

Research Article

A novel basic dicationic molten salt based on 4, 4'-bipyridine for synthesis of 1, 8-dioxooctahydroxanthene and 1, 8-dioxodecahydroacridine derivatives under solvent-free conditions

Mosahhar Sadeghi¹, Ali Ezabadi^{1,*}, Behin Omidi²

¹Department of Chemistry, CT.C, Islamic Azad University, Tehran, Iran

²Department of Biology, CT.C, Islamic Azad University, Tehran, Iran

ABSTRACT

Xanthene and acridine derivatives are important classes of heterocyclic compounds exhibiting remarkable pharmacological activities. In this study, a versatile and efficient catalytic protocol was developed for the synthesis of 1,8-dioxooctahydroxanthene and 1,8-dioxodecahydroacridine derivatives. The reactions were promoted by a novel dicationic Brönsted molten salt catalyst, 1, 1'-sulfinyl bis(4, 4'-bipyridinium)dichloride ($[(BPY)_2SO][Cl]_2$) under solvent-free conditions. The catalytic system proved to be highly efficient, affording 1, 8-dioxooctahydroxanthene derivatives in 30 min-60 min with 80%-95% yield, and 1, 8-dioxodecahydroacridine derivatives in 50 min-70 min with 83%-92% yield. Moreover, the catalyst showed outstanding reusability and could be recycled for at least six consecutive runs without any noticeable loss of activity.

Keywords: basic dicationic molten salt; bipyridine, 1, 8-dioxooctahydroxanthene derivatives; 1, 8-dioxodecahydroacridine derivatives; solvent-free; multi-component reaction

ARTICLE INFO

Received: 2 December 2025

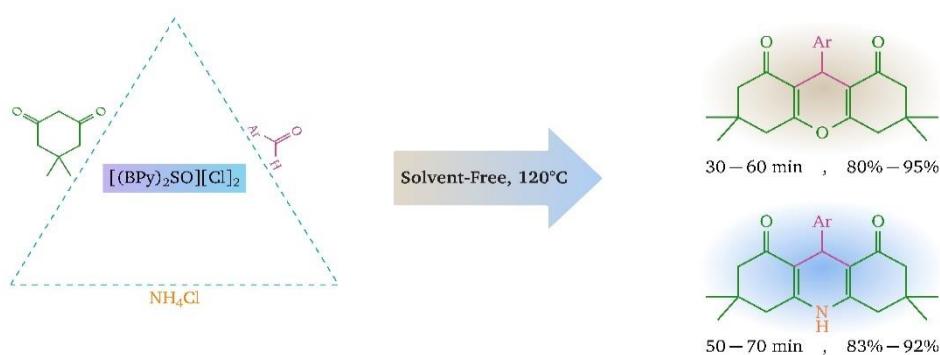
Accepted: 27 January 2026

Available: 30 January 2026

✉: A. Ezabadi
aliezabadi@iau.ac.ir

 10.82437/jcrs.2025.1231972

Introduction

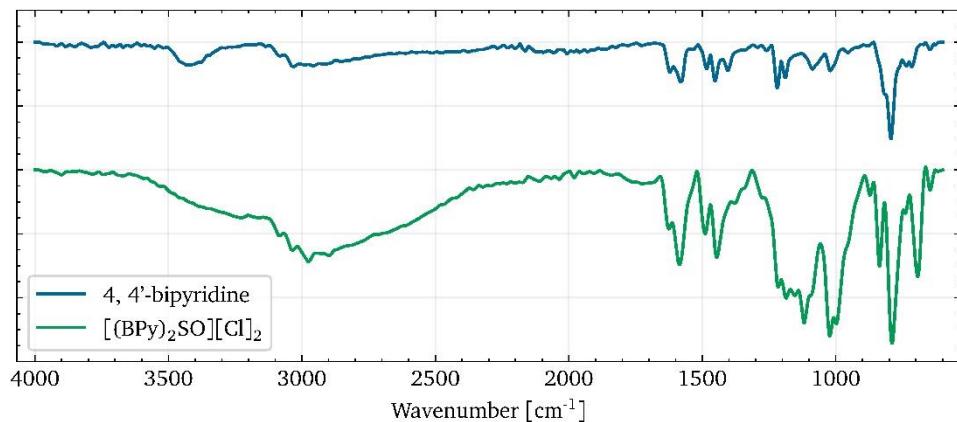

Ionic liquids (ILs), a special group of molten salts, are organic salts composed of large unsymmetrical organic cations containing various substituents and weakly coordinated organic or inorganic anions [1]. These interesting compounds have versatile properties, including excellent solubility, high thermal and chemical stability, negligible vapor pressure, recyclability, wide liquid range, and designable structure via suitable modification of the cation and the anion [2,3]. Recently, a new class of IL research has emerged, focusing on developing dicationic ionic liquids (DILs) [4]. Such ILs contain two monocations combined

into a dication and linked by a rigid or flexible organic spacer [5]. In recent years, the utilization of DILs for a variety of research areas, such as stationary phase for chromatography (GC), electrochemistry, organic reaction catalyst, extractants, lubricants, and electrolytes, have blossomed [4,6].

Basic ionic liquids (BILs), a kind of ionic liquid, can be considered safer alternatives to organic and inorganic bases in many reactions. They exhibit remarkable properties, such as a wide range of melting points to remain in a liquid state, reasonable moisture and thermal stability, the ability to dissolve inorganic, organic, and polymeric materials, lower vapor pressure, and recyclable as homogeneous catalysts or reactant medium [7]. BILs are used in various organic transformations such as Knovenagel condensation [8-10], Michael addition [11-13], Aza-Michael reaction [7], synthesis of cyclic carbonate [14], conjugate cyanation of CF_3 -substituted alkyliden malonets, synthesis of 2-amino-4*H*-chromenes and spirochromenes [15], glucose aqueous isomerization [13], synthesis of *sec*-butanol from *sec*-butyl acetate [17], synthesis of 2-(phenylsulfonyl)-1*H*-benzo[a]pyrano[2,3-c]phenazin-3-amine derivatives [18], and synthesis of xanthenes [19].

Acridines are among the important class of heterocyclic compounds that have been exploited for their remarkable pharmaceutical and biological activities, such as anticancer [20], anti-tumor [21], anti-malaria [22], anti-microbial [23] and antifungal properties [24] as well as calcium β -blockers [25]. Acridines can be synthesized by multi-component reactions (MCRs), which is a powerful strategy for assembling complicated molecules in a single synthetic operation. As a commonly used protocol for the synthesis of these heterocyclic compounds, a three-component reaction of various aldehydes, dimedone, and nitrogen sources such as ammonium chloride [26], ammonium acetate [27], and aniline [28] are used. For accelerating this MCR, various catalysts have been used such as $[\text{ImSi}][\text{PF}_6]@\text{xanthan}$ [29], 1-methylimidazolium tricyanomethanide $[\text{HMIM}]C(\text{CN})_3$ [30], pulsed laser ablated

zeolite nanoparticles [31], betainium-based ionic liquid [32], N-propyl benzoguanamine sulfonic acid supported on magnetic Fe_3O_4 nanoparticles [33], KH_2PO_4 [34], biodegradable chitosan SO_3H [35], $\text{Fe}_3\text{O}_4@\text{SiO}_2$ [36], graphene-based nanoparticles [37], nano- $\text{Fe}_3\text{O}_4@\text{SiO}_2@(\text{CH}_2)_3\text{-Imidazole-SO}_3\text{HCl}$ [38], hydroxylamine-O-sulfonic acid [39], and sulfonic acid functionalized imidazolium salts [40]. Catalytic condensation of aldehydes with dimedone is a usual procedure for the synthesis of 1, 8-dioxooctahydroxanthene derivatives such as graphene oxide incorporated strontium nanoparticles [41], Brönsted acidic ionic liquid [42], ZrCl_4 or NH_4VO_3 [43], cyclodextrin nanosponges [44], immobilized Lewis acidic ionic liquid on perlite nanoparticle surface [45], $\text{Na}_2\text{Ca}(\text{HPO}_4)_2$ [46], SnP_2O_7 [47], $[\text{H-Pyrr}][\text{HSO}_4]$ [48], 1,10-Phenanthrolin-1-ium Trinitromethanide [49], and sulfonic acid-functionalized titana-coated magnetic nanoparticles [50]. Although the literature survey outlines numerous methods for the synthesis of acridines and xanthenes, many of them suffer from several drawbacks, such as the use of expensive catalysts, long reaction times, low yields, the need for harsh reaction conditions (e.g., refluxing and strongly acidic media), and tedious, time-consuming work-up procedures. In line with our research on the synthesis of novel ionic liquids [51-64] herein, we report the synthesis and characterization of the novel basic dicationic molten salt and its application in the synthesis of 1, 8-dioxooctahydroxanthene and 1, 8-dioxodecahydroacridine derivatives under solvent-free conditions (Scheme 1).


Scheme 1. Schematic synthesis of 1, 8-dioxooctahydroxanthene and 1, 8-dioxodecahydroacridine derivatives using $[(\text{BPy})_2\text{SO}][\text{Cl}]_2$.

