, we show the effect of thermal plasma on
the normalized growth rate | f racImkkh of a helix type am-
plifier via the numerical solution of a dispersion Relation
?? [7]. We can fix the principal parameters for the helix as
λh = 0.1256cm, δh = 0.035 cm, Rh = 1.0cm, Rw = 2.5cm
and Rp = 0.5cm.
The function ω(k) is known as the dispersion relation. Disper-
sion is when the distinct phase velocities of the components
of the envelope cause the wave packet to spread out over time.
Fig. 2 depicts the dispersion characteristic for thermal plasma
of density np = 1× 1012cm−3 and np = 1.7× 1012cm−3 in
the absence of an electron beam. As can be seen from the
figure, the lower branch at low wave numbers represents the
electromagnetic mode and the upper branch represents the
plasma guide mode. But at high wavenumber the lower curve
represents the plasma guide mode and the upper branch rep-
resents the electromagnetic wave [9]. The two curves con-
verge near the mid-wave numbers. Here is a situation in
which the hybrid wave is formed [10–12]. For the particular
case reviewed np = 1× 1012cm−3, the frequency of the hy-

2251-7227/2022/16(1)/162203 [http://dx.doi.org/10.30495/jtap.162203]
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Figure 7. The normalized growth rate versus frequency for
several beam voltage np = 1×1012 cm−3, I = 0.4 A.

brid wave is f = 4.20GHz while this frequency increases for
np = 1.7×1012cm−3[7].
The normalized growth rate of the structure versus frequency
is shown in Fig. 3 for an electron beam of current 0.4A.It
can be seen from this figure that the maximum growth rate
has occurred at a frequency of 4.20GHz, which is where the
hybrid mode developed.
Fig. 4(a) and 4(b) reveal the ratio of the axial poynting flux in
the region of thermal plasma to the total poynting flux in the
five regions, for two different plasma densities. These figures
indicate that this ratio represents the amount of power present
in the plasma region. Extracting this power from the plasma
is important, as the amplified power tends to concentrate in
the plasma region.
For np = 1× 1012cm−3, the poynting flux ratio reaches its
maximum value at the hybrid mode frequency. Far from this
point the interaction is with the electromagnetic wave and the
poynting flux is small. This is true for other densities. Here
we consider only one density np = 1×1012cm−3.
A representative plot of the normalized growth rate as a func-
tion of the beam velocity is shown in Fig. 5 when the fre-
quency is fixed at the hybrid mode frequency f = 4.20GHz
for np = 1×1012cm−3.
As shown in the figure, the normalized growth rate reaches a
minimum at νb = 0.55c. The effect of variations of the beam
velocity on the poynting flux ratio is displayed in Fig. 6 for a
fixed beam current I = 0.4A at the hybrid mode frequency of
f = 4.20GHz.
According to the dispersion curve shown earlier in Fig. 2, the
region of the hybrid wave is within the plasma wave num-
ber. The interaction of the electron beam with a plasma mode
at high and low beam velocities causes concentration of the
poynting flux in the plasma region. However, the interaction
of the electron beam with the hybrid wave is far more effec-
tive. It can be seen that at some medium beam velocities, the
beam interacts with a hybrid wave and gives more energy to
amplify the wave. Thus, the concentration of the poynting
flux in the plasma region is lower, and the maximum growth

Figure 8. Illustration of the variation of the normalized
growth rate versus frequency for different plasma temperature
np = 1×1012 cm−3.

rate will occur at this beam velocity.
Fig. 7 reveals the normalized growth rate versus the frequency
for different beam velocities. As expected, according to our
previous results, the frequency of the maximum growth rate is
near the frequency of the hybrid mode for all beam velocities.
Narrowing curves represent the interaction of the electron
beam with the plasma mode while broader curves show the
same interaction with the structure mode.
Fig. 8 displays the variation of the normalized growth rate
to frequency for different plasma temperature at νb = 0.55c
which is the optimal beam velocity in which the beam inter-
acts with the hybrid wave. As can be seen from the figure
the growth rate will increase with increased plasma tempera-
ture. The figure shows that we always obtain the maximum
normalized growth rate at the frequency of hybrid wave.

