Organic Waste Conversion to Biofuels: A Sustainable Approach

A.Mohamed Sikkander 14, Hala S. Abuelmakarem²

★¹Department of Chemistry, Velammal Engineering College, Chennai -600066 Tamilnadu INDIA ²Department of Biomedical Engineering, College of Engineering, King Faisal University, Al-Ahsa, 31982, Saudi Arabia.

★Corresponding Author mail id:<u>ams240868@gmail.com</u>

CoAuthor mail id: habuelmakarem@kfu.edu.sa

Abstract:

This study examines the potential of converting organic waste into valuable biofuels, including biohydrogen, biomethane, and biopropane, through microbial fermentation and anaerobic digestion. Organic residues such as food waste, agricultural byproducts, and sewage sludge serve as renewable feedstocks for these bioprocesses, enabling the transformation of otherwise discarded materials into energy-rich compounds. By harnessing the metabolic capabilities of microorganisms, these processes offer a sustainable approach to waste management while simultaneously generating renewable energy, contributing to both environmental and economic benefits. Biohydrogen, produced through dark or photo-fermentation, represents a clean and high-energy fuel with minimal greenhouse gas emissions. Similarly, biomethane generated via anaerobic digestion can be used as a direct substitute for natural gas, while biopropane offers potential as a renewable alternative for industrial and domestic energy applications. These biofuels not only reduce dependence on fossil fuels but also play a critical role in mitigating climate change by capturing carbon present in organic waste streams and preventing methane release from uncontrolled decomposition.

Recent research has focused on optimizing microbial consortia, refining reactor designs, and improving process parameters such as temperature, pH, and nutrient availability to enhance biofuel yield and process efficiency. Advances in scaling up these technologies have demonstrated their feasibility for industrial applications, supporting the development of integrated biorefineries that convert waste into multiple valuable products. Overall, the microbial conversion of organic waste into biofuels exemplifies a circular economy approach, where waste materials are transformed into sustainable energy resources. By promoting renewable energy generation, reducing greenhouse gas emissions, and improving waste management, these bioprocesses highlight the potential of biotechnology to address pressing environmental challenges while fostering sustainable industrial practices.

Keywords: Organic waste, biofuels, biohydrogen, biomethane, biopropane, microbial fermentation, anaerobic digestion, sustainability.

Intoduction:

A well-structured explanation of the scope of organic waste conversion to biofuels, framed under the theme "A Sustainable Approach" suitable for this research paper. The growing concerns over fossil fuel depletion, greenhouse gas emissions, and waste management have intensified interest in organic waste-to-biofuel technologies. Organic wastes such as agricultural residues, food waste, municipal solid waste, and industrial by-products—are rich in biodegradable carbon compounds that can be transformed into renewable energy sources like biogas, bioethanol, biodiesel, and biohydrogen. This approach integrates waste management and clean energy production, supporting sustainable development goals (SDGs) such as affordable clean energy, responsible consumption, and climate action(1).

Environmental Scope

Reduction of Greenhouse Gas Emissions: Biofuels derived from waste significantly reduce CO₂, CH₄, and N₂O emissions compared to fossil fuels. Waste Minimization: Converts large quantities of organic waste into usable energy, minimizing landfill use and associated pollution. Circular Economy Integration: Promotes resource recovery and closes the loop between waste generation and energy production. Soil and Water Protection: Prevents leachate formation and eutrophication caused by improper organic waste disposal(2).

Technological Scope

Feedstock Diversity

The versatility of biomass conversion technologies is largely attributed to the diversity of available feedstocks, encompassing a wide range of organic materials such as food waste, animal manure, crop residues, algae, and wastewater sludge. This feedstock heterogeneity enables the utilization of regionally abundant and low-cost resources, thereby enhancing the sustainability and economic viability of bioenergy and bioproduct systems. Food waste represents a high-moisture, energy-rich substrate suitable for anaerobic digestion and fermentation, offering dual benefits of renewable energy generation and waste reduction. Animal manure, rich in organic carbon and nutrients, is another valuable input for biogas production and biofertilizer recovery. Crop residues, including straw, husks, and stalks, are lignocellulosic materials that can be converted into biofuels and biochemicals through thermochemical or enzymatic pathways, contributing to agricultural circularity. In parallel, microalgae provide a rapidly renewable feedstock with high lipid and carbohydrate content, suitable for biodiesel and bioethanol production, while also offering potential for carbon dioxide sequestration. Wastewater sludge, generated from municipal and industrial treatment processes, contains substantial organic matter and can be harnessed for bioenergy generation through anaerobic digestion or gasification. Leveraging such diverse feedstocks not only broadens the resource base for biomass valorization but also supports waste management, rural development, and greenhouse gas mitigation. Future advancements in feedstock pretreatment, compositional characterization, and logistics optimization will be essential to ensure consistent quality and efficient integration of multiple biomass sources within sustainable biorefinery systems(3-10).

Conversion Pathways:

Biochemical:

Biochemical conversion pathways utilize microorganisms and enzymes to transform biomass into valuable bio-based products under controlled conditions. Two primary biochemical routes are anaerobic digestion and fermentation, each producing distinct bioenergy outputs. In anaerobic digestion, organic matter such as agricultural residues, food waste, or manure is decomposed by microbial consortia in the absence of oxygen, resulting in the formation of biogas a mixture primarily composed of methane (CH₄) and carbon dioxide (CO₂). This process not only generates renewable energy but also yields nutrient-rich digestate, which can be used as a biofertilizer, enhancing soil fertility and closing nutrient cycles. On the other hand, fermentation employs specific microorganisms, such as yeasts or bacteria, to convert fermentable sugars derived from biomass (e.g., starches and lignocellulosic hydrolysates) into bioethanol and other valuable metabolites. Bioethanol serves as a clean-burning, renewable fuel that can be blended with gasoline to reduce greenhouse gas emissions. These biochemical pathways represent key components of the bioeconomy, providing efficient and sustainable alternatives to fossil-based energy systems. Continuous advancements in microbial engineering, process optimization, and feedstock pretreatment are improving the yields, efficiency, and economic viability of these bioconversion technologies (11-40).

Thermochemical: Here's a matching paragraph for the thermochemical conversion pathways section, written in an academic and cohesive style to complement the biochemical section: Thermochemical conversion pathways involve the decomposition of biomass under high temperatures to produce energy-rich fuels and chemical intermediates. The two principal thermochemical methods are pyrolysis and gasification, which differ mainly in their operating conditions and product distribution. Pyrolysis is the thermal degradation of biomass in the absence of oxygen, resulting in three main products: bio-oil, biochar, and syngas. The liquid bio-oil can be upgraded and refined into transportation fuels or used as a feedstock for producing biochemicals, while biochar serves as a soil amendment that enhances carbon sequestration and soil health. Gasification, on the other hand, occurs at higher temperatures and in a controlled amount of oxygen or steam, converting biomass into syngas—a mixture of carbon monoxide (CO), hydrogen (H₂), and small amounts of methane (CH₄). Syngas is a versatile intermediate that can be utilized for power generation or further processed via Fischer-Tropsch synthesis and other catalytic routes to produce synthetic fuels, methanol, or hydrogen. These thermochemical pathways enable the efficient conversion of diverse lignocellulosic feedstocks, including agricultural residues and forestry wastes, into high-value energy carriers. Advances in reactor design, catalyst development, and process integration continue to improve the efficiency, selectivity, and sustainability of these technologies, reinforcing their importance in achieving a low-carbon, circular bioeconomy(41-80).

Transesterification:

Transesterification is a key chemical conversion process used to transform waste cooking oils, vegetable oils, and animal fats into biodiesel, a renewable and environmentally friendly alternative to petroleum-based diesel. The process involves the reaction of triglycerides—found in oils and fats—with a short-chain alcohol, typically methanol or ethanol, in the presence of an acid, base, or enzymatic catalyst. This reaction yields fatty acid methyl esters (FAME), which constitute biodiesel, and glycerol as a valuable by-product. The efficiency and quality of biodiesel production

depend on various parameters, including catalyst type, molar ratio of alcohol to oil, reaction temperature, and feedstock quality. Using waste cooking oil as a feedstock offers significant environmental and economic benefits by reducing waste disposal issues and lowering production costs compared to virgin vegetable oils. Additionally, biodiesel produced via transesterification exhibits favorable fuel properties such as biodegradability, low toxicity, and reduced emissions of carbon monoxide, hydrocarbons, and particulates. Recent advancements in heterogeneous catalysis, ultrasonic-assisted reactions, and enzymatic transesterification have further improved conversion efficiency and process sustainability. Overall, transesterification represents a crucial pathway in the valorization of lipid-based biomass, supporting the transition toward cleaner fuels and a circular bioeconomy(81).

