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ABSTRACT  
      This study presents an analytical investigation of the energy and momentum (Navier–

Stokes) equations governing convection heat transfer over a flat plate in an incompressible flow 

regime. The original multivariable partial differential equations are first transformed into their 

non-dimensional forms using appropriate dimensionless parameters. Given the linear nature of 

the non-dimensional energy equation and the nonlinear character of the momentum equation, 

distinct solution methods are adopted for each. The energy equation is solved directly by 

applying the physical boundary conditions, while the nonlinear momentum equation is 

addressed using the Homotopy Perturbation Method (HPM), with an initial approximation 

derived from the problem's boundary conditions. The analytical results are presented through 

tables and graphs, illustrating temperature distributions, stream functions, velocity profiles, and 

skin friction coefficients. Additionally, the influence of non-dimensional parameters such as η, 

𝑎, and Pr on temperature and heat transfer behavior is examined in detail. 
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1. INTRODUCTION  
             Heat transfer is always very important in industry so that many researchers have 

conducted many studies in this field. The discussion of the equations governing heat transfer 

at various surfaces such as vertical, horizontal, sloping flat surfaces, and spherical and 

cylindrical objects, blades and fins and etc. in the industry, refineries and power plants has 

attracted the attention of the scientists. Accordingly, the analytical solution of the equations 

governing heat transfer has been considered in this study in which the linear part of the 

governing equations (energy equation) has been solved by the direct method and their non -

linear part (momentum equation) has been done by the Homotopy Perturbation Method (HPM) 

and the extensive researches have been conducted in this field around the world.   

          Raju et al. (2014) have conducted the analytical solution of  MHD    of free convective 

of dissipative boundary layer flow past a porous vertical surface in the presence of thermal  
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radiation, chemical reaction and constant suction [1]. In 2014, Nofel has studied the application 

of the Homotopy Perturbation Method to nonlinear heat conduction [2]. In 2012, Yildirim and 

his colleagues have studied the analytical solution of MHD stagnation point flow in porous 

media by means of the Homotopy Perturbation Method [3]. Rashidi and his colleague (2011) 

have considerd the analytic approximate solutions for heat transfer of a micropolar fluid 

through a porous medium with radiation [4].  

           When the fluid with a specified temperature begins to move over a solid surface whose 

temperature is different from that of the fluid, convection heat transfer occurs due to the 

difference in temperature between solid surface and fluid. If the temperature difference 

between the moving fluid and the solid surface is high, the thermal boundary layer develops, 

and the fluid particles in contact with the surface reach a thermal equilibrium with the surface. 

The fluid in contact with the surface exchanges energy with the adjacent fluid and then it leads 

to the creation of a temperature gradient and this process continues with the formation of a 

temperature profile. Scientists and researchers have done a variety of research in this regard. 

For example, yacob et al. (2011) have examined boundary layer flow past a 

stretching/shrinking surface beneath an external uniform shear flow with a convective surface 

boundary condition in a nanofluid. In this study, the fluid flow is steady and the research has 

also been solved numerically using the Runge-Kutta method of Order 4 [5]. Makinde (2011) 

has studied the similarity solution for natural convection from a moving vertical plate with 

internal heat generation and a convective boundary condition [6]. Ishak (2010) has studied the 

similarity solutions for flow and heat transfer over a permeable surface with convective 

boundary condition [7]. Aziz (2009) has done a similarity solution for laminar thermal 

boundary layer over a flat plate with a convection surface boundary condition. This research 

has been solved numerically using the Runge-Kutta method of Order 4 [8]. In this research, it 

has been considered the analytical solution of two equations, one momentum (Navier-Stokes) 

equation and another energy equation. The heat transfer is a forced convective and the desired 

fluid is steady. Homotopy perturbation (HPM) and direct methods have been used to solve the 

momentum (Navier-Stokes) equation and energy equation, respectively. At the end, the results 

of the solution are displayed in the form of tables and graphs. 

 

2. Statement of the problem 
           In this problem, there is an incompressible two-dimensional steady flow over a flat plate. 

It is assumed that the desired flat plate is vertical, the thermal boundary layer is laminar and 

convective boundary condition is superficial. x and y axes have been considered in the direction 

of the plate and perpendicular to it, respectively. The cold fluid with temperature T∞ and 

constant velocity U∞ is moving over a horizontal flat plate with temperature Tf. Heat transfer 

takes place due to the difference in temperature between the plate and the fluid (Tf >T∞). 