2. Results and discussion

2.1 Characterization of the basic dicationic molten salt

2.1.1. Infrared spectroscopy

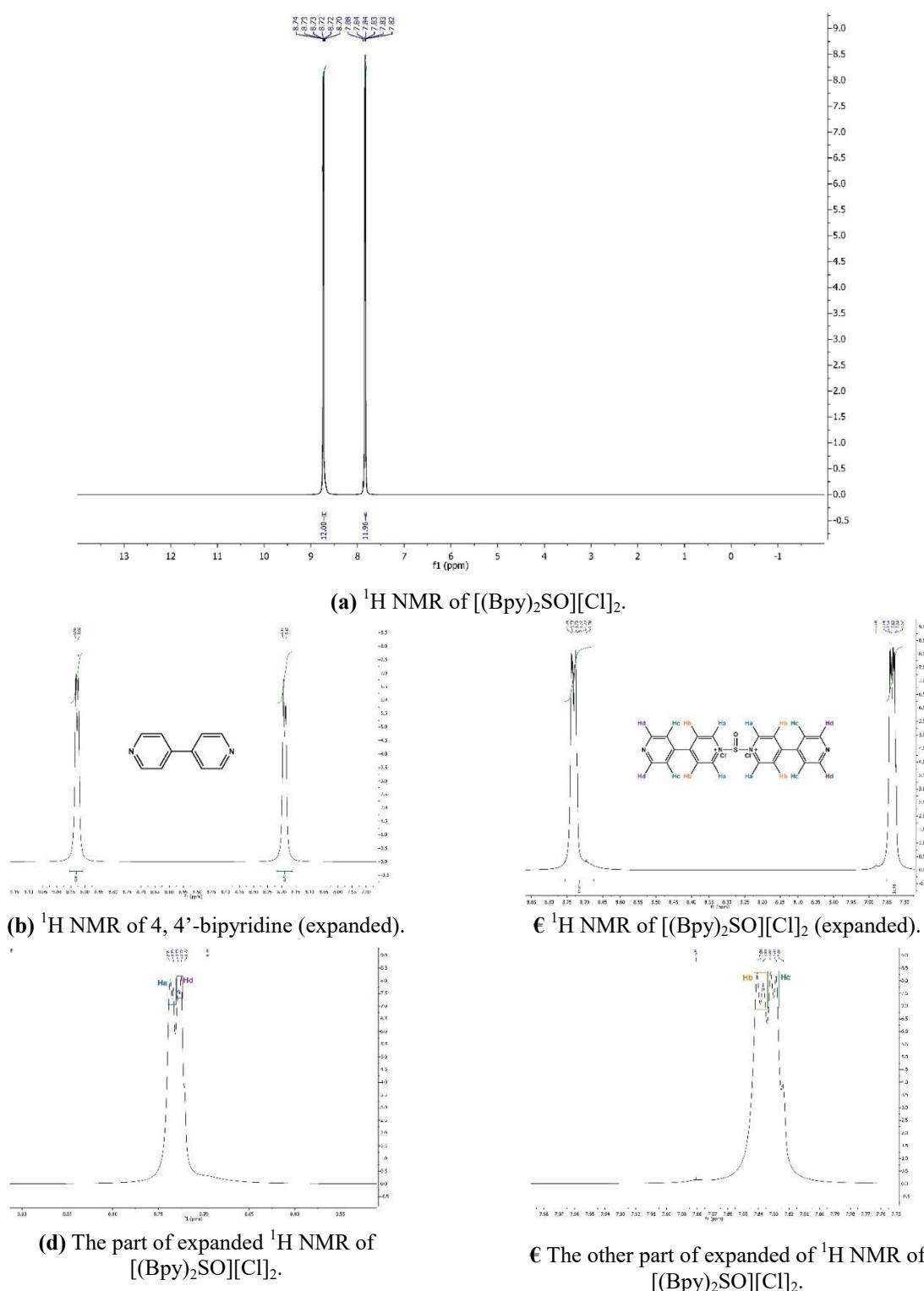

FT-IR spectra for the 4, 4'-bipyridine and the synthesized basic dicationic molten salt are shown in Figure 1. In this figure, the peak appeared at 3032 cm^{-1} , which is responsible for C-H stretching vibration of the aromatic framework. In addition, the peaks at 1020 and 1189 cm^{-1} are referred to S=O symmetric and asymmetric stretching, respectively.

Fig. 1: FT-IR spectra of pure 4, 4'-bipyridine and $[(\text{BPy})_2\text{SO}][\text{Cl}]_2$.

2.1.2. NMR analysis

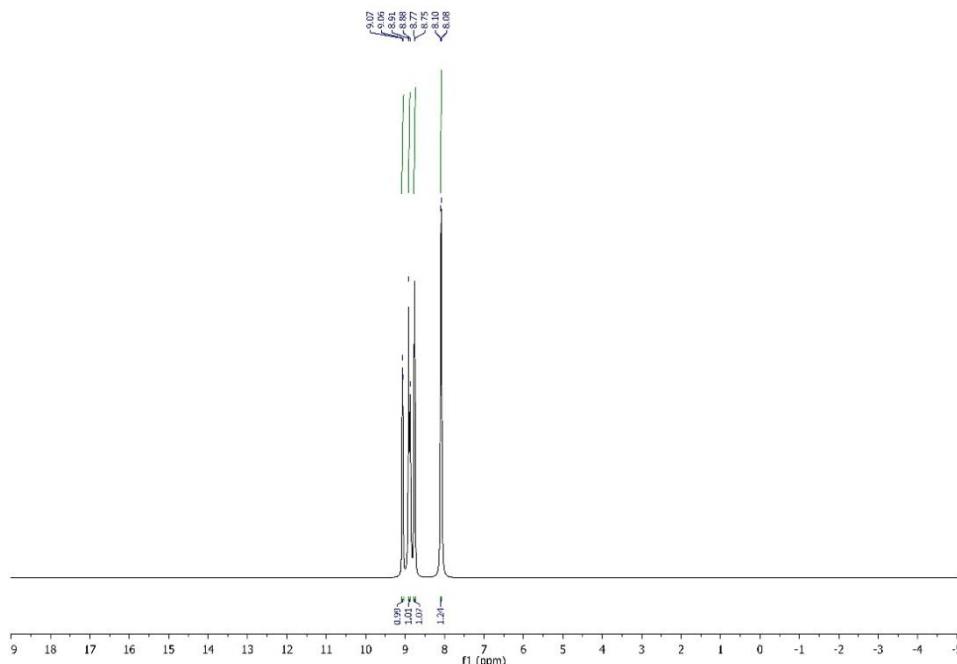
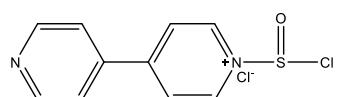

The ^1H NMR spectrum of $[(\text{BPy})_2\text{SO}][\text{Cl}]_2$ is shown in Figure 2a. As shown in Figure 2b, the ^1H NMR of 4, 4'-bipyridine shows two signals, each with doublet multiplicity at the aromatic region. After the reaction with thionyl chloride, the numbers, their chemical shifts, and their multiplicities of the signals are changed. In the ^1H NMR of $[(\text{BPy})_2\text{SO}][\text{Cl}]_2$, four expected peaks with doublet multiplicity were observed due to four different types of hydrogen in its structure. The chemical shift of hydrogen is depicted in Figure 2c. The expanded ^1H NMR spectrum of $[(\text{BPy})_2\text{SO}][\text{Cl}]_2$ is shown in Figure 2d and Figure 2d.

Fig. 2. The ^1H NMR of the 4, 4'-bipyridine and $[(\text{Bpy})_2\text{SO}][\text{Cl}]_2$ in DMSO-d_6 .


For further determination of the structure of the prepared molten salt, the following experiments were performed:

- Reaction of 4, 4'-bipyridine (1 mmol) with thionyl chloride (1 mmol) was done in CH_2Cl_2 at 0°C . The ^1H NMR of the product is shown in Figure 3.

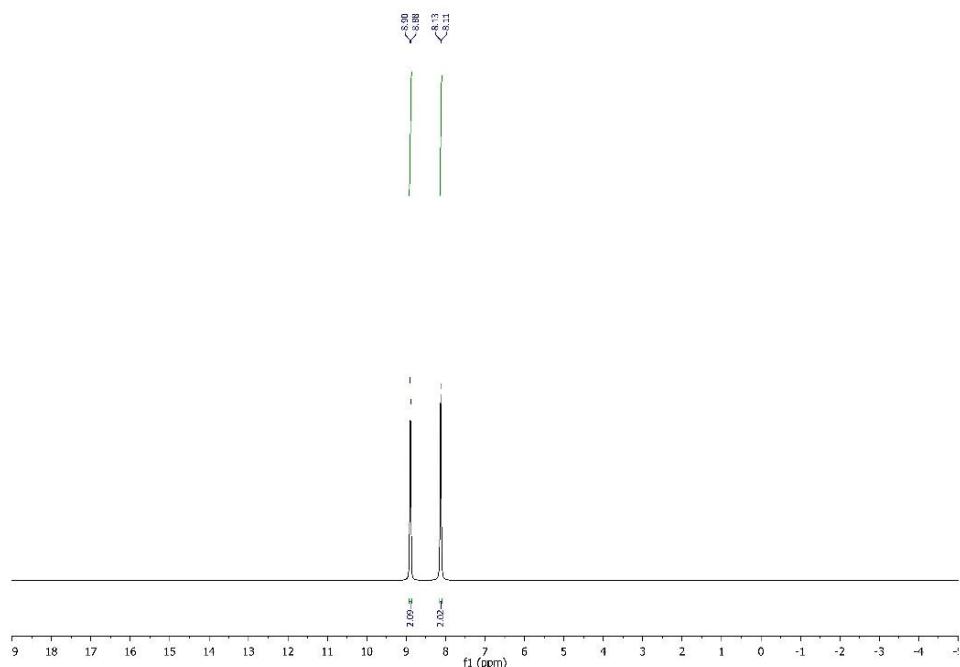
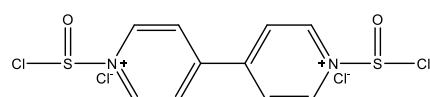


Fig. 3: The ^1H NMR of the product of the reaction of 1 mmol 4,4'-bipyridine with 1 mmol thionyl chloride in CH_2Cl_2 at 0°C

According to Figure 3, the following structure can be proposed:



- Reaction of 4, 4'-bipyridine (1 mmol) with thionyl chloride (2 mmol) was done in CH_2Cl_2 at 0°C .

