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ABSTRACT

This study presents an analytical investigation of the energy and momentum (Navier—
Stokes) equations governing convection heat transfer over a flat plate in an incompressible flow
regime. The original multivariable partial differential equations are first transformed into their
non-dimensional forms using appropriate dimensionless parameters. Given the linear nature of
the non-dimensional energy equation and the nonlinear character of the momentum equation,
distinct solution methods are adopted for each. The energy equation is solved directly by
applying the physical boundary conditions, while the nonlinear momentum equation is
addressed using the Homotopy Perturbation Method (HPM), with an initial approximation
derived from the problem's boundary conditions. The analytical results are presented through
tables and graphs, illustrating temperature distributions, stream functions, velocity profiles, and
skin friction coefficients. Additionally, the influence of non-dimensional parameters such as ),
a, and Pr on temperature and heat transfer behavior is examined in detail.

Keywords: Analytical solution, Homotopy Perturbation Method (HPM), Thermal boundary
layer, Convection boundary layer, Flat plate

1. INTRODUCTION
Heat transfer is always very important in industry so that many researchers have

conducted many studies in this field. The discussion of the equations governing heat transfer
at various surfaces such as vertical, horizontal, sloping flat surfaces, and spherical and
cylindrical objects, blades and fins and etc. in the industry, refineries and power plants has
attracted the attention of the scientists. Accordingly, the analytical solution of the equations
governing heat transfer has been considered in this study in which the linear part of the
governing equations (energy equation) has been solved by the direct method and their non -
linear part (momentum equation) has been done by the Homotopy Perturbation Method (HPM)
and the extensive researches have been conducted in this field around the world.

Raju et al. (2014) have conducted the analytical solution of MHD  of free convective
of dissipative boundary layer flow past a porous vertical surface in the presence of thermal



radiation, chemical reaction and constant suction [1]. In 2014, Nofel has studied the application
of the Homotopy Perturbation Method to nonlinear heat conduction [2]. In 2012, Yildirim and
his colleagues have studied the analytical solution of MHD stagnation point flow in porous
media by means of the Homotopy Perturbation Method [3]. Rashidi and his colleague (2011)
have considerd the analytic approximate solutions for heat transfer of a micropolar fluid
through a porous medium with radiation [4].

When the fluid with a specified temperature begins to move over a solid surface whose
temperature is different from that of the fluid, convection heat transfer occurs due to the
difference in temperature between solid surface and fluid. If the temperature difference
between the moving fluid and the solid surface is high, the thermal boundary layer develops,
and the fluid particles in contact with the surface reach a thermal equilibrium with the surface.
The fluid in contact with the surface exchanges energy with the adjacent fluid and then it leads
to the creation of a temperature gradient and this process continues with the formation of a
temperature profile. Scientists and researchers have done a variety of research in this regard.
For example, yacob et al. (2011) have examined boundary layer flow past a
stretching/shrinking surface beneath an external uniform shear flow with a convective surface
boundary condition in a nanofluid. In this study, the fluid flow is steady and the research has
also been solved numerically using the Runge-Kutta method of Order 4 [5]. Makinde (2011)
has studied the similarity solution for natural convection from a moving vertical plate with
internal heat generation and a convective boundary condition [6]. Ishak (2010) has studied the
similarity solutions for flow and heat transfer over a permeable surface with convective
boundary condition [7]. Aziz (2009) has done a similarity solution for laminar thermal
boundary layer over a flat plate with a convection surface boundary condition. This research
has been solved numerically using the Runge-Kutta method of Order 4 [8]. In this research, it
has been considered the analytical solution of two equations, one momentum (Navier-Stokes)
equation and another energy equation. The heat transfer is a forced convective and the desired
fluid is steady. Homotopy perturbation (HPM) and direct methods have been used to solve the
momentum (Navier-Stokes) equation and energy equation, respectively. At the end, the results
of the solution are displayed in the form of tables and graphs.