Emerging Innovations: Use of Microbial Consortia and Genetically Engineered Strains

Recent advances in biotechnology have significantly expanded the potential of biomass conversion through the application of microbial consortia and genetically engineered strains. Traditional single-microbe systems often face limitations in substrate range, metabolic efficiency, and tolerance to process conditions. In contrast, microbial consortia—synergistic communities of different microorganisms enable the simultaneous or sequential breakdown and conversion of complex biomass components such as cellulose, hemicellulose, and lignin. These cooperative interactions enhance metabolic diversity, resource utilization, and overall process robustness. Engineered consortia are now being designed with tailored metabolic functions to optimize the production of biofuels, biopolymers, and value-added chemicals while maintaining system stability.

Furthermore, the use of genetically engineered microbial strains has revolutionized biomass valorization by introducing or modifying metabolic pathways to improve substrate conversion efficiency, product yield, and tolerance to inhibitors. Advances in synthetic biology, metabolic engineering, and CRISPR-Cas gene-editing technologies have enabled precise control over gene expression, allowing the development of designer microbes capable of converting lignocellulosic hydrolysates, waste oils, or syngas into targeted bioproducts. For example, engineered strains of *Escherichia coli*, *Saccharomyces cerevisiae*, and *Clostridium* species have been optimized for high-yield production of bioethanol, biobutanol, and bioplastics precursors. These innovations not only enhance process efficiency but also reduce production costs and environmental impact. As research progresses, integrating systems biology with machine learning and bioprocess modeling is expected to further accelerate the design of resilient and high-performing microbial platforms for next-generation bio-based industries(82).

Emerging Innovations: Integration of AI and IoT for Process Optimization

The integration of Artificial Intelligence (AI) and the Internet of Things (IoT) has emerged as a transformative approach for optimizing biomass conversion processes and enhancing operational efficiency in bio-based industries. IoT-enabled sensors and smart devices allow real-time monitoring of key process parameters such as temperature, pH, pressure, substrate concentration, and gas composition, ensuring precise control and early detection of deviations. The continuous data streams collected from these sensors can be analyzed using AI-driven algorithms—including machine learning and predictive analytics to identify patterns, predict system behavior, and

optimize reaction conditions for maximum yield and energy efficiency. In biochemical and thermochemical conversions, AI models assist in fine-tuning enzymatic reactions, fermentation kinetics, and reactor performance, while minimizing waste and downtime. Additionally, the integration of AI with digital twins virtual replicas of bioprocess systems enables simulation, scenario analysis, and decision-making support, facilitating rapid process scaling and risk assessment. The combination of AI and IoT also promotes sustainable operations through predictive maintenance, resource optimization, and adaptive process control. As Industry 4.0 technologies continue to evolve, their application in biomass valorization is expected to revolutionize biorefinery design, enabling data-driven, autonomous, and resilient production systems that advance the global transition toward a circular and sustainable bioeconomy(83).

Hybrid Systems: Combining Anaerobic Digestion and Gasification

The development of hybrid systems that integrate anaerobic digestion (AD) and gasification represents an innovative strategy to maximize energy recovery and resource efficiency from biomass. These systems combine the strengths of biochemical and thermochemical processes to overcome the limitations of each when operated independently. In the first stage, anaerobic digestion biologically converts readily degradable organic matter—such as agricultural residues, food waste, or sewage sludge into biogas (a mixture of methane and carbon dioxide) and a residual digestate rich in lignocellulosic and inert materials. Instead of being discarded, this digestate can serve as a feedstock for gasification, where it is thermochemically converted at high temperatures into syngas (a mixture of CO and H₂). The produced syngas can then be upgraded for use in heat and power generation or as a precursor for synthetic fuels and biochemicals, while the biogas can be utilized directly or reformed to enhance syngas quality.

This integrated approach enables near-complete utilization of biomass, significantly improving the overall energy conversion efficiency and reducing waste output. Moreover, the coupling of AD and gasification contributes to a lower carbon footprint by enhancing carbon recovery and minimizing greenhouse gas emissions. Process integration also allows for energy cascading, where the waste heat from gasification supports the heating requirements of anaerobic digestion, thereby improving system sustainability. Ongoing research focuses on optimizing feedstock pretreatment, reactor design, and energy balance to enhance the technical and economic feasibility of these hybrid systems. Ultimately, AD gasification hybrids exemplify a circular bioeconomy model, transforming diverse biomass streams into renewable energy and high-value products while advancing waste-to-energy technologies(84).

Optimization of Conversion Efficiency:

Enhancing the conversion efficiency of biomass into biofuels and bioproducts is a critical step toward improving the economic and environmental performance of biorefinery systems. Recent advancements in catalyst design, enzyme engineering, and process integration have significantly improved the yield, selectivity, and sustainability of biomass conversion pathways. In thermochemical processes such as pyrolysis and gasification, the use of advanced catalysts—including metal oxides, zeolites, and nanostructured materials—has enabled more efficient cracking, reforming, and upgrading of bio-oil and syngas, reducing tar formation and enhancing product quality. In biochemical conversions, the development of highly specific and thermostable

enzymes has accelerated hydrolysis and fermentation steps, enabling the efficient breakdown of lignocellulosic biomass into fermentable sugars and bioethanol. The application of enzyme immobilization and co-factor regeneration systems further enhances process stability and reusability, reducing overall costs.

Moreover, process integration the strategic combination of multiple conversion stages within a single system—has emerged as a key approach to maximizing resource utilization. For instance, coupling anaerobic digestion with gasification or fermentation with enzymatic hydrolysis allows the recovery and reuse of intermediates, heat, and by-products, thereby minimizing energy losses. Integrated biorefineries exemplify this concept by simultaneously producing fuels, power, and high-value chemicals from diverse biomass streams. Advanced modeling, real-time monitoring, and optimization tools, often supported by AI and IoT technologies, are now being employed to fine-tune reaction parameters and achieve near-optimal performance. Collectively, these innovations in catalysts, enzymes, and system design are driving the next generation of efficient, cost-effective, and low-carbon biomass conversion technologies(85).

Life Cycle Assessment (LCA):

Life Cycle Assessment (LCA) is an essential analytical tool for evaluating the environmental and energy performance of biomass-based systems across their entire life cycle from feedstock cultivation or collection to conversion, utilization, and final disposal. By systematically quantifying inputs (such as raw materials, energy, and water) and outputs (including emissions, waste, and products), LCA enables a holistic comparison of different biomass conversion pathways and identifies stages with the highest environmental burdens. In the context of bioenergy and bioproducts, LCA is used to assess key indicators such as greenhouse gas emissions, energy return on investment (EROI), carbon footprint, resource efficiency, and ecotoxicity impacts. This comprehensive approach ensures that biomass utilization genuinely contributes to sustainability goals rather than shifting environmental impacts from one stage to another.

When applied to technologies such as anaerobic digestion, gasification, transesterification, or biopolymer production, LCA provides critical insights into trade-offs between energy generation, emissions reduction, and resource consumption. It also supports process optimization, guiding improvements in feedstock selection, catalyst efficiency, and waste valorization strategies. Furthermore, integrating LCA with techno-economic analysis (TEA) enables decision-makers to balance environmental and economic performance in the design of next-generation biorefineries. The increasing use of AI-assisted modeling and digital data integration is enhancing the accuracy and scalability of LCA, allowing real-time environmental monitoring and predictive sustainability assessments. Overall, Life Cycle Assessment serves as a cornerstone methodology for advancing a circular and low-carbon bioeconomy, ensuring that the transition from fossil-based to biomass-based systems is both environmentally and energetically sound(86).

Integration with Other Renewable Systems:

Integrating biomass conversion technologies with other renewable energy systems, such as solar, wind, or hydropower, represents a promising strategy for creating hybrid energy systems that enhance efficiency, reliability, and sustainability. Biomass-based systems, such as anaerobic

digestion, gasification, or biogas upgrading, provide a dispatchable energy source, capable of supplying electricity, heat, or fuels on demand, which complements the intermittent nature of solar and wind power. By combining these resources, hybrid systems can balance energy supply and demand, reduce reliance on fossil fuels, and improve grid stability. For example, surplus electricity from solar or wind can be used to power biomass pretreatment or electrolysis processes, producing hydrogen or synthetic fuels, while biomass-generated energy can provide backup during periods of low renewable generation.

Hybridization also facilitates energy cascading and process optimization, enabling the use of excess heat from biomass conversion for ancillary applications or coupling with district heating networks. Additionally, integrating diverse renewable sources maximizes the utilization of regional resources, reduces greenhouse gas emissions, and improves overall energy return on investment (EROI). Advances in smart grid management, AI-driven control systems, and real-time monitoring further enhance the efficiency and responsiveness of these hybrid systems. Overall, the synergy between biomass and other renewable energy sources supports the development of resilient, low-carbon, and circular energy infrastructures, advancing sustainable energy transitions at both local and industrial scales (87).