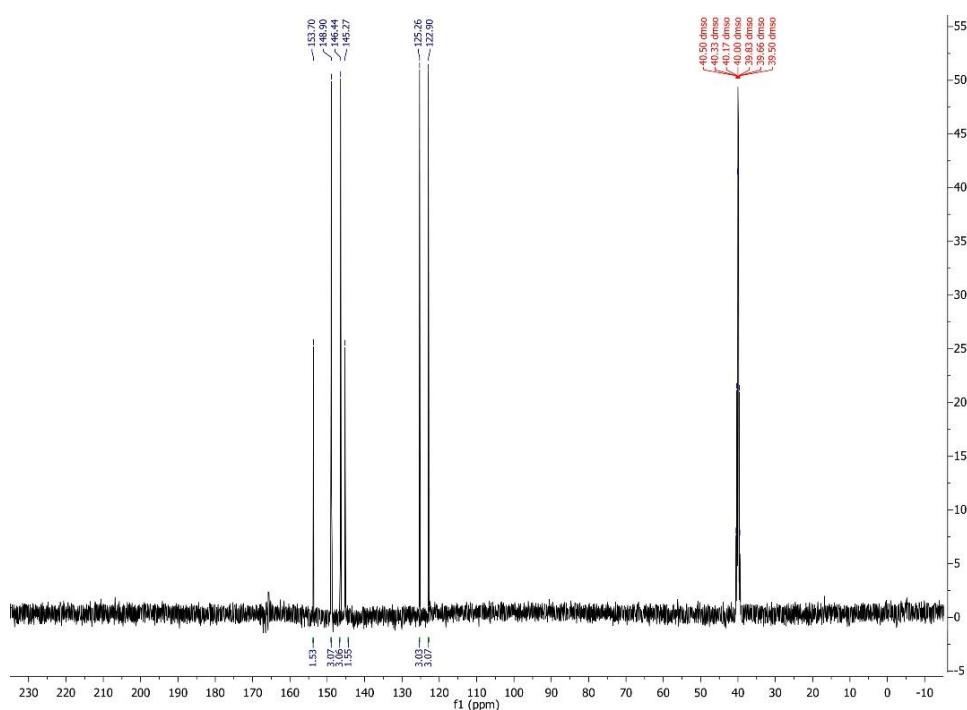
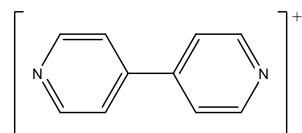
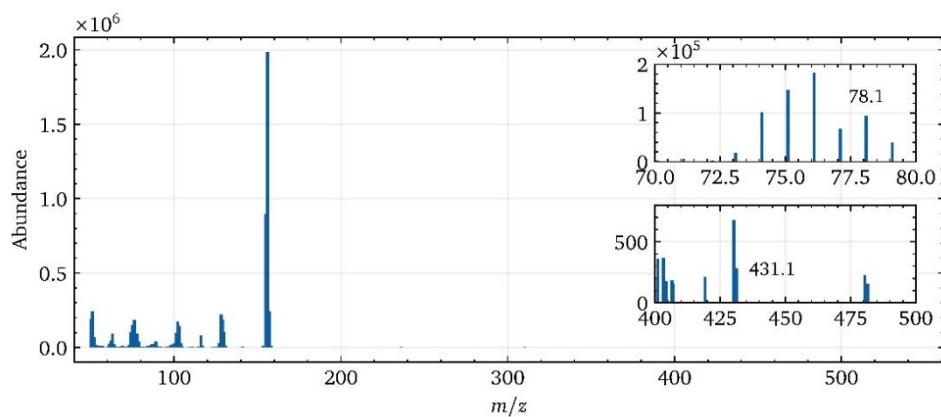


Fig. 4: The ^1H NMR of the product of the reaction of 1 mmol 4,4'-bipyridine with 2 mmol thionyl chloride in CH_2Cl_2 at 0°C .

According to Figure 4, the proposed structure is as follows:


The ^{13}C NMR spectrum of the $[(\text{Bpy})_2\text{SO}][\text{Cl}]_2$ is shown in Figure 5. The six signals appeared in the spectrum, which shows that the six nonequivalent carbons exist in the structure of prepared molten salt.


Fig. 5: The ^{13}C NMR of the $[(\text{Bpy})_2\text{SO}][\text{Cl}]_2$ in the DMSO-d_6 .

2.1.3. Mass Spectroscopy

The mass spectrum of $[(\text{Bpy})_2\text{SO}][\text{Cl}]_2$ is shown in Figure 6. The correct molecular ion peak in this spectrum appears at $431\text{ }m/z$. The base peak ($156\text{ }m/z$) is related to

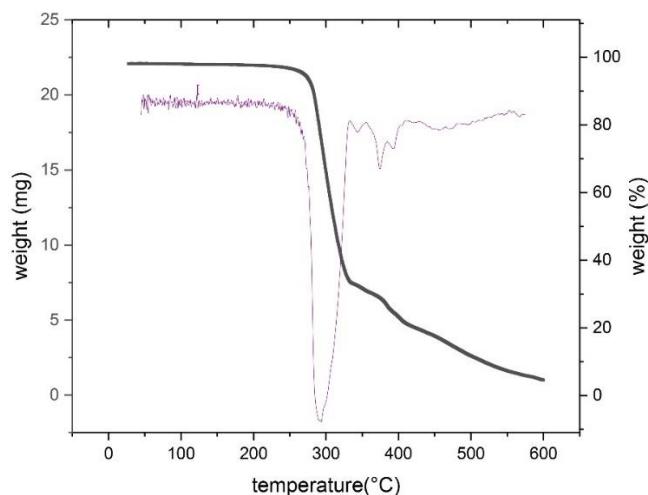

Species. Another important peak is related to $\text{C}_5\text{H}_4\text{N}^+$ species which appears at $78\text{ }m/z$.

Fig. 6: Mass spectrum of $[(\text{BPy})_2\text{SO}][\text{Cl}]_2$.

2.1.4. Thermal Analysis

The thermo-gravimetric analysis of $[(\text{BPy})_2\text{SO}][\text{Cl}]_2$ under nitrogen atmosphere on increasing the temperature at the rate of $20^\circ\text{C} \cdot \text{min}^{-1}$ is shown in Figure 7. The TGA and DTG profiles of the compound exhibit a single major decomposition event. The sample remains thermally stable up to approximately 250°C , with negligible weight loss, confirming the absence of residual solvent or moisture. A pronounced DTG peak centered at approximately 300°C probably corresponds to the cleavage of S–N bond in the molten salt. Above 330°C , the TGA curve shows a gradual weight decrease attributed to the progressive decomposition of the residual organic group.

Fig. 7: Thermo-gravimetric analysis (TGA/DTG) of $[(\text{BPy})_2\text{SO}][\text{Cl}]_2$.

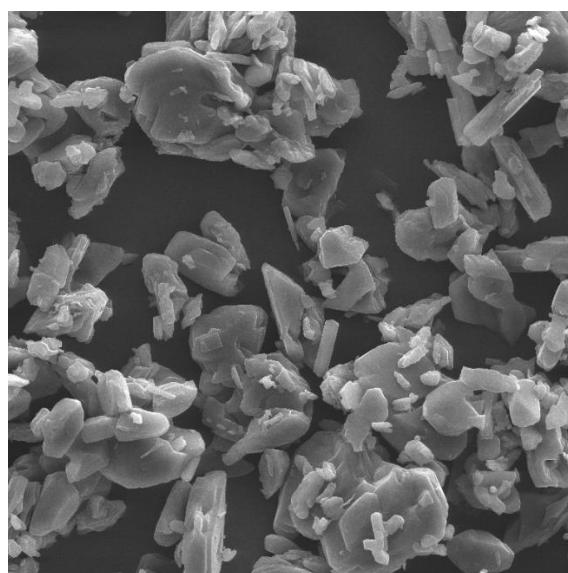
2.1.5. Elemental Analysis and Mohr Titration

The elemental analysis of the $[(\text{BPy})_2\text{SO}][\text{Cl}]_2$ showed that the calculated value for each element is approximately consist with the found one (Table 1).

Table. 1. Elemental analysis of $[(\text{BPy})_2\text{SO}][\text{Cl}]_2$.

Compound	CHN Analysis					
	C (%)		H (%)		N (%)	
	Calc.	Obs.	Calc.	Obs.	Calc.	Obs.
	55.68	55.19	3.71	4.12	12.99	12.92

Mohr titration of $5.011 \times 10^{-3} M$ solution of $[(\text{BPy})_2\text{SO}][\text{Cl}]_2$ was obtained with a standard solution of AgNO_3 ($0.100 M$). According to the calculations, it can be concluded that 2.5 mL of AgNO_3 is need for the precipitation of each mmol Cl^- . The experimental result was 5.23 mL. The information indicated that $[(\text{BPy})_2\text{SO}][\text{Cl}]_2$ involves 2 mmol Cl^- .

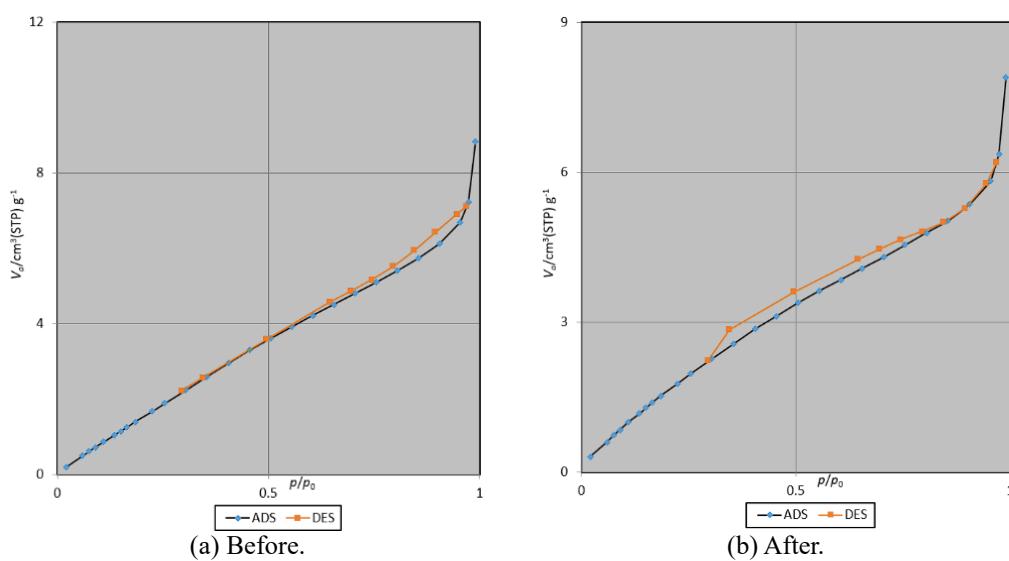

$$M_1V_1 = M_2V_2 \Rightarrow (5.011 \times 10^{-3})(50 \text{ mL}) = (0.100)V_2$$

$$V_2 = 2.5 \text{ mL} \text{ (required } \text{AgNO}_3 \text{ solution against 1 mmol } \text{Ag}^+ \text{ for } [(\text{BPy})_2\text{SO}][\text{Cl}]_2\text{)}$$

The above-mentioned structural analyses confirm that the proposed structure for the basic dicationic molten salt is correct. In addition, these data implicitly indicate that during the formation of $[(\text{BPy})_2\text{SO}][\text{Cl}]_2$, only one nitrogen atom is involved. It should be noted that the reaction conditions, *i.e.*, the use of an aprotic solvent (CH_2Cl_2), low temperature (0°C), and the rapid precipitation of the product, along with the above information, suggest that polymerization cannot occur.