According to the non-slip principle, when a fluid moves over the desired surface, a layer of 

fluid which is in contact with the solid surface, is motionless and we assume that its velocity is 

zero and hence the heat transfer in this thin layer takes place only as a conduction, so: 𝑞̇ c𝑜𝑛𝑑 

= 𝑞̇ c𝑜nv . Heat transfer in the higher layers occurs as convection and the fluid properties have  

been assumed constant. 
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Fig. 1. Thermal boundary layer on the flat plate under the free stream U∞ , T∞ 

 
       The equations governing the problem include three equations of continuity, momentum 

(Navier-Stokes) and energy that are as follows: 

 

Continuity equation:   

 
Momentum (Navier-Stokes) equation: 

 
Energy equation:   

 
          Here, u and v are the speed components along x and y, respectively; T is temperature; ν  

is fluid kinematic viscosity (velocity penetration factor); and α is thermal diffusivity of the  

fluid. 

         

          Speed and temperature boundary conditions are as follows: 

 
         Using dimensionless quantities, the equations with partial multivariate derivatives are  

converted to ordinary univariate differential equations. The dimensionless quantities are: 
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          Here, η is independent variable, f is a variable dependent on the flow function 𝜓, and θ  

is dimensionless temperature. Also, 𝜃∞ is dimensionless temperature of fluid free flow and 𝜃𝑓  

is dimensionless temperature of flat plate.  

           After non-dimensionalization, momentum (Navier-Stocks) equation and energy  

equation will be becoming as follows: (therefore, we have momentum equation (2) and 

energy equation (3) as dimensionless ones as follows): 

 
          The boundary conditions for two equations (momentum and energy) in the non 

dimensional mode are: 

 
 

3. Solving method  

  

         The equations governing the problem were equations with partial multivariate derivatives 

which have been converted to the ordinary univariate differential equations with orders higher 

than one derivative through non-dimensionalization. Due to nonlinearity, the dimensionless 

momentum (Navier-Stokes) equation (6) cannot be solved by direct method as a linear 

equation, but equation (7), which is a linear equation, can be solved directly. Given the 

homogeneity of these two equations, two general solutions will be obtained.   

          We will first solve the energy equation (7), which has a homogeneous boundary 

condition (9) and a non- homogeneous boundary condition (10).   

 
        In order to solve the above equations in a direct way, the following solutions are guessed  

for θ, θ′ and θ′′.   

 
       By applying the solutions (11)-(13), the energy equation governing the problem (7) will 

become as follow:   

 
       The energy equation (14) has two roots which one of them is zero and another is 

−
1

2
 𝑃𝑟𝑓 .; according to two different roots and the use of a direct solving method, we have: 
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        By applying the boundary conditions governing the obtained energy equation, the  

constant quantities 𝐶1and 𝐶2 are obtained as follows:   

 
        Given the specified coefficients 𝐶1 and 𝐶2, the solution from the governing energy 

equation is as follows:   

 
        By determining the solution from solving the energy equation, we try to solve the 

momentum (Navier-Stokes) equation.   

         According to nonlinearity, the momentum (Navier-Stokes) equation cannot be solved as  

the previous method. Therefore, Homotopy Perturbation Method (HPM) can be used to solve  

equation (6).   

            Homotopy Perturbation Method (HPM) is a method for solving nonlinear equations 

developed by J. H. He in 1999. This new method has high precision and convergence speed. 

This technique is frequently used in engineering science and it is a good alternative to the Forth  

Order Runge-Kutta method because of its simplicity and high speed in doing calculations.   

We assume that the nonlinear differential equation is as follows: 

 
           And, the boundary condition of equation (19) is as follows: 

 
            B is a boundary operator and Γ is the boundary of the domain Ω.  

In equation (19), we have: 

           A (u) =𝐿 (u) +N (u), where 𝐿 (u) and N (u) are equal to linear and nonlinear parts, 

respectively. Also, f(r) is known as an analytic function and A(u) is general differential 

operator. According to the Homotopy method, the Homotopy v(r,P):Ω×[0,1]→R can be  

formed in such a way that the Homotopy Perturbation equation is as follows: 

 
          In equation (21), P is known as Perturbation variable which has a numerical value 

between zero and one (P ∈ [0,1]). The results from equation (21) are expressed as follows: 

 
         According to the results from (22)-(23), if P changes from zero to one, v(r,P) converts 

from 𝑢0(𝑟) to 𝑢(𝑟).[2]  

         The obtained solutions can be expressed as power series of P: 

 
        Then, the approximate solution of equation (19) can be obtained with the following limit: 

 
        By replacing equation (6) in equation (21), equation (21) is expressed as follows: 
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        In equation (26), 𝐿(𝑢0) is equal to initial guess which is equal to −2𝑒−𝜂 in this study.         

we put the expression "𝑓 = 𝑓0 + 𝑃𝑓1"instead of " f " and extend the equation (26) based 

on the said assumptions and then arrange the sentences based on powers equal to P. 