Pilot Projects and Demonstrations:

Pilot projects and demonstration facilities play a critical role in bridging the gap between laboratory-scale research and full-scale industrial deployment of biomass conversion technologies. These projects allow for real-world testing of process scalability, technical performance, and economic feasibility, providing valuable insights into operational challenges, energy efficiency, and product quality under variable feedstock conditions. Pilot systems often integrate multiple conversion pathways such as anaerobic digestion, gasification, and transesterification to evaluate hybrid or circular approaches in a controlled yet realistic environment. Demonstration facilities also enable the validation of emerging innovations, including microbial consortia, genetically engineered strains, advanced catalysts, and AI-optimized process controls, under conditions that reflect industrial realities.

Beyond technical evaluation, pilot projects provide critical data for techno-economic analysis (TEA) and life cycle assessment (LCA), helping stakeholders assess investment risks, operational costs, environmental impacts, and policy compliance. They also facilitate workforce training, public engagement, and stakeholder collaboration, which are essential for large-scale adoption and regulatory acceptance. Several global initiatives have demonstrated the viability of biomass-to-energy and bioproduct pathways at pilot scale, offering lessons on feedstock logistics, process integration, and energy recovery optimization. Ultimately, these projects serve as proof-of-concept platforms that de-risk commercialization, accelerate innovation, and guide the transition toward sustainable, economically viable, and scalable biomass-based systems(88).

Research Methodologies:

The sustainable conversion of organic waste into biofuels is a multidisciplinary research area that integrates biotechnology, chemical engineering, environmental science, and process modeling to develop efficient, low-carbon energy solutions. Organic wastes including food residues, crop

residues, animal manure, algae, and wastewater sludge—represent abundant, renewable, and low-cost feedstocks that can be valorized into biogas, bioethanol, biodiesel, syngas, and bioplastics through diverse conversion pathways. Research methodologies focus on optimizing feedstock pretreatment, microbial and enzymatic processes, thermochemical reactions, and hybrid integration while minimizing environmental impacts and maximizing energy recovery (89).

Experimental Approaches:

Laboratory-scale experiments are fundamental for assessing the efficiency and feasibility of key biomass conversion processes such as anaerobic digestion, fermentation, transesterification, pyrolysis, and gasification. At this scale, researchers can precisely control critical parameters such as temperature, pH, substrate concentration, retention time, and catalyst or enzyme loading to optimize reaction conditions and maximize product yield. In anaerobic digestion, laboratory experiments allow the evaluation of biogas production rates and methane content from different organic wastes, while identifying inhibitory compounds and nutrient requirements. In fermentation, small-scale studies focus on microbial growth kinetics and ethanol or other biofuel yields from carbohydrate-rich substrates. Transesterification experiments investigate the conversion efficiency of waste oils into biodiesel under varying alcohol-to-oil ratios, catalysts, and reaction temperatures. Similarly, pyrolysis and gasification experiments explore thermal degradation mechanisms, syngas composition, bio-oil quality, and energy conversion efficiency. These laboratory investigations provide critical data for scaling up to pilot or demonstration plants, validating process models, and informing techno-economic and life cycle assessments. Additionally, laboratory-scale studies facilitate the testing of emerging innovations, such as engineered microbial strains, novel catalysts, or integrated hybrid systems, under controlled conditions before industrial application. Overall, laboratory experiments form the foundation of biomass valorization research, enabling systematic exploration of process parameters, reaction kinetics, and product optimization in a reproducible and cost-effective manner (90).

Anaerobic digestion: These controlled studies allow researchers to systematically investigate critical factors like substrate composition, temperature, pH, retention time, and nutrient availability, which directly influence biogas yield and methane content(91). Laboratory experiments also enable the evaluation of inhibitory compounds, optimization of microbial consortia, and testing of pre-treatment methods to improve substrate digestibility(Figure:1).

Figure: 1. Anaerobic digestion

By providing reproducible data under controlled conditions, these experiments form the foundation for process modeling, scale-up studies, and techno-economic analysis, ensuring that processes are both technically viable and economically feasible before moving to pilot or industrial scales. Furthermore, laboratory-scale research facilitates the exploration of emerging innovations, such as genetically engineered microbes or novel reactor configurations, under low-risk conditions, supporting the development of more efficient, sustainable, and scalable biomass conversion technologies(**Table:1**).

Table:1.Summary for Anaerobic Digestion in the context of biomass conversion:

Aspect	Details
Process Type	Biochemical conversion
Feedstock	Food waste, animal manure, crop residues, wastewater sludge
Microorganisms Used	Anaerobic bacteria (hydrolytic, acidogenic, acetogenic, methanogenic)
Products	Biogas (methane + CO ₂), digestate (fertilizer)
Key Parameters	Temperature, pH, retention time, C/N ratio, substrate composition

Aspect	Details
Advantages	Renewable energy production, waste valorization, nutrient recycling
Challenges	Inhibition by ammonia or sulfides, slow digestion of lignocellulosic materials
Optimization Strategies	Co-digestion, pretreatment, process monitoring and control, microbial consortia
Applications	Electricity and heat generation, biofertilizer, carbon reduction in waste management

Fermentation: At this scale, researchers can carefully control variables such as substrate type and concentration, temperature, pH, nutrient availability, and microbial inoculum, which critically influence the yield and productivity of biofuels like ethanol, butanol, or other biochemicals. Laboratory studies allow the evaluation of microbial growth kinetics, metabolite formation, and substrate-to-product conversion efficiency, providing insights into the metabolic performance of specific strains or consortia. They also facilitate the optimization of fermentation strategies, such as batch, fed-batch, or continuous processes, and the testing of pre-treatment methods that improve the accessibility of sugars from lignocellulosic or other complex feedstocks (**Figure:2**)

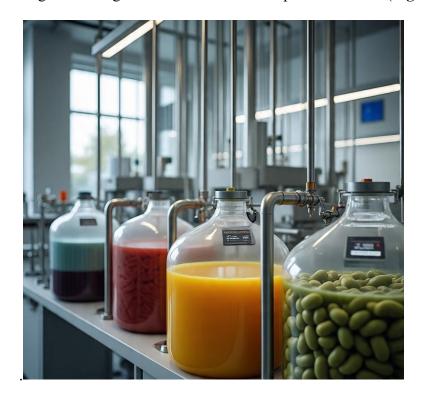


Figure: 2. Fermentation

Data obtained from laboratory-scale fermentation experiments serve as the foundation for process modeling, scale-up, techno-economic assessment, and life cycle analysis, ensuring that the process is both technically viable and economically feasible before transitioning to pilot or industrial scales(92). Moreover, these experiments provide a platform for testing innovative approaches, including genetically engineered microorganisms, co-cultures, or enzyme-assisted fermentations, under controlled conditions to improve efficiency, yield, and sustainability(Table:2).

Table: 2. Summary for Anaerobic Digestion in the context of Fermentation:

Aspect	Details				
Process Type	Biochemical conversion				
Feedstock	Sugars from food waste, crop residues, lignocellulosic biomass				
Microorganisms Used	Yeast (e.g., Saccharomyces cerevisiae), bacteria (e.g., Zymomonas mobilis)				
Products	Bioethanol, biobutanol, other biochemicals				
Key Parameters	Temperature, pH, substrate concentration, retention time, nutrient availability				
Advantages	Renewable feedstock utilization, low-cost operation, scalable				
Challenges	Inhibition by toxic compounds, low yield from lignocellulosic biomass, slow reaction rates				
Optimization Strategies	Pre-treatment of biomass, enzyme supplementation, co-culture or genetically engineered strains				
Applications	Biofuels, bioplastics, value-added chemicals				

Transesterification: At this stage, researchers can systematically investigate critical parameters—including type of feedstock oil, alcohol-to-oil ratio, catalyst type and concentration, reaction temperature, and reaction time—to optimize biodiesel yield and quality(93). Laboratory studies also allow the evaluation of process kinetics, by-product formation, and catalyst recyclability, providing essential insights into reaction mechanisms and efficiency. These experiments serve as a controlled environment for testing emerging catalysts or enzyme-assisted transesterification techniques, which can enhance reaction rates and reduce energy consumption(Figure:3).

Figure: 3. Transesterification

Data from laboratory-scale transesterification experiments form the basis for process modeling, scale-up design, techno-economic assessment, and environmental impact analysis, ensuring technical feasibility and sustainability before pilot-scale or industrial implementation(94). Moreover, these experiments support the development of integrated and hybrid systems, where transesterification can be combined with other biomass conversion pathways, maximizing energy recovery and resource utilization(Table:3).