2.1.6. SEM Analysis

The surface morphology was studied using SEM analysis (Figure 8). This figure shows that the cuboid-shaped particles are observed for 1, 1'-sulfinyl bis(4, 4')bipyridinium dichloride.


Fig. 8. SEM of $[(\text{BPy})_2\text{SO}][\text{Cl}]_2$.

2.1.7. Characterization by BET

N_2 adsorption–desorption analysis was carried out to examine the textural properties of the fresh and reused catalysts, and the corresponding results are presented in Table 2 and Figure 9. For the reused catalyst, the BET surface area and pore volume decreased slightly from $11.474 \text{ m}^2\text{.g}^{-1}$ and $0.013608 \text{ cm}^3\text{.g}^{-1}$ to $10.319 \text{ m}^2\text{.g}^{-1}$ and $0.012142 \text{ cm}^3\text{.g}^{-1}$, respectively, indicating that the catalyst retained its structural integrity and catalytic activity even after six successive cycles.

Table 2. The surface area and pore volumes of $[(\text{BPy})_2\text{SO}][\text{Cl}]_2$ and its reused.

Compound	BET Surface Area ($\text{m}^2\text{.g}^{-1}$)	Pore Volume ($\text{cm}^3\text{.g}^{-1}$)
$[(\text{BPy})_2\text{SO}][\text{Cl}]_2$	11.474	0.013608
Reused $[(\text{BPy})_2\text{SO}][\text{Cl}]_2$	10.319	0.012142

Fig. 9. N_2 adsorption-desorption isotherms of $[(\text{BPy})_2\text{SO}][\text{Cl}]_2$ and its reused.

2.2. Study of Solvent Miscibility of $[(\text{BPy})_2\text{SO}][\text{Cl}]_2$

This investigation was performed mixing 0.1 g of pure BIL in 3 mL of solvent at room temperature. As shown in Table 3, the $[(\text{BPy})_2\text{SO}]$ is soluble in H_2O , MeOH , and DMSO .

Table. 3. Solubility of $[(\text{BPy})_2\text{SO}][\text{Cl}]_2$ in different solvents.

Temp.	H_2O	CH_3OH	CH_2Cl_2	DMSO	CHCl_3	<i>n</i> -hexane	Et_2O	CH_3CN	THF	EtOH
r.t.	+ ^a	+	- ^b	+	-	-	-	-	-	-

^a +: good solubility

^b -: Poor solubility

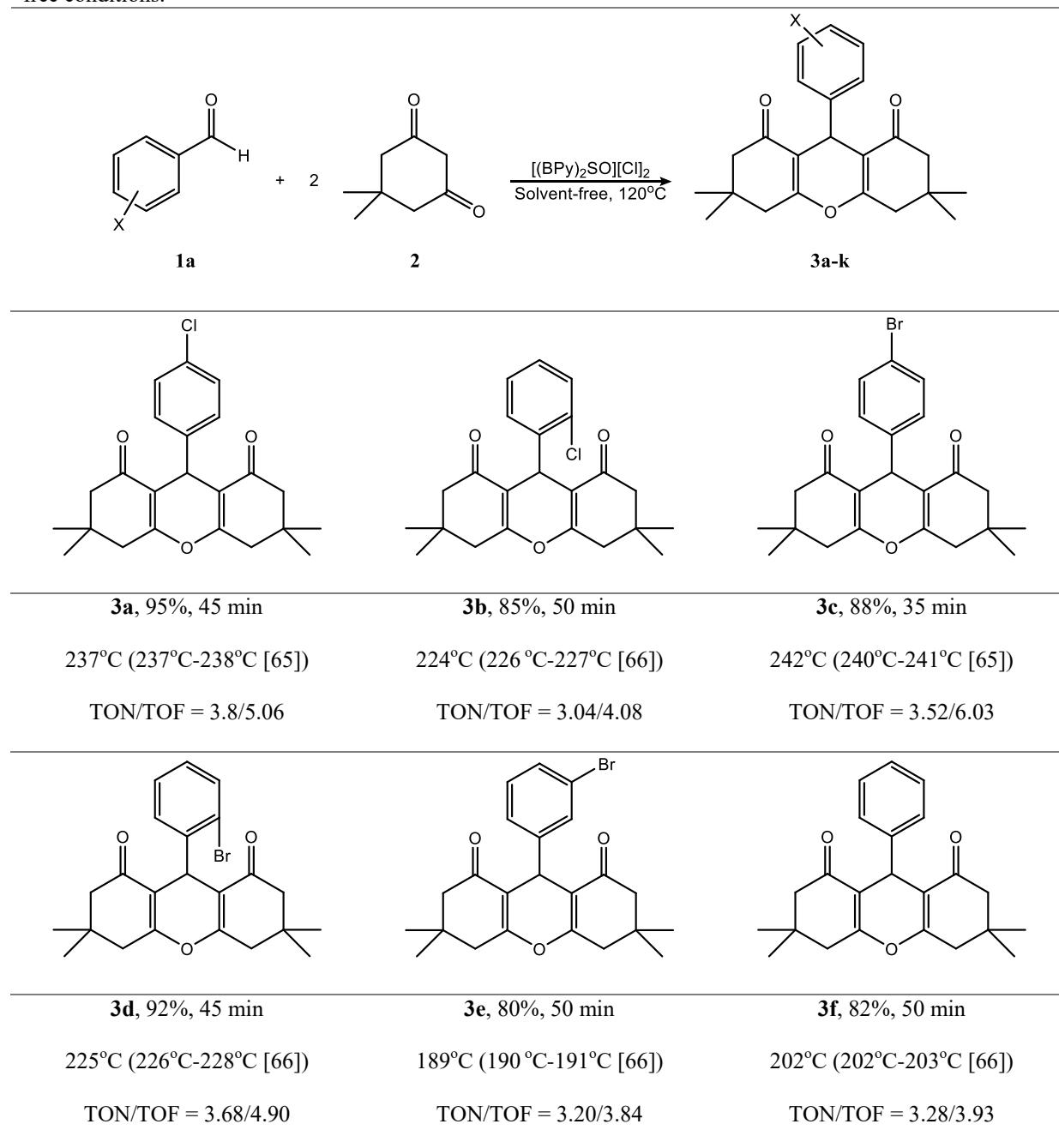
2.3. Catalytic Performance

To conduct an initial study to establish the optimal condition for the synthesis of 1, 8-dioxooctahydroxanthene derivatives, a reaction involving 4-chlorobenzaldehyde **1a** and dimedione **2** to afford 3, 4, 6, 7-tetrahydro-3, 3, 6, 6-tetramethyl-9-(4-chlorophenyl)-2H-xanthene-1, 8 (5H, 9H) dione (**3a**) was selected as the model reaction for optimizing different parameters such as solvent, temperature, and amount of the catalyst (Table 4). In addition, we test the solubility of the synthesized molten salt in various solvents, presented in Table 3. The results indicate that the condition having 25 mol% of the catalyst, 120°C of the reaction

temperature under solvent-free conditions is the best to obtain the highest reaction yield (Table 4, entry 10).

Table 4. Effect of solvents, temperature, and amount of the catalyst on the model reaction ^a.

Entry	Solvent	Amount of Cat. (mol%)	Temp. (°C)	Time (min)	Yield (%) ^b
1	Water	25	Reflux	90	20
2	EtOH	25	Reflux	90	30
3	Water/EtOH	25	Reflux	90	30
4	Hexane	25	Reflux	90	25
5	CHCl ₃	25	Reflux	90	35
6	CH ₂ Cl ₂	25	Reflux	90	28
7	Acetone	25	Reflux	60	7
8	EtOAc	25	Reflux	60	10
9	2-Buthanol	25	Reflux	60	25
10	Solvent-free	25	120	60	95
11	Solvent-free	25	110	60	88
12	Solvent-free	25	100	60	75
13	Solvent-free	20	120	60	85
14	Solvent-free	30	120	60	90


^a Reaction conditions: 4-chlorobenzaldehyde (**1a**, 1 mmol), dimedone (**2**, 2 mmol), different solvent (15 mL, entries 1–9, refluxing temperature), solvent-free (entries 10–14), temperature 100°C to 120°C, catalyst (20 mol% to 30 mol%).

^b Isolated yields of products.