6. Conclusion
This was a supplementary article to our previous paper where
the interaction of the hollow electron beam by the electro-
magnetic wave was examined. This paper suggested that the
interaction of the electron beam with the hybrid mode was
far more effective. Thus, at the hybrid mode frequency, the
electron beam would give more energy to the wave and the
electromagnetic wave would be amplified further. At points
other than this frequency, the electron beam only interacted
with electromagnetic waves, so the amount of energy it could
transmit was small.
Conflict of interest statement:
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Appendix A
As can be seen from the article, in order to calculate the
poynting flux, it is necessary to calculate different electric and
magnetic fields in different regions. For this purpose, we first
started by calculating δJ⊥ and δJz. To derive δJ⊥ and δJz in
different region we can use equations 9-12:
Region 2:

δ Ĵ⊥,I =− c
4π

1
Λ+bpΛ−bp

([Ab +Ap +Abp]∇⊥δ Êz

+[Bb +Bp +Bbp]êz ×∇⊥δ B̂z

+[Db +Dp +Dbp]êz ×∇⊥δ Êz +[Eb +Ep]∇⊥δ B̂z)

Ab =
αbΛ0b(ck−ωβ0e)

∆ω0
,Ap =

αpΛ0bck
ω

Abp =−αbαp(ck−ωβ0e)(
1

∆ω0
− Ω2

ceγ0e

ω∆ω2
0
)+ ck(

1
ω

− Ω2
ceγ0e

ω2∆ω0
)

Bb =−αbΛ0b,Bp =−αpΛ0p,Bbp =−αbαp2(
Ω2

ceγ0e

ω∆ω0
−1)

Db = αb[
iΩce

∆ω2
0
(ck−ωβ0e)],Dp = αp[

iΩceγ0e

ω2 (ck)]

Dbp =−iαbαp((ck−ωβ0e)(
Ωce

∆ω2
0
− Ωceγ0e

ω∆ω0
)

+ck(
Ωceγ0e

ω2 − Ωce

ω∆ω0
))

Eb = αb[
iΩce

∆ω0
],Ep = αp[

iΩceγ0e

ω
]

Λ±bp = 1−
ω2

b ∆ω0

c2χ2
0 (∆ω0 ∓Ωce)

−
ω2

pγ0eω

c2χ2
0 (ω ∓Ωceγ0e)

αb =
ω2

b ∆ω2
0

c2χ2
0 (∆ω2

0 −Ω2
ce)

αp =
ω2

pγ0eω2

c2χ2
0 (ω

2 − (Ωceγ0e)2)

Λ0b = [1−
ω2

b

c2χ2
0
]

Λ0p = [1−
ω2

pγ0e

c2χ2
0
]

δ Ĵz,I = [
iω2

b ωγ0e

(4π∆ω2
0 γ2

0e)
+

iω2
pγ0e

(4πω)
]δ Êz

+iω2
b ∆ω

2
0 β0e

1
(4π∆ω2

0 (∆ω2
0 −Ω2

ce)χ
2
0 )

+ĀeT ∇
2
⊥δ Êz +

¯AbT ∇
2
⊥δ ˆ zB

ĀeT = Āep +OT 1

ĀbT = Ābp +OT 1

Ābp = (
iω

Λ+bpΛ−bp
)[

αbΩce

∆ω0
+

αpΩceγ0e

ω
]

+(
iΩceγ0e

Λ+bpΛ−bp
)(αbΛ0b +αpΛ0p

+2αpαb(
Ω2

ceγ0e

ω∆ω0
−1))+Ωceγ0e

Āep = k+(
ω

Λ+bpΛ−bp
)(

αbΛ0b(k−ωβ0e)

∆ω0

2251-7227/2022/16(1)/162203 [http://dx.doi.org/10.30495/jtap.162203]



Mehranfar et al. JTAP16(2022) -162203 7/7

+(
αpΛ0pk

ω
−αpαb((k−ωβ0e)(

1
∆ω0

− Ω2
ceγ0e

∆ω2
0 ω

)+k(
1
ω
− Ω2

ceγ0e

∆ω2
0 ω2 ))))

+(
Ωceγ0e

Λ+bpΛ−bp
)[

αbΩce(k−ωβ0e)

∆ω2
0

+(
αpkΩceγ0e

ω2 −αpαb(k−ωβ0e)×(
Ωce

∆ω2
0
− Ωceγ0e

ω∆ω0
)+k(

Ωceγ0e

ω2 − Ωce

ω∆ω0
))]