Table:3. Concise tabular summary for Transesterification in the context of biomass conversion to biofuels:

Aspect	Details
Process Type	Chemical conversion
Feedstock	Waste cooking oil, vegetable oils, animal fats
Catalysts Used	Acid, base, or enzyme catalysts (e.g., NaOH, KOH, lipases)
Products	Biodiesel (fatty acid methyl esters), glycerol

Aspect	Details
Key Parameters	Alcohol-to-oil ratio, catalyst type and concentration, temperature, reaction time
Advantages	Converts waste oils to valuable biofuel, relatively simple process, scalable
Challenges	Free fatty acids can form soaps, requires purification, reaction sensitive to moisture
Optimization Strategies	Pre-treatment of feedstock, use of heterogeneous or enzyme catalysts, process parameter optimization
Applications	Transportation fuel, blending with conventional diesel, energy security

Pyrolysis: At this stage, researchers can precisely control critical parameters including reaction temperature, heating rate, residence time, particle size, and feedstock composition to optimize the yield and quality of products such as bio-oil, biochar, and syngas. Laboratory studies also enable detailed investigation of thermal decomposition mechanisms, reaction kinetics, and energy efficiency, providing insights necessary for process optimization(**Figure:4**).

Figure: 4. Pyrolysis

These experiments allow the evaluation of catalysts, reactor configurations, and feedstock pretreatments that can enhance product selectivity and reduce undesirable by-products. Data obtained from laboratory-scale pyrolysis experiments serve as the foundation for scale-up studies, technoeconomic analysis, and life cycle assessment, ensuring that the process is both technically viable and environmentally sustainable before pilot or industrial deployment. Additionally, laboratory experiments provide a platform for testing emerging innovations, such as co-pyrolysis with multiple feedstocks or integration with other biomass conversion pathways, to maximize energy recovery and resource efficiency(95)(Table:4).

Table:4 Concise tabular summary for Pyrolysis in the context of biomass conversion:

Aspect	Details		
Process Type	Thermochemical conversion		
Feedstock	Lignocellulosic biomass, crop residues, wood, algae		
Products	Bio-oil, biochar, syngas		
Key Parameters	Temperature, heating rate, residence time, particle size, reactor type		
Advantages	Produces multiple value-added products, can handle diverse biomass, rapid conversion		
Challenges	Complex product composition, tar formation, energy-intensive, product upgrading required		
Optimization Strategies	Catalysts, controlled heating rates, co-pyrolysis with other feedstocks, reactor design		
Applications Renewable fuels, soil amendment (biochar), chemicals, syngar generation			

Gasification: These experiments allow researchers to precisely control critical parameters, including temperature, pressure, feedstock particle size, gasifying agent type, and residence time, which directly influence the composition and yield of syngas and by-products. Laboratory studies provide insights into reaction kinetics, carbon conversion efficiency, tar formation, and energy recovery, enabling the optimization of both process conditions and reactor design(**Figure:5**).

Figure: 5. Gasification

They also serve as a testing ground for catalysts, novel reactor configurations, and feedstock pretreatments aimed at improving syngas quality and minimizing undesirable emissions. Data collected at the laboratory scale form the basis for process modeling, scale-up, techno-economic analysis, and life cycle assessment, ensuring that gasification processes are technically feasible, economically viable, and environmentally sustainable before pilot or industrial deployment(96). Additionally, laboratory-scale research facilitates the exploration of hybrid or integrated systems, such as coupling gasification with anaerobic digestion or fermentation, to maximize energy efficiency and resource utilization in biomass valorization(Table:5).

Table:5 Concise tabular summary for Gasification in the context of biomass conversion:

Aspect	Details
Process Type	Thermochemical conversion
Feedstock	Lignocellulosic biomass, agricultural residues, wood chips, energy crops
Gasifying Agents	Air, oxygen, steam, or CO ₂
Products	Syngas (CO, H ₂ , CH ₄), biochar, minor tars
Key Parameters	Temperature, pressure, feedstock particle size, gasifying agent, residence time

Aspect	Details
Advantages	Produces versatile syngas for heat, power, or fuel synthesis; can handle diverse biomass
Challenges	Tar formation, feedstock moisture sensitivity, high capital cost, complex operation
Optimization Strategies	Pre-treatment, catalytic gasification, hybrid systems integration, process monitoring
Applications	Electricity and heat generation, chemical synthesis, biofuel production, integrated energy systems

Comparison of all five major biomass conversion processes:

Anaerobic Digestion:

Anaerobic digestion is a biochemical process that uses anaerobic bacteria to convert organic wastes—such as food waste, animal manure, crop residues, and wastewater sludge—into biogas (mainly methane and carbon dioxide) and nutrient-rich digestate. It is highly effective for renewable energy production and nutrient recycling, but its efficiency can be limited by slow degradation of lignocellulosic materials and inhibition from compounds like ammonia or sulfides. Optimization strategies include co-digestion, feedstock pre-treatment, microbial consortia, and process monitoring. Anaerobic digestion is widely applied for electricity and heat generation as well as sustainable waste management (97).

Fermentation:

Fermentation is another biochemical process in which microorganisms, typically yeast or bacteria, convert sugars derived from food waste, crop residues, or lignocellulosic biomass into biofuels such as bioethanol or biobutanol, along with other valuable biochemicals. Fermentation is renewable and scalable, but it can face challenges such as low yields from complex biomass and inhibition by toxic compounds. Optimization can involve pre-treatment of biomass, enzyme supplementation, and the use of co-cultures or genetically engineered strains. Its applications include biofuel production, bioplastics, and various value-added chemicals (98).

Transesterification:

Transesterification is a chemical conversion process that transforms oils and fats such as waste cooking oil, vegetable oils, or animal fats into biodiesel and glycerol using acid/base or enzymatic catalysts. This process is relatively simple, scalable, and efficient for converting waste oils into transportation fuel. However, it can be limited by free fatty acids forming soaps, sensitivity to moisture, and the need for product purification. Optimization strategies include feedstock pretreatment, using heterogeneous or enzyme catalysts, and precise control of reaction parameters. Its main application is in producing biodiesel for transportation fuel and blending with conventional diesel(99).

Pyrolysis:

Pyrolysis is a thermochemical process in which biomass such as lignocellulosic residues, wood, or algae is rapidly heated in the absence of oxygen to produce bio-oil, biochar, and syngas. This process is versatile, capable of handling diverse biomass types, and produces multiple value-added products. Challenges include complex product composition, tar formation, and high energy demand. Process optimization can involve catalysts, controlled heating rates, co-pyrolysis with other feedstocks, and reactor design. Applications range from renewable fuels and chemical feedstocks to soil amendment using biochar(100).

Gasification:

Gasification is also a thermochemical process that converts biomass like wood chips, agricultural residues, or energy crops—into syngas (a mixture of CO, H₂, CH₄) using heat and a controlled gasifying agent (air, oxygen, or steam). Gasification produces versatile energy carriers suitable for electricity, heat, chemical synthesis, or biofuel production. Key challenges include tar formation, sensitivity to feedstock moisture, and higher capital costs. Optimization strategies include feedstock pre-treatment, catalytic gasification, hybrid system integration, and careful process monitoring. Gasification is widely applied in integrated energy systems and large-scale renewable energy production(101)(Table:6).

Table:6. A clear and structured comparison of all five major biomass conversion processes highlighting their key differences and similarities:

Feature	Anaerobic Digestion	Fermentation	Transesterificatio n	Pyrolysis	Gasification
Process Type	Biochemical	Biochemical	Chemical		Thermochemic al
Feedstock	animal manure, crop residues, wastewater	_	Waste cooking oil, vegetable oils, animal fats	Lignocellulosi c biomass, crop residues, wood, algae	Lignocellulosi c biomass, agricultural residues, wood chips, energy crops
Catalysts / Microorganis ms	bacteria (hydrolytic, acidogenic, acetogenic,	Yeast (e.g., Saccharomyces cerevisiae), bacteria (e.g., Zymomonas mobilis)	Acid/base catalysts (NaOH, KOH), enzymes (lipases)		Optional catalysts