After ascertaining the optimized reaction conditions, a broad range of aromatic aldehydes was reacted with dimedone under this protocol to synthesize the corresponding 1, 8-dioxooctahydroxanthene derivatives (Table 5). As shown in Table 5, aldehydes with electron-donating groups (-OH, -OMe) as well as electron-withdrawing groups (-Cl, -Br, -F, -NO₂) reacted successfully and afforded the corresponding products in high yields. After obtaining

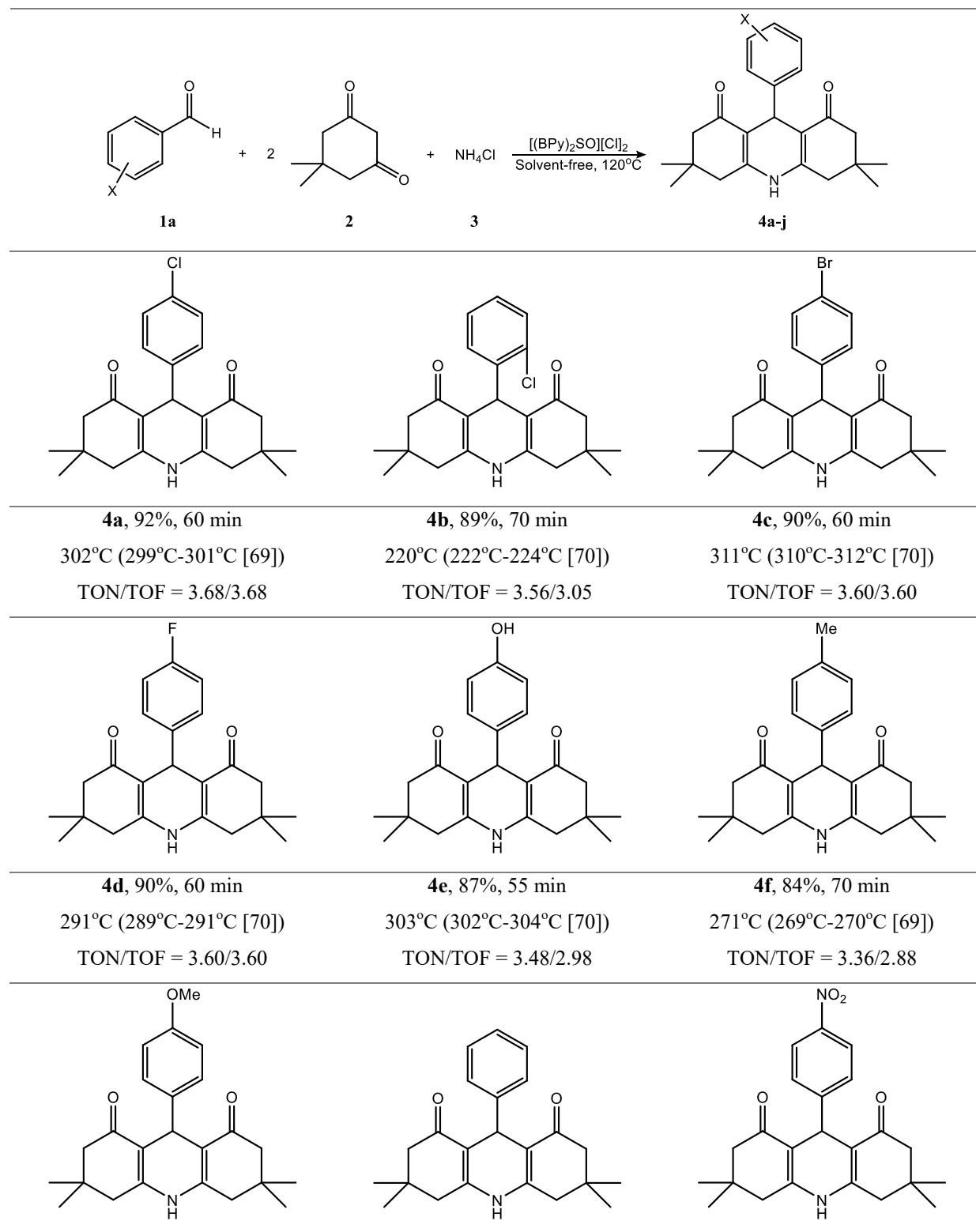
successful results with the synthesis of 1, 8-dioxooctahydroxanthene derivatives, synthesis of 1, 8-dioxodecahydroacridines was attempted. For this, the reaction of 4-chlorobenzaldehyde **1a**, dimedone **2**, and ammonium chloride **3** is considered as the model reaction. From these experiments, 25 mol% of the catalyst at 120°C under solvent-free conditions came out as the best reaction conditions in terms of yield and time for the corresponding product (Table 6).

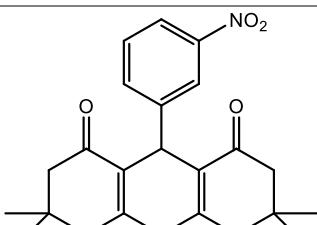
Table 5. $[(\text{BPY})_2\text{SO}][\text{Cl}]_2$ catalyzed synthesis of 1, 8-dioxooctahydroxanthenes (3a-k) under solvent-free conditions.

3g, 84%, 60 min	3h, 91%, 52 min	3i, 92%, 40 min
226°C (223°C-225°C [67])	249°C (247 °C-248°C [66])	224°C (223°C-224°C [66])
TON/TOF = 3.36/3.36	TON/TOF = 3.64/4.20	TON/TOF = 3.68/5.52
3j, 82%, 30 min	3k, 84%, 60 min	
222°C (221°C-223°C [65])	192°C (190 °C-191°C [68])	
TON/TOF = 3.28/6.56	TON/TOF = 3.36/3.36	

Table. 6. Optimization of reaction conditions on the model reaction ^a.

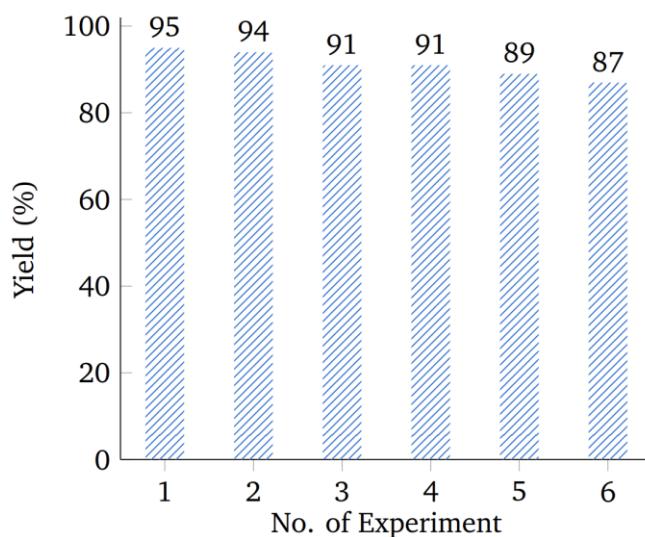
Entry	Amount of Catalyst (mol%)	Temp. (°C)	Yield (%) ^b
1	15	120	73
2	20	120	85
3	25	120	92
4	30	120	92
5	25	110	88
6	25	100	80

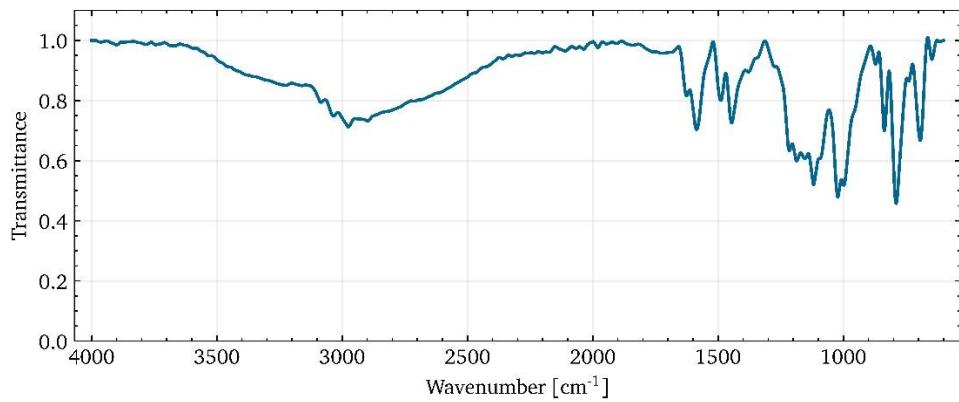

^a Reaction conditions: 4-chlorobenzaldehyde (**1a**, 1 mmol), dimedone (**2**, 1 mmol), ammonium chloride (**3**, 1 mmol), solvent-free, reaction time: 60 min.


^b Isolated yields of products.

The substrate scope of $[(\text{BPy})_2\text{SO}][\text{Cl}]_2$ -catalyzed was then examined under optimized reaction conditions. As shown in Table 7, various aromatic aldehydes, possessing electron-

donating (-OH, -OMe, -Me) and electron-withdrawing (-NO₂, -F, -Cl, -Br) groups were reacted to prepare a wide range of 1,8-dioxodecahydroacridine derivatives in high yields.


Table 7. Scope of the developed catalytic method for the synthesis of 1,8-dioxodecahydroacridine derivatives under solvent-free conditions.


4g , 89%, 70 min 271°C (270°C-272°C [71]) TON/TOF = 3.56/3.06	4h , 85%, 60 min 193°C (190°C-192°C [71]) TON/TOF = 3.40/3.40	4i , 86%, 50 min 286°C (286°C-288°C [69]) TON/TOF = 3.44/5.16
4j , 83%, 65 min 291°C (288°C-290°C [69]) TON/TOF = 3.32/3.06		

2.4. Reusability of the catalyst

Efficient catalysts have acceptable reusability. Thus, the reusability of the catalyst was examined in the reaction of 4-chlorobenzaldehyde and dimedone under optimized reaction conditions. Next, as monitored by TLC (*n*-hexane/EtOAc:7/3), after completion of the reaction, H₂O (10 mL) was added to the reaction mixture, and the product was isolated by filtration. The catalyst was recovered from the filtrate by removing the water under reduced pressure. Subsequently, the recycled catalyst was dried for the next run. The experimental results displayed in Figure 10 show that [(BPy)₂SO][Cl]₂ can be reused at least six times without noticeable deterioration in catalytic activity. Furthermore, the FT-IR spectrum of the recycled catalyst exhibited no detectable structural alterations, confirming the stability and integrity of the catalyst under the applied reaction conditions (Figure 11).

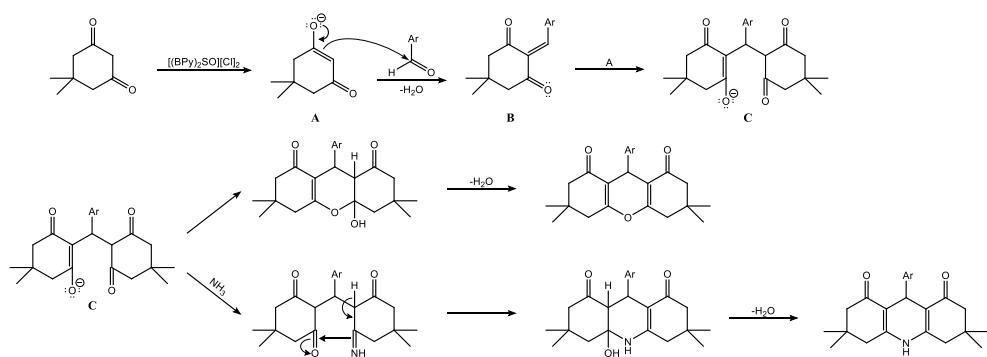

Fig. 10. Recovery and reusability of $[(BPY)_2SO][Cl]_2$ in the synthesis of 3a.