2. Statement of the problem

In this problem, there is an incompressible two-dimensional steady flow over a flat plate.
It is assumed that the desired flat plate is vertical, the thermal boundary layer is laminar and
convective boundary condition is superficial. x and y axes have been considered in the direction
of the plate and perpendicular to it, respectively. The cold fluid with temperature Too and
constant velocity Uco is moving over a horizontal flat plate with temperature Tf. Heat transfer
takes place due to the difference in temperature between the plate and the fluid (Tf >Too).
According to the non-slip principle, when a fluid moves over the desired surface, a layer of
fluid which is in contact with the solid surface, is motionless and we assume that its velocity is
zero and hence the heat transfer in this thin layer takes place only as a conduction, so: ¢ cond
= g conv . Heat transfer in the higher layers occurs as convection and the fluid properties have
been assumed constant.
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Fig. 1. Thermal boundary layer on the flat plate under the free stream Uoo , Too

The equations governing the problem include three equations of continuity, momentum
(Navier-Stokes) and energy that are as follows:

Continuity equation:
du dv _
a + @ =0 (1)
Momentum (Navier-Stokes) equation:
du du 0%u 7
u a + U@ =V a—yz
Energy equation:
oT  oT  9°T

ua+va—y=aa—yz (3)

(2)

Here, u and v are the speed components along x and y, respectively; T is temperature; v
is fluid kinematic viscosity (velocity penetration factor); and a is thermal diffusivity of the
fluid.

Speed and temperature boundary conditions are as follows:
u(x,0)=v(x,0)=0
u(x, ) = U,
T(x,0) =T,
(4)
Using dimensionless quantities, the equations with partial multivariate derivatives are
converted to (i)rdinary univariate differential equations. The dimensionless quantities are:

= ()

VX
i) = ———
Up+/vx / Uy
T—Ts
g =
T — T,

()



Here, 1 is independent variable, f is a variable dependent on the flow function vy, and 6
is dimensionless temperature. Also, 8., is dimensionless temperature of fluid free flow and 6
is dimensionless temperature of flat plate.

After non-dimensionalization, momentum (Navier-Stocks) equation and energy
equation will be becoming as follows: (therefore, we have momentum equation (2) and
energy equation (3) as dimensionless ones as follows):

2f”f + f‘f” — O (6)
6" + %Prfe’ =0 (7)

The boundary conditions for two equations (momentum and energy) in the non
dimensional mode are:

£(0) = £'(0) = 0

f'(0) =1
6'(0) = —a[1 - 6(0)]
B(0) =0
(8)

3. Solving method

The equations governing the problem were equations with partial multivariate derivatives
which have been converted to the ordinary univariate differential equations with orders higher
than one derivative through non-dimensionalization. Due to nonlinearity, the dimensionless
momentum (Navier-Stokes) equation (6) cannot be solved by direct method as a linear
equation, but equation (7), which is a linear equation, can be solved directly. Given the
homogeneity of these two equations, two general solutions will be obtained.

We will first solve the energy equation (7), which has a homogeneous boundary
condition (9) and a non- homogeneous boundary condition (10).

B8(c0) =0 %)
6’(0) = —al1 —0(0)] (10)
In order to solve the above equations in a direct way, the following solutions are guessed

for 0, 6" and 0"

B =eMn (11)
0’ = AeM (12)
0" = AZeMn (13)

By applying the solutions (11)-(13), the energy equation governing the problem (7) will
become as follow:
1
AZeM 4 EPrf e’ =0 (14)

The energy equation (14) has two roots which one of them is zero and another is

1 . . . :
-3 P.f .; according to two different roots and the use of a direct solving method, we have:

1
0 = C,e®N 4 C,el72PrON (15)



By applying the boundary conditions governing the obtained energy equation, the
constant quantities C;and C, are obtained as follows:

C,=0 (16)
d
C2 1 (17)
7Prf+ a

Given the specified coefficients C; and C,, the solution from the governing energy
equation is as follows:
a 1
0= a(=3PrOn (18)

%Prf—i-a

By determining the solution from solving the energy equation, we try to solve the
momentum (Navier-Stokes) equation.

According to nonlinearity, the momentum (Navier-Stokes) equation cannot be solved as
the previous method. Therefore, Homotopy Perturbation Method (HPM) can be used to solve
equation (6).