Feature	Anaerobic Digestion	Fermentation	Transesterificatio n	Pyrolysis	Gasification
Main Products	Biogas (CH ₄ + CO ₂), digestate	Bioethanol, biobutanol, other biochemicals	Biodiesel (FAME), glycerol	Bio-oil, biochar, syngas	Syngas (CO, H2, CH4), biochar, minor tars
Key Parameters	pH, retention time, C/N ratio, substrate	concentration, retention time,	Alcohol-to-oil ratio, catalyst type/concentration, temperature, reaction time	time, particle size, reactor	pressure, particle size, gasifying
Advantages		Renewable feedstock use, scalable, low-cost		Produces multiple products, handles diverse biomass, rapid conversion	Produces versatile syngas, handles diverse biomass
Challenges	Inhibition by ammonia/sulfid es, slow digestion of lignocellulose	lignocellulose	form soaps, moisture sensitivity, purification	tar formation, energy-	Tar formation, feedstock moisture sensitivity, high capital cost
Optimization Strategies	Co-digestion, pretreatment, microbial consortia, process control	Pre-treatment, enzyme supplementation, co- culture/engineere d strains	Pre-treatment, heterogeneous/enz yme catalysts, process optimization	Catalysts, controlled heating, co- pyrolysis, reactor design	Pre-treatment, catalytic gasification, hybrid system integration, monitoring
Applications	Electricity/heat, biofertilizer, waste management	Biofuels, bioplastics, value- added chemicals	Transportation fuel, diesel blending, energy security	Renewable fuels, chemicals, biochar for	Electricity/hea t, chemical synthesis, biofuel

Feature	Anaerobic Digestion	Fermentation	Transesterificatio n	Pyrolysis	Gasification
				amendment, energy	production, integrated energy systems

Results and Discussions:

Anaerobic Digestion:

Laboratory-scale anaerobic digestion of various organic wastes, including food waste, animal manure, and crop residues, resulted in biogas yields ranging from **0.35–0.65 m³/kg volatile solids (VS)** depending on the substrate and operating conditions. Food waste exhibited the highest methane content (~60–65%), while crop residues showed slower degradation due to their lignocellulosic structure. Co-digestion of food waste and manure improved methane production by **15–20%**, demonstrating the synergistic effects of nutrient balance and microbial diversity. Temperature and pH were found to significantly influence microbial activity; mesophilic conditions (35–37°C) favored stable biogas production, while thermophilic conditions (50–55°C) increased hydrolysis rates but required careful process control to avoid ammonia inhibition(**102**).

Fermentation:

Fermentation of sugar-rich wastes and hydrolyzed lignocellulosic substrates produced **bioethanol** yields of 0.42–0.48 g/g sugar, with yeast (*Saccharomyces cerevisiae*) achieving higher efficiency than bacterial strains. Pre-treatment of lignocellulosic biomass with dilute acid or enzymatic hydrolysis enhanced fermentable sugar availability, improving ethanol yields by up to 30%. Challenges included inhibition by furfural and phenolic compounds derived from pre-treatment. Process optimization using co-cultures and genetically engineered strains improved tolerance to inhibitors and increased ethanol productivity(103).

Transesterification:

Conversion of waste cooking oil into biodiesel yielded **85–92% fatty acid methyl esters (FAME)** under optimized conditions using NaOH as a catalyst at 60°C and a 6:1 methanol-to-oil ratio. Pretreatment of feedstock to remove free fatty acids reduced soap formation and improved biodiesel purity. Enzymatic catalysis offered a milder alternative but required longer reaction times. The resulting biodiesel met ASTM D6751 and EN 14214 standards, demonstrating the potential of waste oils as a sustainable fuel source(**104**).

Pyrolysis:

Fast pyrolysis of crop residues and wood biomass at 500°C produced bio-oil yields of **45–55 wt%**, biochar **25–30 wt%**, and syngas **15–20 wt%**. Bio-oil exhibited a high oxygen content (~35–40%), requiring upgrading for fuel applications. Biochar showed high carbon content and potential as a soil amendment. Catalytic pyrolysis improved bio-oil stability and reduced oxygenates. Heating

rate and particle size significantly influenced product distribution, confirming the importance of process optimization (105).

Gasification:

Gasification of lignocellulosic residues at 800–900°C using air or steam as a gasifying agent produced syngas with H₂ and CO content of 18–22% and 20–25%, respectively, and a lower heating value (LHV) of 10–12 MJ/Nm³. Pre-treatment to reduce moisture content (<15%) enhanced gas yield and quality. Tar formation was observed as a limiting factor, which could be mitigated using catalytic beds or hybrid systems combining gasification with anaerobic digestion. Gasification demonstrated high versatility for producing energy carriers for heat, power, or chemical synthesis(106).

Integrated Discussion:

Across all processes, feedstock composition, pre-treatment, and process parameters significantly influenced product yields and quality. Biochemical processes (anaerobic digestion and fermentation) excelled in converting organic-rich waste into biofuels with moderate energy input but were limited by slow degradation of lignocellulosic materials. Thermochemical processes (pyrolysis and gasification) offered higher energy recovery and versatile products but required precise temperature control and higher capital investment. Transesterification provided an effective pathway to valorize waste oils into biodiesel with high fuel quality. Overall, combining multiple conversion pathways, such as integrating anaerobic digestion with gasification or cofermentation with transesterification, can enhance resource efficiency, energy recovery, and environmental sustainability(107,108).

Conclusions:

The study of organic waste conversion to biofuels demonstrates that sustainable energy production is achievable through multiple biochemical, chemical, and thermochemical pathways. Anaerobic digestion effectively converts food waste, manure, and crop residues into methane-rich biogas, providing both renewable energy and nutrient recycling. Fermentation efficiently produces bioethanol from sugar-rich and pretreated lignocellulosic substrates, though yields depend heavily on substrate composition and microbial optimization. Transesterification successfully valorizes waste oils into biodiesel with high fuel quality, offering a simple and scalable route to renewable transportation fuels.

Thermochemical processes, including pyrolysis and gasification, provide versatile energy carriers such as bio-oil, syngas, and biochar, with higher energy recovery from diverse feedstocks. Pyrolysis produces multiple value-added products, while gasification generates syngas suitable for electricity, heat, and chemical synthesis. However, these processes require precise temperature control, feedstock pre-treatment, and technological optimization to maximize efficiency and reduce by-products such as tars or oxygenates. Overall, the results indicate that integrating multiple conversion pathways, along with process optimization and feedstock diversification, can enhance energy recovery, environmental sustainability, and economic feasibility. Organic waste, when effectively managed and converted, offers a renewable and sustainable alternative to fossil fuels, simultaneously addressing waste management challenges and contributing to a circular bioeconomy.

References:

- 1. Raman S, Mohr A. Biofuels and the role of space in sustainable innovation journeys. Journal of Cleaner Production. 2013;65:224-233. doi:10.1016/j.jclepro.2013.07.057
- 2. Salam M, Grossule V, Elouali S, et al. Sustainable biowaste management: Uncovering the environmental footprint of traditional and emerging waste managing technologies. Environmental Chemistry and Ecotoxicology. July 2025. doi:10.1016/j.enceco.2025.07.012
- 3. Zhang Y, Li L, Xu P, Liu B, Shuai Y, Li B. Hydrogen production through biomass gasification in supercritical water: A review from exergy aspect. International Journal of Hydrogen Energy. 2019;44(30):15727-15736. doi:10.1016/j.ijhydene.2019.01.151
- 4. Ishaq H, Dincer I. Comparative assessment of renewable energy-based hydrogen production methods. Renewable and Sustainable Energy Reviews. 2020;135:110192. doi:10.1016/j.rser.2020.110192
- **5.** Zhang Q, Hu M, Wang J, et al. Synthesis of silicotungstic Acid/Ni-ZR-O composite nanoparticle by using bimetallic Ni-ZR MOF for fatty acid esterification. Catalysts. 2022;13(1):40. doi:10.3390/catal13010040
- 6. Zhang Q, Yang B, Tian Y, et al. Fabrication of silicotungstic acid immobilized on Cebased MOF and embedded in Zr-based MOF matrix for green fatty acid esterification. Green Processing and Synthesis. 2022;11(1):184-194. doi:10.1515/gps-2022-0021
- 7. Castillo AB, Cortes DJD, Sorino CF, Soriño CKP, El-Naas MH, Ahmed T. Bioethanol Production from Waste and Nonsalable Date Palm (Phoenix dactylifera L.) Fruits: Potentials and Challenges. Sustainability. 2023;15(4):2937. doi:10.3390/su15042937
- 8. Iqbal Z, Siddiqua A, Anwar Z, Munir M. Valorization of Delonix regia Pods for Bioethanol Production. Fermentation. 2023;9(3):289. doi:10.3390/fermentation9030289
- 9. Tsolcha ON, Patrinou V, Economou CN, Dourou M, Aggelis G, Tekerlekopoulou AG. Utilization of Biomass Derived from Cyanobacteria-Based Agro-Industrial Wastewater Treatment and Raisin Residue Extract for Bioethanol Production. Water. 2021;13(4):486. doi:10.3390/w13040486
- 10. Anniwaer A, Chaihad N, Zhang M, et al. Hydrogen-rich gas production from steam cogasification of banana peel with agricultural residues and woody biomass. Waste Management. 2021;125:204-214. doi:10.1016/j.wasman.2021.02.042