Fig. 11. FT-IR spectrum of the reused catalyst.

2.5. Mechanism

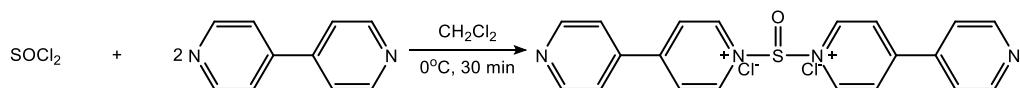
A plausible mechanism for base-catalyzed synthesis of 1, 8-dioxooctahydroxanthenes and 1, 8-dioxodecahydroacridines is suggested in Scheme 2. Initially, the basic catalyst removes an α proton of dimedone to form an enolate ion (**A**). The nucleophilic addition of **A** to aldehyde, after water removal to afford Michael acceptor **B**, which undergoes Michael addition with **A** to produce intermediate **C**. This intermediate can be converted to the xanthene product or in the presence of NH_3 to furnish the acridine product.

Scheme. 2. Plausible mechanistic route towards the synthesis of 1, 8-dioxooctahydroxanthenes and 1, 8-dioxooctahydroacridines in the presence of $[(BPy)_2SO][Cl]_2$.

A comparative study of some reported procedures in the literature to prepare **3a** is compared in Table \ref{tab:tab5} to show the efficacy of the prepared catalyst. The results indicate that this method is more effective than others regarding product yield and reaction time.

Table. 8. The comparison of catalytic performance of $[(BPy)_2SO][Cl]_2$ with some methods.

Entry	Catalyst	Reaction Conditions	Time	Yield (%) [Ref.]
1, 8-dioxooctahydroxanthene derivatives				
1	$SO_4^{2-}/10Fe-Zr-O$	MW irradiation, 100°C	12 min	83 [71]
2	$[bmim][HSO_4]$	Solvent-free, 80°C, 100 mg	3.5 h	95 [72]
3	$[Et_3NH][HSO_4]$	Solvent-free, 100°C, 20 mol%	45 min	87 [65]
4	SmI_3	Solvent-free, 120°C, 20 mol%	9 h	97 [73]
5	$[(BPy)_2SO][Cl]_2$	Solvent-free, 100°C, 25 mol%	45 min	95 (this work)
1, 8-dioxooctahydroacridine derivatives				
6	$Fe_3O_4@SiO_2-MoO_3H$	Solvent-free, 100°C, 20 mg	20 min	92 [74]
7	L-proline	H_2O , reflux, 35 mol%	(2-3) h	88 [69]
8	$[ImSi][PF_6]@xanthan$	Ethanol, reflux, 50 mg	32 min	95 [29]
9	$Hbet[Lac]$	Ethanol, reflux, 30 mol%	3.5 h	85 [32]
10	$[(BPy)_2SO][Cl]_2$	Solvent-free, 100°C, 25 mol%	45 min	92 (this work)


3. Experimental Section

The starting materials were commercially available and were used without further purification. Infrared spectra were recorded using Bruker-Equinox 55 (USA) FT-IR spectrophotometer using KBr disc. 1H and ^{13}C NMR spectra were recorded on an INOVA 500

MHz using DMSO-d₆ as the solvent. The chemical shifts were recorded on the δ-scale (ppm) using residual solvents as internal standards. Thermo-gravimetric analysis (TGA/DTG) was performed using Linseis STA PT 1600. Mass spectra were recorded on Finnigza MAT-321 A, Germany. Scanning electron micrograph was collected using Tescan MIRA 3 LMU microscope. Melting points were determined on an electrothermal device Brönsted 9100 and were uncorrected. Progress of the reactions was monitored by TLC (*n*-hexane/EtOAc:7/3).

3.1. Synthesis of basic dicationic molten salt

The synthesis of basic dicationic molten salt based on 4, 4'-bipyridine is shown in Figure 12. The synthesis proceeded as follows: To an ice-cooled flask (100 mL) containing CH₂Cl₂ (30 mL) and a magnetic stirring bar was added, while stirring, 4, 4'-bipyridine (0.624 g, 4 mmol) to become a clear solution. Then, with caution, a solution of thionyl chloride (0.237 g, 2 mmol) in CH₂Cl₂ (20 mL) was instilled to the flask at 0°C and stirring continued for 30 min. After that, the reaction mixture was stirred for 24 h at room temperature. Afterward, the solvent was removed by rotary evaporator, and the solid residue was washed with CH₂Cl₂ (3×15 mL) and dried under vacuum at 40°C by 6 h to afford [(BPy)₂SO][Cl]₂ as a white solid in 95% yield.

Fig. 12. Synthesis of the basic dicationic molten salt [(BPy)₂SO][Cl]₂.

3.2. General procedure for the synthesis of 1, 8-dioxooctahydroxanthenes

To a mixture of aromatic aldehydes (1 mmol) and dimedone (2 mmol, 0.24 g), the catalyst (25 mol%, 0.11 g) was added and the resulting mixture was stirred in an oil-bath at 120°C for an appropriate time (Table 5). After completion of the reaction (as monitored by TLC), water (10 mL) was added while stirring for 5 min, and the solid residue was collected by filtration.

The crude product was recrystallized from hot ethanol to afford the pure product. The structure of pure products was confirmed by melting point, FT-IR, and ^1H NMR.

3.3. General procedure for the synthesis of 1, 8-dioxodecahydroacridines

To a mixture of aromatic aldehydes (1 mmol), dimedone (2 mmol, 0.28 g), and ammonium chloride (1 mmol, 0.05 g) in a small beaker, 25 mol% of the catalyst (0.11 g) was added. The resulting mixture was stirred in an oil-bath at 120°C for an appropriate time (Table 7). After completion of the reaction (as monitored by TLC), water (10 mL) was added while stirring for 5 min, and the solid residue was collected by filtration. The crude product was recrystallized from hot ethanol to afford the pure product. The structure of pure products was confirmed by melting point, FT-IR, and ^1H NMR.

5. Conclusion

In this work, a dicationic Brönsted-basic molten salt, $[(\text{BPY})_2\text{SO}][\text{Cl}]_2$, was prepared through careful stoichiometric control and optimized reaction conditions enabling site-selective functionalization of 4, 4'-bipyridine. The catalyst combines the practical advantages of ionic-liquid-type reactivity with facile heterogenization, as it is readily separated from the reaction mixture and reused. Using $[(\text{BPY})_2\text{SO}][\text{Cl}]_2$, the solvent-free synthesis of 1, 8-dioxooctahydroxanthenes and 1, 8-dioxodecahydroacridines was achieved in high yields and short reaction times with a simple work-up, avoiding the need for large amounts of ammonium salts commonly encountered in related protocols. The catalyst also exhibited good thermal stability (up to 250°C, as indicated by TGA) and maintained catalytic performance over six consecutive cycles; notably, the product yield decreased only slightly (from 95% in the first run to 87% in the sixth run), demonstrating practical recyclability. Overall, $[(\text{BPY})_2\text{SO}][\text{Cl}]_2$ emerges as a robust, reusable, and operationally simple catalyst platform for efficient solvent-free synthesis of valuable heterocyclic and polycyclic scaffolds.

4. Conflict of interest

There is no conflict of interest.

References

- [1] Czerniak, K., Walkiewicz, F. Synthesis and antioxidant properties of dicationic ionic liquids, *New Journal of Chemistry*, 41(2) (2017) 530-539.
- [2] Li, C., Wang, M., Lu, X., Zhang, L., Jiang, J., Zhang, L. Reusable Brönsted acidic ionic liquid efficiently catalyzed N-formylation and N-acylation of amines, *ACS Sustainable Chemistry and Engineering*, 8(11) (2020) 4353-4361.
- [3] Min, Z., Li, Z., Wang, H., Xuan, X., Zhao, Y., Wang, J. How does the moisture affect CO₂ absorption by a glycinate ionic liquid? *ACS Sustainable Chemistry and Engineering*, 9(2) (2021) 853-862.
- [4] Li, J., Lei, X., Tang, X., Zhang, X., Wang, Z., Jiao, S. Acid dicationic ionic liquids as extractants for extractive desulfurization. *Energy and Fuels*, 33(5) (2019) 4079-4088.
- [5] Bhatt, D., Maheria, K., Parikh, J. A microwave assisted one pot synthesis of novel ammonium based dicationic ionic liquids. *RSC Advances*, 5(16) (2015) 12139-12143.
- [6] Li, S., Van A., McDonough, J., Feng, G., Gogotsi, Y., Cummings, P. The electrical double layer of dicationic ionic liquids at onion-like carbon surface. *The Journal of Physical Chemistry C*, 118(8) (2014) 3901-3909.
- [7] Boruah, K., Borah, R. Design of water stable 1, 3-dialkyl-2-methyl imidazolium basic ionic liquids as reusable homogeneous catalysts for aza-Michael reaction in neat condition. *ChemistrySelect*, 4(12) (2019) 3479-3485.

[8] Ding, L., Li, H., Zhang, Y., Zhang, K., Yuan, H., Wu, Q., Zhao, Y., Jiao, Q., Shi, D. Basic polymerized imidazolide-based ionic liquid: an efficient catalyst for aqueous Knoevenagel condensation. *RSC Advances*, 5(27) (2015) 21415-21421.

[9] Xuewei, C., Hongbing, S., Xuehui, L., Furong, W., Yu, Q. Catalytic performance of imidazolide basic ionic liquid in Knoevenagel reactions in aqueous media. *Chinese Journal of Catalysis*, 32(4) (2011) 693.

[10] Forsyth, S., Fröhlich, U., Goodrich, P., Gunaratne, H., Hardacre, C., McKeown, A., Seddon, K. Functionalised ionic liquids: Synthesis of ionic liquids with tethered basic groups and their use in Heck and Knoevenagel reactions. *New Journal of Chemistry*, 34(4) (2010) 723-731.