Homotopy Perturbation Method (HPM) is a method for solving nonlinear equations
developed by J. H. He in 1999. This new method has high precision and convergence speed.
This technique is frequently used in engineering science and it is a good alternative to the Forth
Order Runge-Kutta method because of its simplicity and high speed in doing calculations.
We assume that the nonlinear differential equation is as follows:

A(u) —f(r)=0,re Q (19)
And, the boundary condition of equation (19) is as follows:
du
Blu—|)=0,rerl 20
(u. an) T (20)

B is a boundary operator and I' is the boundary of the domain Q.
In equation (19), we have:

A (u) =L (u) +N (u), where L (u) and N (u) are equal to linear and nonlinear parts,
respectively. Also, f(r) is known as an analytic function and A(u) is general differential
operator. According to the Homotopy method, the Homotopy v(r,P):Qx[0,1]—R can be
formed in such a way that the Homotopy Perturbation equation is as follows:

H(v,p) = (1 = P)[L(V) — L(up)] + P[A(V) —f(r)] = 0 (21)

In equation (21), P is known as Perturbation variable which has a numerical value
between zero and one (P € [0,1]). The results from equation (21) are expressed as follows:
H(v,0) = L(v) — L(ug) =0 (22)
H(v,1) = A(v) —f(r) =0 (23)

According to the results from (22)-(23), if P changes from zero to one, v(r,P) converts
from uy(r) to u(r).[2]
The obtained solutions can be expressed as power series of P:

Vv =vy+ Pv; +P%v, + - (24)
Then, the approximate solution of equation (19) can be obtained with the following limit:
u=£irriv=v0+v1+v2+--- (25)

By replacing equation (6) in equation (21), equation (21) is expressed as follows:



(1 =P)[2f"" = L(up)] + P[2f"" +ff"] =0 (26)
In equation (26), L(u,) is equal to initial guess which is equal to —2e~" in this study.

we put the expression "f = f, + Pf;"instead of " f " and extend the equation (26) based

on the said assumptions and then arrange the sentences based on powers equal to P.

For p°mode:

PO 2} = —2eM
fo(0) = 0,£((0) = 0,f5(e0) = 1

(27)
For p! mode:
Pl: 2f]" = +2e™ — f,f)
f;(0) = 0,f(0) = 0,f{(0) =0 (28)

According to the specified boundary conditions, the solutions from equations (27) and
(28) are equal to:
fp=eM+n-1 (29)
f; = 0.0625e72" + 0.5ne ™™ — 0.3751 — 0.0625 (30)

After determining f; and f; from the above solutions, the equation " f " is expressed as
follows:

f(m) = fo(m) + £, (n) 31

4. Results and discussion
In this section, we will examine the results of solving the momentum (Navier-Stokes)
equation and the energy equation through tables and graphs.
Considering the solution of the momentum (Navier-Stokes) equation by HPM method,
the flow, velocity and skin friction graphs are displayed in terms of the variable 1 for the
equation (6) as follows:



Fig. 2. Flow graph in 0
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Fig. 3. Velocity graph in n
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Fig. 4. Skin friction graph in n

Now, we review the tables and graphs related to the energy equation governing the
problem using the specified momentum equations graphs.

The energy equation governing the problem has a known general solution (18) in which
the effective parameters include Prandtl number (B.), the variable dependent on the flow
function (f), the independent variable of the problem (n) and o, in which the parameter a is
equal to:

h
a=?f vx /[ Ug (32)

As seen in this relation, hf is equal to convection heat transfer factor and k is equal to
conductive heat transfer factor.

In the below tables, the numerical values of —6’ (0), 6 (0) have been given for three
Prandtl numbers 0.1, 0.72 and 10 for different o values.