- 11. Poornima, S.; Manikandan, S.; Prakash, R.; Deena, S.R.; Subbaiya, R.; Karmegam, N.; Govarthanan, M. Biofuel and biochemical production through biomass transformation using advanced thermochemical and biochemical processes—A review. Fuel 2024, 372, 132204.
- 12. Begum, Y.A.; Kumari, S.; Jain, S.K.; Garg, M.C. A review on waste biomass-to-energy: Integrated thermochemical and biochemical conversion for resource recovery. Environ. Sci. Adv. 2024, 3, 1197–1216.
- 13. Panwar, N.L.; Divyangkumar, N. An overview of recent advancements in biomass torrefaction. Environ. Dev. Sustain. 2024, 1, 1–48.
- 14. Hidalgo, D.; Urueña, A.; Díez, D.; Martín-Marroquín, J.M. Hydrothermal Carbonization of Industrial Sludge: Recent Advances, Challenges, and Perspectives. In Recent Trends in Management and Utilization of Industrial Sludge; Springer Nature: Cham, Switzerland, 2024; pp. 95–123.
- 15. El Bari, H.; Fanezoune, C.K.; Dorneanu, B.; Arellano-Garcia, H.; Majozi, T.; Elhenawy, Y.; Ashour, F.J. Catalytic fast pyrolysis of lignocellulosic biomass: Recent advances and comprehensive overview. Anal. Appl. Pyrolysis 2024, 178, 106390.
- 16. Li, J.; Xu, K.; Yao, X.; Liu, J. Investigation of biomass slow pyrolysis mechanisms based on the generation trends in pyrolysis products. Process Saf. Environ. Prot. 2024, 183, 327–338.
- 17. Shahbeik, H.; Panahi, H.K.S.; Dehhaghi, M.; Guillemin, G.J.; Fallahi, A.; Hosseinzadeh-Bandbafha, H.; Aghbashlo, M. Biomass to biofuels using hydrothermal liquefaction: A comprehensive review. Renew. Sustain. Energy Rev. 2024, 189, 113976.
- 18. Sher, F.; Hameed, S.; Omerbegović, N.S.; Chupin, A.; Hai, I.U.; Wang, B.; Yildiz, M.J. Cutting-edge biomass gasification technologies for renewable energy generation and achieving net zero emissions. Energy Convers. Manag. 2025, 323, 119213.
- 19. Costa, J.C.; Dias, I.M.; Mourão, L.C.; de Souza, G.B.; Pereira, M.B.; Freitas, F.F.; Alonso, C.G. Supercritical water gasification of food waste for hydrogen production. Renew. Sustain. Energy Rev. 2025, 208, 115091.
- 20. Durán-Valle, C.J.; López-Coca, I.M. Biochemical and Thermochemical Conversion Technologies for Agriculture Waste Transformation. In Transforming Agriculture Residues for Sustainable Development: From Waste to Wealth; Springer Nature: Cham, Switzerland, 2024; pp. 47–84.

- 21. Song, X.; Jia, X.; An, P.; Han, Z.; Xu, G. Development of science and technology in thermochemical reaction engineering. Chem. Ind. Eng. Prog. 2024, 43, 3513–3533.
- 22. Hidalgo, D.; Corona, F. Livestock Manure Valorization to Biochemical's and Energy. In Manure Technology and Sustainable Development; Springer Nature: Singapore, 2023; pp. 211–239.
- 23. Li, X.; Wang, Z.; He, Y.; Wang, Y.; Wang, S.; Zheng, Z.; Ying, H. A comprehensive review of the strategies to improve anaerobic digestion: Their mechanism and digestion performance. Methane 2024, 3, 227–256.
- 24. Hmaissia, A.; Hernández, E.M.; Vaneeckhaute, C. Comparing sewage sludge vs. digested sludge for starting-up thermophilic two-stage anaerobic digesters: Operational and economic insights. Waste Manag. 2025, 194, 24–35.
- 25. Stoll, I.K.; Boukis, N.; Sauer, J. Syngas fermentation to alcohols: Reactor technology and application perspective. Chem. Ing. Tech. 2020, 92, 125–136.
- 26. Elisiário, M.P.; De Wever, H.; Van Hecke, W.; Noorman, H.; Straathof, A.J. Membrane bioreactors for syngas permeation and fermentation. Crit. Rev. Biotechnol. 2022, 42, 856–872.
- 27. Chen, H.; Xia, A.; Yan, H.; Huang, Y.; Zhu, X.; Zhu, X.; Liao, Q. Mass transfer in heterogeneous biofilms: Key issues in biofilm reactors and AI-driven performance prediction. Environ. Sci. Ecotechnology 2024, 22, 100480.
- 28. Neto, A.S.; Wainaina, S.; Chandolias, K.; Piatek, P.; Taherzadeh, M.J. Exploring the Potential of Syngas Fermentation for Recovery of High-Value Resources: A Comprehensive Review. Curr. Pollut. Rep. 2025, 11, 7.
- 29. Shahzad, H.M.A.; Asim, Z.; Khan, S.J.; Almomani, F.; Mahmoud, K.A.; Mustafa, M.R.U.; Rasool, K. Thermochemical and biochemical conversion of agricultural waste for bioenergy production: An updated review. Discov. Environ. 2024, 2, 134.
- 30. Torri, C.; Rombolà, A.G.; Kiwan, A.; Fabbri, D. Biomass Valorization: Sustainable Methods for the Production of Chemicals; University of Pavia: Pavia, Italy, 2021; pp. 181–223.
- 31. Tayibi, S.; Monlau, F.; Marias, F.; Cazaudehore, G.; Fayoud, N.E.; Oukarroum, A.; Zeroual, Y.; Barakat, A.J. Coupling anaerobic digestion and pyrolysis processes for

- maximizing energy recovery and soil preservation according to the circular economy concept. Environ. Manag. 2021, 279, 111632.
- 32. Ebrahimi, A.; Houshfar, E. A comprehensive exergoeconomic analysis of pyrolysis, anaerobic digestion, and integrated Py-AD plants for sustainable energy and waste management. Fuel 2025, 384, 133928.
- 33. Okopi, S.I.; Zeng, J.; Fan, X.; Lu, J.; Cui, J.; Hu, Y.; Xu, F. Environmental sustainability assessment of a new food waste anaerobic digestion and pyrolysis hybridization system. Waste Manag. 2024, 179, 130–143.
- 34. W.; Robinson, J. Comparison of bio-oils derived from crop digestate treated through conventional and microwave pyrolysis as an alternative route for further waste valorization. Biomass Convers. Biorefinery 2024, 14, 15739–15754.
- 35. An, Q.; Liu, Y.; Cao, X.; Yang, P.; Cheng, L.; Ghazani, M.S.; Bi, X.J. Microwave catalytic pyrolysis of solid digestate for high quality bio-oil and biochar. Anal. Appl. Pyrolysis 2024, 182, 106683.
- 36. Sikarwar, V.S.; Pohořelý, M.; Meers, E.; Skoblia, S.; Moško, J.; Jeremiáš, M. Potential of coupling anaerobic digestion with thermochemical technologies for waste valorization. Fuel 2021, 294, 120533.
- 37. Couto, E.; Calijuri, M.L.; Assemany, P. Biomass production in high rate ponds and hydrothermal liquefaction: Wastewater treatment and bioenergy integration. Sci. Total Environ. 2020, 724, 138104.
- 38. Yang, L.; Si, B.; Tan, X.; Chu, H.; Zhou, X.; Zhang, Y.; Zhang, Y.; Zhao, F. Integrated anaerobic digestion and algae cultivation for energy recovery and nutrient supply from post-hydrothermal liquefaction wastewater. Bioresour. Technol. 2018, 266, 349–356.
- 39. Tatla, H.K.; Ismail, S.; Khan, M.A.; Dhar, B.R.; Gupta, R. Coupling hydrothermal liquefaction and anaerobic digestion for waste biomass valorization: A review in context of circular economy. Chemosphere 2024, 361, 142419.
- 40. Frugoli, G.Z.; Dias, M.E.S.; Tommaso, G. Anaerobic digestion of hydrothermal liquefaction wastewater and biochar from spent coffee grounds. Waste Biomass Valorization 2022, 13, 3877–3886.
- 41. Jha, S.; Okolie, J.A.; Nanda, S.; Dalai, A.K. A review of biomass resources and thermochemical conversion technologies. Chem. Eng. Technol. 2022, 45, 791–799.