OT 1 =−
ω2

pγ0eχ
−2
0 ω2

T (1−
ω2

T
ω2 )

−1

ω2 − (Ωceγ0e)2 −
ω2

pγ0eωω2
T

χ2
0 (kω2 − (Ωceγ0e)2)(1− ω2

T
ω2 )Λ+bpΛ−bp

[
αbΛ0b(k−ωβ0e)

∆ω0
+(

αpΛ0pk
ω

−αpαb((k−ωβ0e)(
1

∆ω0
− Ω2

ceγ0e

∆ω2
0 ω

)+k(
1
ω
− Ω2

ceγ0e

∆ω2
0 ω2 )))]

−
ω2

pγ2
0eΩceω2

T

χ2
0 (ω

2 − (Ωceγ0e)2)k(1− ω2
T

ω2 )Λ+bpΛ−bp

αbΩce(k−ωβ0e)

∆ω2
0

+
αpΩceγ0ek

ω2

−αpαb(k−ωβ0e)(
Ωce

∆ω2
0
− Ωceγ0e

ω∆ω0
)+k(

Ωceγ0e

ω2 − Ωce

ω∆ω0
)

OT 2 =−
iω2

pγ2
0eχ

−2
0 Ωceω2

T (1−
ω2

T
ω2 )

−1

k(ω2 − (Ωceγ0e)2)
−

iω2
pγ0eωω2

T

χ2
0 (kω2 − (Ωceγ0e)2)(1− ω2

T
ω2 )Λ+bpΛ−bp

αbΩce

∆ω0

+
αpΩceγ0e

ω
−

iω2
pγ2

0eΩceω2
T

χ2
0 (ω

2 − (Ωceγ0e)2)k(1− ω2
T

ω2 )Λ+bpΛ−bp

×[αbΛ0b +αpΛ0p +2αpαb(
Ω2

ceγ0e

ω∆ω0
−1)]

Regions 1 and 3:

δ Ĵ⊥,II =− c
4π

Rp
ck
ω

∇⊥δ Êz − êz ×∇⊥δ B̂z + i[
ck
ω

êz ×∇⊥δ Êz +∇⊥δ B̂z]

δ Ĵz,II =
iω2

pγ0e

4πω
[1+

ω2
T

Aω2 ]δ Êz+[(
ω2

pγ0e

4πω
)(

ω2
T

Aωk
)(

ω

ω2 − (Ωceγ0e)2 )(
1
r
+

∂

∂ r
)]δ Êr

+[(
ω2

pγ0e

4πω
)(

iω2
T Ωceγ0e

Aωk(ω2 − (Ωceγ0e)2)
)× (−1

r
− ∂

∂ r
)]δ Êθ

In turn, the fluctuating electric and magnetic fields are:
Region 2:

δ Êr =
i

χ2
0
[k

∂δ Êz

∂ r
+

ω

c
1

Λ+bpΛ−bp
[Ab +Ap +Abp]

∂δ Êz

∂ r
+[Eb +Ep]

∂δ B̂z

∂ r
]

δ B̂r =
i

χ2
0
[k

∂δ B̂z

∂ r
+(

k
Λ+bpΛ−bp

)−[Bb +Bp +Bbp]
∂δ B̂z

∂ r
− [Db +Dp +Dbp]

∂δ Êz

∂ r
]

δ Êθ =
i

χ2
0
[(

ω

c
)

∂δ Êz

∂ r
+(

k
Λ+bpΛ−bp

)[Ab +Ap +Abp]
∂δ Êz

∂ r
+[Eb +Ep]

∂δ Êz

∂ r
]

Regions 1 and 3:

δ Êr =
i

χ2
0
[k

∂δ Êz

∂ r
+

ω

c
RP(ω,k)(

∂

∂ r
)[

ck
ω

δ Êz + iδ B̂z]]

δ B̂r =
i

χ2
0
[k

∂δ B̂z

∂ r
− ikRP(ω,k)(

∂

∂ r
)[

ck
ω

δ Êz + iδ B̂z]]

δ B̂θ =
i

χ2
0
[
ω

c
∂δ Êz

∂ r
+ kRP(ω,k)(

∂

∂ r
)[

ck
ω

δ Êz + iδ B̂z]]
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