Table 1. Numerical values for Prandtl number 0.1

a =69 600) | 8(0)[19]
0.05 00373 | 02545 | 02536
0.1 00594 | 04065 | 04046
0.2 0848 | 32520 | 05761
04 01076 | 07313 | 07310
0.6 01182 | 08032 | 08030
08 01243 | 08448 | 08446

1 0283 | 08718 | 08717

5 01430 | 09714 | 09714
10 01450 | 09855 | 09855
20 01461 | 09927 | 09927

Table 2. Numerical values for Prandtl number 0.72

o | -0'0) [19]] 8(0) | 8(0)[19]
005 | 00428 | 01441 | 01447
01 00747 | 02530 | 0.2528
02 01193 | 04036 | 04035
04 01700 | 05751 | 05750
06 01981 | 06700 | 06699
08 02159 | 07302 | 0.7302

1 02282 | 07719 | 07718

5 02791 | 09442 | (09441
10 02871 | 09713 | 09713
20 02913 | 09854 | 09854




Table 3. Numerical values for Prandtl number 10

—-0'(0) [19]

6(0)

8(0)[19]

0.05

0.0468

0.0641

0.0643

0.1

0.0879

0.1212

0.1208

0.2

0.1569

0.2162

0.2155

0.4

0.2582

0.3556

0.3546

0.6

0.3289

0.4528

0.4518

0.8

0.3812

0.5246

0.5235

1

0.4213

0.5797

0.5787

5

0.6356

0.8734

0.8729

10

0.6787

0.9324

09321

20

0.7026

0.9650

0.9649

In the above tables, the numerical value of 0 (0) obtained from analytical solution has
been compared with the value from numerical solution [19].

We know that Prandtl number (Pr) is a dimensionless number that represents the ratio of
velocity penetration factor to thermal penetration factor. This dimensionless number is of
orders 1, 10 and 10-2 for gases, water and liquid metals, respectively. For liquid metals, Prandtl
number is smaller than one. Therefore, the heat is released very quickly and the thermal
boundary layer &t is thicker than the velocity boundary layer 6 (Pr <<1, & < §t). While, if the
Prandtl number is much larger than one, the momentum is released much faster than heat and
the thermal boundary layer 8t is thinner than the velocity boundary layer & (Pr >>1, & > §t).

Figures (5), (6) and (7) are the temperature graphs in terms of variable n for Prandtl
numbers 0.1, 0.72 and 10, respectively.
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Fig. 5. Temperature graph in terms of | for Pr=0.1

Fig. 6. Temperature graph in terms of ) for Pr=0.72



a = 0.05,0.1,0.2,0.4,0.6,0.8,1, 5,10,20

Fig. 7. Temperature graph in terms of n for Pr=10

5. Conclusions

Heat transfer equations including momentum (Navier-Stokes) equation and the energy
equation have been analyzed through analytical solution. Below are the results of the analytical
solution and its comparison with numerical solution.

I.  Asn increases, the flow velocity is increased toward one.
Il.  Asmnincreases, skin friction coefficient is reduced sharply.
I1l.  As Prandtl number (Pr) increases from 0.1 to 10, the value of 0 (0) for a=0.05 is
IV.  reduced.
V.  As Prandtl number (Pr) increases from 0.1 to 10, the value of 6 (0) for a=20 is
VI.  reduced
VII.  As the value of a increases from 0.05 to 20, the value of 0 (0) is increased.
VIII.  The results obtained from the analytic solution in comparison with the numerical
IX.  solution (fourth order Runge-Kutta) for the energy equation show that the
X.  numbers obtained from the analytical solution vary with the numbers resulting
XI.  from the numerical solution in thousandth and ten thousandths.



6. Appendix:

X vector in the direction of the plate
y vector perpendicular to the plate

u velocity component in the direction of the plate
v velocity component perpendicular to the plate
Too Fluid temperature around the plate
Uoo constant speed fluid

Tf the desired plate temperature

T temperature

v velocity penetration factor

a The thermal penetration factor

n problem variable

f dimensionless velocity factor

0 dimensionless temperature

Pr dimensionless Prandtl number

P perturbation variable

A (u) general differential operator

L (u) linear part

L (u0) initial guess

N (u) nonlinear part

F(r) analytical function

B boundary operator

hf convection heat transfer factor

K conductive heat transfer factor

d velocity boundary layer

ot thermal boundary layer
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