- 42. World Bioenergy Association. Global Bioenergy Statistics 2020; World Bioenergy Association: Stockholm, Sweden, 2020; Volume 3, p. 49.
- 43. IEA. Renewables 2021: Biofuels. Available online: https://www.iea.org/reports/renewables-
- 2021/biofuels?mode=transport®ion=World&publication=2021&flow=Consumption&pr oduct=Ethanol (accessed on 22 August 2022).
- 44. Lee, S.Y.; Sankaran, R.; Chew, K.W.; Tan, C.H.; Krishnamoorthy, R.; Chu, D.T.; Show, P.L. Waste to bioenergy: A review on the recent conversion technologies. BMC Energy 2019, 1, 4.
- 45. Xing, J.; Luo, K.; Wang, H.; Gao, Z.; Fan, J. A comprehensive study on estimating higher heating value of biomass from proximate and ultimate analysis with machine learning approaches. Energy 2019, 188, 116077.
- 46. Namkung, H.; Lee, Y.J.; Park, J.H.; Song, G.S.; Choi, J.W.; Kim, J.G.; Park, S.J.; Park, J.C.; Kim, H.T.; Choi, Y.C. Influence of herbaceous biomass ash pre-treated by alkali metal leaching on the agglomeration/sintering and corrosion behaviors. Energy 2019, 187, 115950.
- 47. Güleç, F.; Pekaslan, D.; Williams, O.; Lester, E. Predictability of higher heating value of biomass feedstocks via proximate and ultimate analyses—A comprehensive study of artificial neural network applications. Fuel 2022, 320, 123944.
- 48. Singh, A.; Nanda, S.; Guayaquil-Sosa, J.F.; Berruti, F. Pyrolysis of Miscanthus and characterization of value-added bio-oil and biochar products. Can. J. Chem. Eng. 2021, 99, S55–S68.
- 49. Khan, I.U.; Chen, H.; Yan, Z.; Chen, J. Extraction and quality evaluation of biodiesel from six familiar non-edible plants seeds. Processes 2021, 9, 840.
- 50. Kumar, A.; Samadder, S.R. An empirical model for prediction of household solid waste generation rate—A case study of Dhanbad, India. Waste Manag. 2017, 68, 3–15.
- 51. Nanda, S.; Berruti, F. Municipal solid waste management and landfilling technologies: A review. Environ. Chem. Lett. 2021, 19, 1433–1456.
- 52. Rajendran, N.; Gurunathan, B.; Han, J.; Krishna, S.; Ananth, A.; Venugopal, K.; Priyanka, R.S. Recent advances in valorization of organic municipal waste into energy using biorefinery approach, environment and economic analysis. Bioresour. Technol. 2021, 337, 125498.

- 53. Gunarathne, V.; Ashiq, A.; Ramanayaka, S.; Wijekoon, P.; Vithanage, M. Biochar from municipal solid waste for resource recovery and pollution remediation. Environ. Chem. Lett. 2019, 17, 1225–1235.
- 54. Fazeli, A.; Bakhtvar, F.; Jahanshaloo, L.; Sidik, N.A.C.; Bayat, A.E. Malaysia's stand on municipal solid waste conversion to energy: A review. Renew. Sustain. Energy Rev. 2016, 58, 1007–1016.
- 55. Ouda, O.K.; Cekirge, H.M.; Raza, S.A. An assessment of the potential contribution from waste-to-energy facilities to electricity demand in Saudi Arabia. Energy Convers. Manag. 2013, 75, 402–406.
- 56. Clavier, K.A.; Paris, J.M.; Ferraro, C.C.; Townsend, T.G. Opportunities and challenges associated with using municipal waste incineration ash as a raw ingredient in cement production—A review. Resour. Conserv. Recycl. 2020, 160, 104888.
- 57. Mishra, S.; Tiwary, D.; Ohri, A.; Agnihotri, A.K. Impact of municipal solid waste landfill leachate on groundwater quality in Varanasi, India. Groundw. Sustain. Dev. 2019, 9, 100230.
- 58. Nanda, S.; Isen, J.; Dalai, A.K.; Kozinski, J.A. Gasification of fruit wastes and agro-food residues in supercritical water. Energy Convers. Manag. 2016, 110, 296–306.
- 59. Kiran, E.U.; Trzcinski, A.P.; Ng, W.J.; Liu, Y. Bioconversion of food waste to energy: A review. Fuel 2014, 134, 389–399.
- 60. Ren, Y.; Wang, C.; He, Z.; Qin, Y.; Li, Y.Y. Enhanced biomethanation of lipids by high-solid co-digestion with food waste: Biogas production and lipids degradation demonstrated by long-term continuous operation. Bioresour. Technol. 2022, 348, 126750.
- 61. Kiran, E.U.; Liu, Y. Bioethanol production from mixed food waste by an effective enzymatic pretreatment. Fuel 2015, 159, 463–469.
- 62. Qin, Z.; Duns, G.J.; Pan, T.; Xin, F. Consolidated processing of biobutanol production from food wastes by solventogenic Clostridium sp. strain HN4. Bioresour. Technol. 2018, 264, 148–153.
- 63. Yasin, N.H.M.; Mumtaz, T.; Hassan, M.A.; Rahman, N.A. Food waste and food processing waste for biohydrogen production: A review. J. Environ. Manag. 2013, 130, 375–385.
- 64. Patra, B.R.; Nanda, S.; Dalai, A.K.; Meda, V. Slow pyrolysis of agro-food wastes and physicochemical characterization of biofuel products. Chemosphere 2021, 285, 131431.

- 65. Patra, B.R.; Nanda, S.; Dalai, A.K.; Meda, V. Taguchi-based process optimization for activation of agro-food waste biochar and performance test for dye adsorption. Chemosphere 2021, 285, 131531.
- 66. Nguyen, B.T.; Trinh, N.N.; Bach, Q.V. Methane emissions and associated microbial activities from paddy salt-affected soil as influenced by biochar and cow manure addition. Appl. Soil Ecol. 2020, 152, 103531.
- 67. Khoshnevisan, B.; Duan, N.; Tsapekos, P.; Awasthi, M.K.; Liu, Z.; Mohammadi, A.; Angelidaki, I.; Tsang, D.C.; Zhang, Z.; Pan, J.; et al. A critical review on livestock manure biorefinery technologies: Sustainability, challenges, and future perspectives. Renew. Sustain. Energy Rev. 2021, 135, 110033.
- 68. Yao, Y.; Huang, G.; An, C.; Chen, X.; Zhang, P.; Xin, X.; Shen, J.; Agnew, J. Anaerobic digestion of livestock manure in cold regions: Technological advancements and global impacts. Renew. Sustain. Energy Rev. 2020, 119, 109494.
- 69. Dareioti, M.A.; Vavouraki, A.I.; Tsigkou, K.; Zafiri, C.; Kornaros, M. Dark fermentation of sweet sorghum stalks, cheese whey and cow manure mixture: Effect of pH, pretreatment and organic load. Processes 2021, 9, 1017.
- 70. Yan, Q.; Liu, X.; Wang, Y.; Li, H.; Li, Z.; Zhou, L.; Qu, Y.; Li, Z.; Bao, X. Cow manure as a lignocellulosic substrate for fungal cellulase expression and bioethanol production. AMB Exp. 2018, 8, 190.
- 71. Su, G.; Ong, H.C.; Zulkifli, N.W.M.; Ibrahim, S.; Chen, W.H.C.; Chong, C.T.; Ok, Y.S. Valorization of animal manure via pyrolysis for bioenergy: A review. J. Clean. Prod. 2022, 343, 130965.
- 72. Liu, Q.; Xua, R.; Yan, C.; Han, L.; Lei, H.; Ruan, R.; Zhang, X. Fast hydrothermal coliquefaction of corn stover and cow manure for biocrude and hydrochar production. Bioresour. Technol. 2021, 340, 125630.
- 73. Nanda, S.; Dalai, A.K.; Gökalp, I.; Kozinski, J.A. Valorization of horse manure through catalytic supercritical water gasification. Waste Manag. 2016, 52, 147–158.
- 74. Itoh, T.; Iwabuchi, K.; Maemoku, N.; Sasaki, I.; Taniguro, K. A new torrefaction system employing spontaneous self-heating of livestock manure under elevated pressure. Waste Manag. 2019, 85, 66–72.