[11] Siddiqui, R., Shamim, S., Rai, P., Waseem, M., Srivastava, A., Srivastava, A. Basic ionic liquid promoted domino Knoevenagel-Thia-Michael reaction: an efficient and multicomponent strategy for synthesis of 1, 3-thiazines. *Journal of Heterocyclic Chemistry*, 53(4) (2016) 1284-1291.

[12] Narayananperumal, S., da Silva, R. C., Feu, K. S., de la Torre, A. F., Correa, A. G., Paixao, M. W. Basic-functionalized recyclable ionic liquid catalyst: a solvent-free approach for Michael addition of 1, 3-dicarbonyl compounds to nitroalkenes under ultrasound irradiation. *Ultrasonics Sonochemistry*, 20(3) (2013) 793-798.

[13] Chen, X., Li, X., Song, H., Qian, Y., Wang, F. Solvent-free aza-Markovnikov and aza-Michael additions promoted by a catalytic amount of imidazolide basic ionic liquids. *Tetrahedron Letters*, 52(28) (2011) 3588-3591.

[14] Li, W., Cheng, W., Yang, X., Su, Q., Dong, L., Zhang, P., Yi, Y., Li, B., Zhang, S. Synthesis of cyclic carbonate catalyzed by DBU derived basic ionic liquids. *Chinese Journal of Chemistry*, 36(4) (2018) 293-298.

[15] Sanchooli T., Heydari, R., Fatahpour, M. Synthesis of 2-amino-4H-chromenes and spirochromenes using basic ionic liquid, 2-hydroxyethylammonium formate as green, stable, and reusable catalyst. *Journal of the Chinese Chemical Society*, 69(9) (2022) 1680-1687.

[16] Zhang, X., Li, H., Li, X., Liu, Y., Li, X., Guan, J., Long, J. Glucose aqueous isomerization catalyzed by basic ionic liquids. *ACS Sustainable Chemistry and Engineering*, 7(15) (2019) 13247-13256.

[17] Wu, C., Gao, Z., Wang, Y., Luo, Y. Efficient synthesis of *sec*-butanol from *sec*-butyl acetate under mild conditions with the basic ionic liquid catalysts. *Chemical Engineering Journal*, 354 (2018) 599-605.

[18] Shirzaei, F., Shaterian, H. $[(\text{EtO})_3\text{Si}(\text{CH}_2)_3\text{NH}_3^+][\text{CH}_3\text{COO}^-]$ as a novel basic ionic liquid catalyzed green synthesis of new 2-(phenylsulfonyl)-1H-benzo[a] pyrano[2, 3-c]phenazin-3-amine derivatives. *Journal of Molecular Structure*, 1256 (2022) 132558.

[19] Askari, S., Khodaei, M., Jafarzadeh, M. Basic ionic liquid anchored on UiO-66-NH₂ metal-organic framework: a stable and efficient heterogeneous catalyst for synthesis of xanthenes. *Research on Chemical Intermediates*, 47(7) (2021) 2881-2899.

[20] Ramesh, K., Pasha, M. Study on one-pot four-component synthesis of 9-aryl-hexahydro-acridine-1, 8-diones using SiO₂-I as a new heterogeneous catalyst and their anticancer activity. *Bioorganic and Medicinal Chemistry Letters*, 24(16) (2014) 3907-3913.

[21] Jamalian, A., Miri, R., Firuzi, O., Amini, M., Moosavi-Movahedi, A., Shafieea, A. Synthesis, cytotoxicity and calcium antagonist activity of novel imidazolyl derivatives of 1, 8-acridinediones. *Journal of the Iranian Chemical Society*, 8 (2011) 983-991.

[22] Kidwai, M., Bhatnagar, D. Ceric ammonium nitrate (CAN) catalyzed synthesis of N-substituted decahydroacridine-1, 8-diones in PEG. *Tetrahedron Letters*, 51(20) (2010) 2700-2703.

[23] Shchekotikhin, Y., Nikolaeva, T., Shub, G., Krivenko, A. Synthesis and antimicrobial activity of substituted 1, 8-dioxodecahydroacridines. *Pharmaceutical Chemistry Journal*, 35(4) (2001) 206-208.

[24] Wainwright, M. Acridine-a neglected antibacterial chromophore. *Journal of Antimicrobial Chemotherapy*, 47(1) (2001) 1-13.

[25] Berkan, O., Sarac, B., Simsek, R., Yildirim, S., Sarioglu, Y., Safak, C. Vasorelaxing properties of some phenylacridine type potassium channel openers in isolated rabbit thoracic arteries. *European journal of medicinal chemistry*, 37(6) (2002) 519-523.

[26] Madankumar, N., Pitchumani, K. β -Cyclodextrin monosulphonic acid promoted multicomponent synthesis of 1, 8-dioxodecahydroacridines in water. *ChemistrySelect*, 3(39) (2018) 10886-10891.

[27] Martin, N., Quinteiro, M., Seoane, C., Soto, J., Mora, A., Suarez, M., Ochoa, E., Morales, A., Bosque, J. Synthesis and conformational study of acridine derivatives related to 1, 4-dihydropyridines. *Journal of Heterocyclic Chemistry*, 32(1) (1995) 235-238.

[28] Chate, A., Rathod, U., Kshirsagar, J., Gaikwad, P., Mane, K., Mahajan, P., Nikam, M., Gill, C. Ultrasound assisted multicomponent reactions: A green method for the synthesis of

N-substituted 1, 8-dioxo-decahydroacridines using beta-cyclodextrin as a supramolecular reusable catalyst in water. *Chinese Journal of Catalysis*, 37(1) (2016) 146-152.

[29] Mustafa, A., Siddiqui, Z. Silica-based ionic liquid supported on Xanthan [ImSi][PF₆]@xanthan in the synthesis of acridine derivatives by multicomponent reaction. *Sustainable Chemistry and Pharmacy*, 29 (2022) 100775.

[30] Zolfigol, M., Bahrami-Nejad, N., Afsharnadery, F., Baghery, S. 1-Methylimidazolium tricyanomethanide [HMIM]C(CN)₃ as a nano structure and reusable molten salt catalyst for the synthesis of tetrahydrobenzo[b]pyrans via tandem Knoevenagel-Michael cyclocondensation and 3, 4-dihydropyrano[c]chromene derivatives. *Journal of Molecular Liquids*, 221 (2016) 851-859.

[31] Abdelghany, A., Menazea, A., Abd-El-Maksoud, M., Khatab, T. Pulsed laser ablated zeolite nanoparticles: a novel nano-catalyst for the synthesis of 1, 8-dioxo-octahydroxanthene and *N*-aryl-1, 8-dioxodecahydroacridine with molecular docking validation. *Applied Organometallic Chemistry*, 34(2) (2020) e5250.

[32] Zhu, A., Liu, R., Du, C., Li, L. Betainium-based ionic liquids catalyzed multicomponent Hantzsch reactions for the efficient synthesis of acridinediones. *RSC Advances*, 7(11) (2017) 6679-6684.

[33] Dehbalaei, M., Foroughifar, N., Pasdar, H., Khajeh-Amiri, A. N-Propyl benzoguanamine sulfonic acid supported on magnetic Fe₃O₄ nanoparticles: A novel and efficient magnetically heterogeneous catalyst for the synthesis of 1, 8-dioxo-decahydroacridine derivatives. *New Journal of Chemistry*, 42(1) (2018) 327-335.

[34] Yu, S., Wu, S., Zhao, X., Lu, C. Green and efficient synthesis of acridine-1, 8-diones and hexahydroquinolines via a KH_2PO_4 catalyzed Hantzsch-type reaction in aqueous ethanol. *Research on Chemical Intermediates*, 43 (2017) 3121-3130.

[35] Sahiba, N., Sethiya, A., Soni, J., Teli, P., Garg, A., Agarwal, S. A facile biodegradable chitosan- SO_3H catalyzed acridine-1, 8-dione synthesis with molecular docking, molecular dynamics simulation and density functional theory against human topoisomerase II beta and *Staphylococcus aureus* tyrosyl-tRNA synthetase. *Journal of Molecular Structure*, 1268 (2022) 133676.

[36] Firoozi, Z., Khalili, D., Sardarian, A. $\text{Fe}_3\text{O}_4@\text{SiO}_2$ core/shell functionalized by gallic acid: a novel, robust, and water-compatible heterogeneous magnetic nanocatalyst for environmentally friendly synthesis of acridine-1, 8-diones. *RSC Advances*, 14(16) (2024) 10842-10857.

[37] Mousavi, S., Rashidi N., Foroumadi, A. Magnetically recoverable graphene-based nanoparticles for the one-pot synthesis of acridine derivatives under solvent-free conditions. *Polycyclic Aromatic Compounds*, 41(4) (2021) 746-760.

[38] Zolfigol, M., Ayazi-Nasrabadi, R., Baghery, S., Khakyzadeh, V., Azizian, S. Applications of a novel nano magnetic catalyst in the synthesis of 1, 8-dioxo-octahydroxanthene and dihydropyrano[2,3-c]pyrazole derivatives. *Journal of Molecular Catalysis A: Chemical*, 418 (2016) 54-67.

[39] Zolfigol, M., Yarie, M. Hydroxylamine-O-sulfonic acid (HOSA): as a task specific catalyst for the synthesis of 1, 8-dioxo-octahydroxanthenes under mild, green and solvent-free condition. *Organic Chemistry Research*, 2(1) (2016) 1-8.

[40] Zolfigol, M., Khakyzadeh, V., Moosavi-Zare, A., Zare, A., Azimi, S., Asgari, Z., Hasaninejad, A. Preparation of various xanthene derivatives over sulfonic acid functionalized imidazolium salts (SAFIS) as novel, highly efficient and reusable catalysts. *Comptes Rendus Chimie*, 15(8) (2012) 719-736.

[41] Mousavi, S., Rashidi N., Zamiri A., Foroumadi, A. Graphene oxide incorporated strontium nanoparticles as a highly efficient and green acid catalyst for one-pot synthesis of tetramethyl-9-aryl-hexahydroxanthenes and 13-aryl-5H-dibenzo[*b,i*] xanthene-5, 7, 12, 14(13H)-tetraones under solvent-free conditions. *Catalysis Letters*, 149 (2019) 1075-1086.