For  𝑝0mode: 

For 𝑝1 mode: 

 

        According to the specified boundary conditions, the solutions from equations (27) and 

(28) are equal to: 

 
After determining 𝑓0 and 𝑓1 from the above solutions, the equation " f " is expressed as     

follows: 

   
 

4. Results and discussion  

        In this section, we will examine the results of solving the momentum (Navier-Stokes) 

equation and the energy equation through tables and graphs.   

       Considering the solution of the momentum (Navier-Stokes) equation by HPM method,    

the flow, velocity and skin friction graphs are displayed in terms of the variable η for the 

equation (6) as follows: 
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Fig. 2. Flow graph in η 

 
Fig. 3. Velocity graph in η   
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Fig. 4. Skin friction graph in η   

 

       Now, we review the tables and graphs related to the energy equation governing the   

problem using the specified momentum equations graphs.  

      The energy equation governing the problem has a known general solution (18) in which   

the effective parameters include Prandtl number (𝑃𝑟), the variable dependent on the flow 

function (f), the independent variable of the problem (η) and α, in which the parameter α is 

equal to:   

 
        As seen in this relation, ℎ𝑓 is equal to convection heat transfer factor and k is equal to 

conductive heat transfer factor.    

        In the below tables, the numerical values of −θ′ (0), θ (0) have been given for three    

Prandtl numbers 0.1, 0.72 and 10 for different α values. 
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Table 1. Numerical values for Prandtl number 0.1 

 
 

 

Table 2. Numerical values for Prandtl number 0.72 
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Table 3. Numerical values for Prandtl number 10 

 

 
 

         In the above tables, the numerical value of θ (0) obtained from analytical solution has 

been compared with the value from numerical solution [19].   

         We know that Prandtl number (Pr) is a dimensionless number that represents the ratio of  

velocity penetration factor to thermal penetration factor. This dimensionless number is of 

orders 1, 10 and 10-2 for gases, water and liquid metals, respectively. For liquid metals, Prandtl  

number is smaller than one. Therefore, the heat is released very quickly and the thermal 

boundary layer 𝛿𝑡 is thicker than the velocity boundary layer δ (𝑃𝑟 <<1, δ < 𝛿𝑡). While, if the 

Prandtl number is much larger than one, the momentum is released much faster than heat and 

the thermal boundary layer 𝛿𝑡 is thinner than the velocity boundary layer δ (𝑃𝑟 >>1, δ > 𝛿𝑡). 

 

         Figures (5), (6) and (7) are the temperature graphs in terms of variable η for Prandtl  

numbers 0.1, 0.72 and 10, respectively. 
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Fig. 5. Temperature graph in terms of η for 𝑃𝑟=0.1 

 

 

 

 

 

 

 

 
 

Fig. 6. Temperature graph in terms of η for 𝑃𝑟=0.72 
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Fig. 7. Temperature graph in terms of η for 𝑃𝑟=10 

 

 

5. Conclusions  

 

      Heat transfer equations including momentum (Navier-Stokes) equation and the energy 

equation have been analyzed through analytical solution. Below are the results of the analytical  

solution and its comparison with numerical solution.   

I. As η increases, the flow velocity is increased toward one.  

II. As η increases, skin friction coefficient is reduced sharply. 

III. As Prandtl number (𝑃𝑟) increases from 0.1 to 10, the value of θ (0) for α=0.05 is  

IV. reduced. 

V. As Prandtl number (𝑃𝑟) increases from 0.1 to 10, the value of θ (0) for α=20 is  

VI. reduced  

VII. As the value of α increases from 0.05 to 20, the value of θ (0) is increased.  

VIII. The results obtained from the analytic solution in comparison with the numerical  

IX. solution (fourth order Runge-Kutta) for the energy equation show that the  

X. numbers obtained from the analytical solution vary with the numbers resulting  

XI. from the numerical solution in thousandth and ten thousandths. 
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6. Appendix:  

x                         vector in the direction of the plate  

y                         vector perpendicular to the plate  

u                         velocity component in the direction of the plate  

v                         velocity component perpendicular to the plate   

T∞                     Fluid temperature around the plate 

U∞                     constant speed fluid  

Tf                       the desired plate temperature  

T                         temperature 

ν                         velocity penetration factor 

α                        The thermal penetration factor  

η                        problem variable  

f                        dimensionless velocity factor  

θ                        dimensionless temperature   

Pr                     dimensionless Prandtl number     

P                       perturbation variable  

A (u)                 general differential operator  

L (u)                  linear part  

L (u0)                initial guess  

N (u)                  nonlinear part  

F(r)                    analytical function  

B                        boundary operator  

hf                       convection heat transfer factor  

K                       conductive heat transfer factor  

δ                        velocity boundary layer  

δt                       thermal boundary layer 
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