- 75. Cheong, D.Y.; Harvey, J.T.; Kim, J.; Lee, C. Improving biomethanation of chicken manure by co-digestion with ethanol plant effluent. Int. J. Env. Res. Public Health 2019, 16, 5023.
- 76. Yong, T.L.K.; Matsumura, Y. Catalytic gasification of poultry manure and eucalyptus wood mixture in supercritical water. Ind. Eng. Chem. Res. 2012, 51, 5685–5690.
- 77. Sarker, T.R.; Nanda, S.; Dalai, A.K.; Meda, V. A review of torrefaction technology for upgrading lignocellulosic biomass to solid biofuels. BioEnergy Res. 2021, 14, 645–669. [Google Scholar] [CrossRef]
- 78. Basu, P.; Sadhukhan, A.K.; Gupta, P.; Rao, S.; Dhungana, A.; Acharya, B. An experimental and theoretical investigation on torrefaction of a large wet wood particle. Bioresour. Technol. 2014, 159, 215–222.
- 79. Chen, W.H.; Peng, J.; Bi, X.T. A state-of-the-art review of biomass torrefaction, densification and applications. Renew. Sustain. Energy Rev. 2015, 44, 847–866.
- 80. Acharya, B.; Dutta, A.; Minaret, J. Review on comparative study of dry and wet torrefaction. Sustain. Energy Technol. Assess. 2015, 12, 26–37.
- 81. Osman WNAW, Rosli MH, Mazli WNA, Samsuri S. Comparative review of biodiesel production and purification. Carbon Capture Science & Technology. 2024;13:100264. doi:10.1016/j.ccst.2024.100264
- 82. Zhang C, Singh RP, Yadav P, et al. Recent advances in biotechnology and bioengineering for efficient microalgal biofuel production. Fuel Processing Technology. 2025;270:108199. doi:10.1016/j.fuproc.2025.108199
- 83. Ahmed N, Shakoor N. Advancing Agriculture through IoT, Big Data, and AI: A Review of Smart Technologies Enabling Sustainability. Smart Agricultural Technology. February 2025:100848. doi:10.1016/j.atech.2025.100848
- 84. Shah V, Patel N, Prajapati P, Jouhara H. Unlocking biogas potential: A comprehensive study on pretreatment techniques of organic substrate for enhanced anaerobic digestion. Energy. 2025;335:138244. doi:10.1016/j.energy.2025.138244
- 85. Chowdhury P, Mahi NA, Yeassin R, Chowdhury NUR, Farrok O. Biomass to biofuel: Impacts and mitigation of environmental, health, and socioeconomic challenges. Energy Conversion and Management X. 2025;25:100889. doi:10.1016/j.ecmx.2025.100889

- 86. Sofán-Germán SJ, Doria-Oviedo ME, Rhenals-Julio JD, Mendoza-Fandiño JM. Life Cycle Assessment of Biomass Waste and Coal Co-Firing: Advancing Circular Economy in Energy Production. Recycling. 2025; 10(4):151. https://doi.org/10.3390/recycling10040151 87. Kaur S, Kumar R, Singh K, Singh S. Systematic review of hydrogen, biomass, biogas, and solar photovoltaics in hybrid renewable energy systems: Advancements, challenges, and future directions. International Journal of Hydrogen Energy. 2025;137:160-189. doi:10.1016/j.ijhydene.2025.04.525
- 88. Alcocer-García H, Sánchez-Ramírez E, García-García E, Ramírez-Márquez C, Ponce-Ortega JM. Unlocking the Potential of Biomass Resources: A Review on Sustainable Process Design and Intensification. Resources. 2025; 14(9):143. https://doi.org/10.3390/resources14090143
- 89. El-Fawal EM, El Naggar AMA, El-Zahhar AA, Alghandi MM, Morshedy AS, El Sayed HA, Mohammed AEME. Biofuel production from waste residuals: comprehensive insights into biomass conversion technologies and engineered biochar applications. RSC Adv. 2025 Apr 22;15(15):11942-11974. doi: 10.1039/d5ra00857c. Erratum in: RSC Adv. 2025 May 16;15(21):16468. doi: 10.1039/d5ra90054a.
- 90. Saravanan A, Ragini YP, Karishma S, Hemavathy RV, Jyotsna M. A review on advancing sustainable energy: The role of biomass and bioenergy in a circular economy. Sustainable Futures. 2025;10:100835. doi:10.1016/j.sftr.2025.100835
- 91. Llanos-Lizcano R, Senila L, Modoi OC. Evaluation of Biochemical Methane Potential and Kinetics of Organic Waste Streams for Enhanced Biogas Production. Agronomy. 2024; 14(11):2546. https://doi.org/10.3390/agronomy14112546
- 92. Sahith N V, J AK, Sruthi S V. Microbial biofuels: a comprehensive review of advances toward sustainable energy and environmental mitigation. International Journal of Ambient Energy. 2025;46(1). doi:10.1080/01430750.2025.2571520
- 93. Nabaterega R, Vesuwe RN, Iorhemen OT, Thring RW. Biodiesel production unpacked: Data-driven analysis of key operational factors. Biomass and Bioenergy. 2025;205:108457. doi:10.1016/j.biombioe.2025.108457
- 94. Naseef HH, Tulaimat RH. Transesterification and esterification for biodiesel production: A comprehensive review of catalysts and palm oil feedstocks. Energy Conversion and Management X. February 2025:100931. doi:10.1016/j.ecmx.2025.100931

- 95. Babu KKBS, Nataraj M, Tayappa M, Vyas Y, Mishra RK, Acharya B. Production of biochar from waste biomass using slow pyrolysis: Studies of the effect of pyrolysis temperature and holding time on biochar yield and properties. Materials Science for Energy Technologies. 2024;7:318-334. doi:10.1016/j.mset.2024.05.002
- 96. Gao Y, Wang M, Raheem A, et al. Syngas Production from Biomass Gasification: Influences of Feedstock Properties, Reactor Type, and Reaction Parameters. ACS Omega. 2023;8(35):31620-31631. doi:10.1021/acsomega.3c03050
- 97. Shrestha S, Pandey R, Aryal N, Lohani SP. Recent advances in co-digestion conjugates for anaerobic digestion of food waste. Journal of Environmental Management. 2023;345:118785. doi:10.1016/j.jenvman.2023.118785
- 98. Kazmi A, Sultana T, Ali A, Nijabat A, Li G, Hou H. Innovations in bioethanol production: A comprehensive review of feedstock generations and technology advances. Energy Strategy Reviews. 2025;57:101634. doi:10.1016/j.esr.2024.101634
- 99. Farouk SM, Tayeb AM, Abdel-Hamid SMS, Osman RM. Recent advances in transesterification for sustainable biodiesel production, challenges, and prospects: a comprehensive review. Environmental Science and Pollution Research. 2024;31(9):12722-12747. doi:10.1007/s11356-024-32027-4
- 100. Liu Y, Sun Y, Wu X, et al. In-situ hydrodeoxygenation of a lignin-derived monomer using Ar dielectric barrier discharge plasma: From conversion performance to mechanism analysis. Journal of the Energy Institute. 2025;124:102344. doi:10.1016/j.joei.2025.102344 101. Prestipino M, Corigliano O, Galvagno A, Piccolo A, Fragiacomo P. Exploring the potential of wet biomass gasification with SOFC and ICE cogeneration technologies: process design, simulation and comparative thermodynamic analysis. Applied Energy. 2025;392:125998. doi:10.1016/j.apenergy.2025.125998
- 102. Song YJ, Oh KS, Lee B, Pak DW, Cha JH, Park JG. Characteristics of Biogas Production from Organic Wastes Mixed at Optimal Ratios in an Anaerobic Co-Digestion Reactor. Energies. 2021;14(20):6812. doi:10.3390/en14206812
- 103. Tsegaye KN, Alemnew M, Berhane N. Saccharomyces cerevisiae for lignocellulosic ethanol production: a look at key attributes and genome shuffling. Frontiers in Bioengineering and Biotechnology. 2024;12. doi:10.3389/fbioe.2024.1466644

- 104. Monika N, Banga S, Pathak VV. Biodiesel production from waste cooking oil: A comprehensive review on the application of heterogenous catalysts. Energy Nexus. 2023;10:100209. doi:10.1016/j.nexus.2023.100209
- 105. Parvari E, Mahajan D, Hewitt EL. A Review of Biomass Pyrolysis for Production of Fuels: Chemistry, Processing, and Techno-Economic Analysis. Biomass. 2025; 5(3):54. https://doi.org/10.3390/biomass5030054
- 106. Natarajan A, Venugopal D, Thangavelu L. Investigation of biomass gasification simulation using air, steam and oxygen as gasifying agent. Thermal Science. 2022;26(6 part B):5109-5119. doi:10.2298/tsci220207092n
- 107. Sarwar H, Vuppaladadiyam A, Venkatachalapati A, et al. Pre-treatment of organic biomass in the context of stand-alone and integrated anaerobic digestion—pyrolysis for enhanced product recovery: A critical review of challenges and opportunities. Biomass and Bioenergy. 2025;204:108386. doi:10.1016/j.biombioe.2025.108386
- 108. Kataya G, Cornu D, Bechelany M, Hijazi A, Issa M. Biomass Waste Conversion Technologies and Its Application for Sustainable Environmental Development—A Review. Agronomy. 2023; 13(11):2833. https://doi.org/10.3390/agronomy13112833