[42] Naeimi, H., Nazifi, Z. A facile one-pot ultrasound assisted synthesis of 1, 8-dioxo-octahydroxanthene derivatives catalyzed by Brönsted acidic ionic liquid (BAIL) under green conditions. *Journal of Industrial and Engineering Chemistry*, 20(3) (2014) 1043-1049.

[43] Moeinimehr, M., Habibi, D., Bayat, M., Heydari, S., Safaei, M. $ZrCl_4$ or NH_4VO_3 as a versatile catalyst for the capable synthesis of xanthenediones and their corresponding theoretical studies. *Inorganic Chemistry Communications*, 141 (2022) 109582.

[44] Sadjadi, S., Heravi, M., Daraie, M. Cyclodextrin nanosponges: A potential catalyst and catalyst support for synthesis of xanthenes. *Research on Chemical Intermediates*, 43 (2017) 843-857.

[45] Moradi, L., Mirzaei, M. Immobilization of Lewis acidic ionic liquid on perlite nanoparticle surfaces as a highly efficient solid acid catalyst for the solvent-free synthesis of xanthene derivatives. *RSC Advances*, 9(35) (2019) 19940-19948.

[46] Chehab, S., Merroun, Y., Ghailane, R., Boukhris, S., Souizi, A. $Na_2Ca(HPO_4)_2$, an efficient, reusable eco-friendly catalyst for the synthesis of 1, 8-dioxo-octahydroxanthenes and biscoumarin derivatives. *Polycyclic Aromatic Compounds*, 43(6) (2023) 4906-4923.

[47] Merroun, Y., Chehab, S., El H., Guedira, T., Boukhris, S., Ghailane, R., Souizi, A. Synthesis, characterization, and catalytic application of SnP_2O_7 for the highly efficient synthesis of xanthene derivatives. *Polycyclic Aromatic Compounds*, 44(7) (2024) 4349-4363.

[48] Zabihzadeh, M., Shirini, F., Tajik, H., Daneshvar, N. [H-Pyrr][HSO₄] as an efficient ionic liquid catalyst for the synthesis of xanthenes, tetraketones, and triazolo[2, 1-b]quinazolinones. *Polycyclic Aromatic Compounds*, 41(9) (2021) 1972-1987.

[49] Dashteh, M., Baghery, S., Zolfigol, M., Bayat, Y., Asgari, A. 1,10-phenanthrolin-1-ium trinitromethanide (1, 10-PHTNM) as a nano molten salt catalyst with γ -aromatic counter ion: applications for synthesis of organic compounds. *ChemistrySelect*, 4(1) (2019) 337-346.

[50] Zolfigol, M., Karimi, F., Yarie, M., Torabi, M. Catalytic application of sulfonic acid-functionalized titana-coated magnetic nanoparticles for the preparation of 1, 8-dioxodecahydroacridines and 2, 4, 6-triarylpyridines via anomeric-based oxidation. *Applied Organometallic Chemistry*, 32(2) (2018) e4063.

[51] Hataminejad, E., Ezabadi, A., Shameli Akandi., A. Novel synthesis of nano-amino acid-based ionic liquid and its application for preparing DHPMs and xanthenes under solvent-free conditions. *Research on Chemical Intermediates*, 49(4) (2023) 1275-1295.

[52] Salami, M., Ezabadi, A. Preparation and Characterization of a novel glycine-based ionic liquid and its application in the synthesis of xanthenediones and dihydropyrimidones in water. *Letters in Organic Chemistry*, 19(12) (2022) 1047-1061.

[53] Hataminejad, E., Ezabadi, A. Design and exploration of caffeine-based Brönsted acidic ionic liquid (CaffBAIL) for the synthesis of DHPMs, xanthenediones, and acridinediones. *Research on Chemical Intermediates*, 48(6) (2022) 2535-2556.

[54] Ehsani-Nasab, Z., Ezabadi, A. Synthesis and characterization of a novel Brönsted acidic dicationic ionic liquid based on piperazine and its application in the one-pot synthesis of various xanthenes under solvent-free conditions. *Research on Chemical Intermediates*, 48(3) (2022) 1159-1180.

[55] Ezabadi, A., Salami, M. Design and characterization of $[(Et_3N-H)FeCl_4]$ as a nanomagnetic ionic liquid catalyst for the synthesis of xanthene derivatives under solvent-free conditions. *Research on Chemical Intermediates*, 48(3) (2022) 1287-1303.

[56] Nikfarjam, F., Hashemi, M., Ezabadi, A. Design, preparation, and characterization of a novel IL-based catalyst, $[(Et_3N)_2SO][HSO_4]_2$, as an efficient and recyclable catalyst in Biginelli reaction under solvent-free conditions. *Polycyclic Aromatic Compounds*, 41(5) (2021) 1123-1134.

[57] Salami, M., Ezabadi, A. Heteropolyacid-based ionic liquid $[HOOCC_5H_4NH]_3PW_{12}O_{40}$ as the eco-friendly catalyst for the one-pot synthesis of xanthenediones under solvent-Free conditions. *Polycyclic Aromatic Compounds*, 42(6) (2022) 3377-3390.

[58] Salami, M., Ezabadi, A. Synthesis of the nano-magnetic ionic liquid based on caffeine and its catalytic application in the synthesis of xanthenes. *Research on Chemical Intermediates*, 46(10) (2020) 4611-4626.

[59] Sahebi, H., Konoz, E., Ezabadi, A., Niazi, A., Ahmadi, S. H. Sensitive determination of Imatinib mesylate in human plasma using DABCO-based ionic liquid-modified magnetic nanoparticles. *Chromatographia*, 83 (2020) 1009-1019.

[60] Sahebi, H., Konoz, E., Ezabadi, A., Niazi, A., Ahmadi, S. H. Simultaneous determination of five penicillins in milk using a new ionic liquid-modified magnetic nanoparticle based

dispersive micro-solid phase extraction followed by ultra-performance liquid chromatography-tandem mass spectrometry. *Microchemical Journal*, 154 (2020) 104605.

[61] Sadati S., Hashemi, M., Ezabadi, A. Introduction of a novel dicationic Brönsted acidic ionic liquid based on pyrazine and its application in the synthesis of xanthenediones and 3, 4-dihydropyrimidin-2(1H)-ones under solvent-free conditions. *Research on Chemical Intermediates*, 46 (2020) 2229-2246.

[62] Habibi, A., Bayat, M., Omidi, B., Ezabadi, A., Mortazavi, P. Synthesis of new imidazole-based ionic liquids with antifungal activity against *Candida albicans*. *Iranian Journal of Microbiology*, 15(6) (2023) 811.

[63] Eslami, M., Ezabadi, A., Bayat, M., Omidi, B., Mortazavi, P. Effect of new methionine-based ionic liquid on the CDR1 and CDR2 gene expression on sensitive and resistant strains of *Candida albicans*. *Iranian Journal of Microbiology*, 15(2) (2023) 325.

[64] Sadeghi, M., Ezabadi, A., Omidi, B. Synthesis and characterization of two novel diethylamine-based dicationic Brönsted acidic ionic liquids and evaluation of their catalytic and antibacterial behavior. *Research on Chemical Intermediates*, 49(4) (2023) 1405-1425.

[65] Zhou, Z., Deng, X. $[\text{Et}_3\text{NH}][\text{HSO}_4]$ catalyzed efficient and green synthesis of 1, 8-dioxo-octahydroxanthenes. *Journal of Molecular Catalysis A: Chemical*, 367 (2013) 99-102.

[66] Lu, H., Li, J., Zhang, Z. $\text{ZrOCl}_2 \cdot 8\text{H}_2\text{O}$: a highly efficient catalyst for the synthesis of 1, 8-dioxo-octahydroxanthene derivatives under solvent-free conditions. *Applied Organometallic Chemistry*, 23(4) (2009) 165-169.

[67] Verma, G., Raghuvanshi, K., Verma, R., Dwivedi, P., Singh, M. An efficient one-pot solvent-free synthesis and photophysical properties of 9-aryl/alkyl-octahydroxanthene-1, 8-diones. *Tetrahedron*, 67(20) (2011) 3698-3704.

[68] Chaudhary, G., Bansal, P., Kaur, N., Mehta, S. Recyclable CuO nanoparticles as heterogeneous catalysts for the synthesis of xanthenes under solvent free conditions. *RSC Advances*, 4(90) (2014) 49462-49470.

[69] Balalaie, S., Chadegani, F., Darviche, F., Bijanzadeh, H. One-pot synthesis of 1, 8-dioxo-decahydroacridine derivatives in aqueous media. *Chinese Journal of Chemistry*, 27(10) (2009) 1953-1956.

[70] Kiani, M., Mohammadipour, M. $\text{Fe}_3\text{O}_4@\text{SiO}_2\text{-MoO}_3\text{H}$ nanoparticles: a magnetically recyclable nanocatalyst system for the synthesis of 1, 8-dioxo-decahydroacridine derivatives. *RSC Advances*, 7(2) (2017) 997-1007.

[71] Martin, N., Quinteiro, M., Seoane, C., Soto, J., Mora, A., Suarez, M., Ochoa, E., Morales, A., Bosque, J. Synthesis and conformational study of acridine derivatives related to 1, 4-dihydropyridines. *Journal of Heterocyclic Chemistry*, 32(1) (1995) 235-238.

[72] Niknam, K., Damya, M. 1-Butyl-3-methylimidazolium hydrogen sulfate $[\text{Bmim}]\text{HSO}_4$: an efficient reusable acidic ionic liquid for the synthesis of 1, 8-Dioxo-Octahydroxanthenes. *Journal of the Chinese Chemical Society*, 56(3) (2009) 659-665.

[73] Ilangoan, A., Malayappasamy, S., Muralidharan, S., Maruthamuthu, S. A highly efficient green synthesis of 1, 8-dioxo-octahydroxanthenes. *Chemistry Central Journal*, 5 (2011) 1-6.

[74] Kiani, M., Hendijani, M., Mohammadipour, M., Zamanian, A. Design, preparation and characterization of MoO_3H -functionalized $\text{Fe}_3\text{O}_4@\text{SiO}_2$ magnetic nanocatalyst and application for the one-pot multicomponent reactions. *Acta Chimica Slovenica*, 64(3) (2017).